当前位置:文档之家› 三极管开关电路分析及Rb计算

三极管开关电路分析及Rb计算

三极管开关电路分析及Rb计算
三极管开关电路分析及Rb计算

1.输入电压Vin,输入电阻Rin,三极管导通电压取0.6V,三极管电流放大倍数是B,输出电阻(在C极的电阻)是Rout。这样很好计算了:

5V / Rout = A,

A /

B = C,所以C是你最小的基极电流。

如果你的输入电压Vin也用5V,那么(5 - 0.6)/C = Rin,你就可以选Rin了,为使三极管可靠饱和,选(5 - 0.6)/Rin > C就可以了。

2.先求I先求Ic=Vc/Rc Ib=Ic/B 基极电阻Rb=(Vb-Vbe)/Ib

c=Vc/Rc Ib=Ic/B 基极电阻Rb=(Vb-Vbe)/Ib

举例:

已知条件:输入Vi=5V,电源电压Vcc=5V,三极管直流放大系数beta=10.

查规格书得,集-射饱和电压Vcesat=0.2V,此时集电极电流Ic=10mA(或其它值),则集电极电阻Rc=(Vcc-Vcesat)/Ic = (5-0.2)/10 = 480 欧。

则Ib=Ic/beta=10/10=1 mA,基极限流电阻Rb=(Vi-Vbe)/Ib=(5-0.6)/1=4.4K,取为4.2K。

这时要注意,输入高电平为5V是理想情况,有可能在2.5V(输入的一半)以上就为高了,这时我们以5V输入而得到的基极电流很可能不够,因此要重新计算。以2.5V为逻辑电平的阈值来计算,则Rb==(Vi-Vbe)/Ib=(2.5-0.6)/1=1.9K,取为1.8K,或2K。

如何使三极管工作于开关状态??

如何使三极管工作于开关状态

晶体三极管的实际开关特性决定于管子的工作状态。晶体三极管输出特性三个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。

如果要使晶体三极管工作于开关的接通状态,就应该使之工作于饱和区;

要使晶体三极管工作于开关的断开状态,就应该使之工作于截止区,发射极电流

iE=0,这时晶体三极管处于截止状态,相当于开关断开。集电结加有反向电压,集电极电流iC=ICBO,而基极电流iB=-ICBO。说明三极管截止时,iB并不是为0,而等于-ICBO。基极开路时,外加电源电压VCC使集电结反向偏置,发射结正向偏置晶体三极管基极电流iB=0时,晶体管并未进入截止状态,这时iE=iC =ICEO还是较大的。晶体管进入截止状态,晶体管基极与发射极之间加反向电压,这时只存在集电极反向饱和电流ICBO,iB =-ICBO,iE=0,为临界截止状态。进一步加大基极电压的绝对值,当大于VBO时,发射结处于反向偏置而截止,流过发射结的电流为反向饱和电流IEBO,这时晶体管进入截止状态iB = -(ICBO+ IEBO),iC= ICBO。发射结外加正向电压不断升高,集电极电流不断增加。同时基极电流也增加,随着基极电流iB 的增加基极电位vB升高,而随着集电极电流iC的增加,集电极电位vC却下

降。当基极电流iB增大到一定值时,将出现vBE =vCE的情况。这时集电结为零偏,晶体管出现临界饱和。如果进一步增大iB ,iB增大,使得集电结由零偏变为正向偏置,集电结位垒降低,集电区电子也将注入基区,从而使集电极电流iC随基极电流iB的增大而增大的速度减小。这时在基区存储大量多余电子-空穴对,当iB继续增大时,iC基本维持不变,即iB失去对iC的控制作用,或者说这时晶体管的放大能力大大减弱了。这时称晶体管工作于饱和状态。一般地说,在饱和状态时饱和压降VBE(sat)近似等于0.7V,VCE(sat)近似等于0.3V。由图4.2.1(a)可看出,集电极电流iC的增加受外电路的限制。由电路可得出iC的最大值为ICM= VCC/ RC。晶体管进入饱和状态,基极电流增大,集电极电流变化很小,即

iC=ICS=(VCC-VBE(sat))/RC晶体管处于临界饱和时的基极电流为IBS=ICS/β

=(VCC-VBE(sat))/βRC

基极电阻增大,驱动电流不足,特别是晶体管从放大区进入饱和区时时间太长,开关晶体管发热烧坏,因此此电阻的计算为:Rb《=Hfe*(Vb-0.7)/Icm

在简易自动控制电路中,将介绍一些模拟实验电路,利用一些物理现象产生的力、热、声、光、电信号,实现自动控制,以达到某种控制效果。

磁控和热控电路

在磁力自动控制电路中,传感元件是干簧管,当磁铁靠近时,常开触点闭合而接通传感电路,完成位置传感作用。

能不能用干簧管开关直接控制电动机的转与停呢?玩具电动机是常用的动力装置,它能够把电能转换为机械能,可用于小电风扇转动、小离心水泵抽水等执行功能。通常玩具直流电动机工作电压低,虽然在1.5~3V就可以启动,但起动电流较大(1~2安培),如果用触点负荷仅为几十毫安的干簧管进行开关控制,将大大缩短其使用寿命。因此,在自动控制电路中,常使用电子开关来控制电动机的工作状态。

三极管电子开关电路 见图1 。由开关三极管VT,玩具电动机M,控制开关S,基极限流电阻器R和电源GB组成。VT采用NPN型小功率硅管8050,其集电极最大允许电流ICM可达1.5A,以满足电动机起动电流的要求。M选用工作电压为3V 的小型直流电动机,对应电源GB亦为3V 。

VT基极限流电阻器R如何确定呢?根据三极管的电流分配作用,在基极输入一个较弱的电流IB,就可以控制集电极电流IC有较强的变化。假设VT电流放大系数hfe≈250,电动机起动时的集电极电流IC=1.5A,经过计算,为使三极管饱和导

通所需的基极电流IB≥(1500mA/250)×2=12mA。在图1电路中,电动机空载时运转电流约为500mA,此时电源(用两节5号电池供电)电压降至2.4V,VT基极-发射极之间电压VBE≈0.9V。根据欧姆定律,VT基极限流电阻器的电阻值R=(2.4-0.9)V/12mA≈0.13k?。考虑到VT在IC较大时,hfe要减小,电阻值R还要小一些,实取100?。为使电动机更可靠地启动,R甚至可减少到51?。在调试电路时,接通控制开关S,电动机应能自行启动,测量VT集电极—发射极之间电压VCE≤0.35V,说明三极管已饱和导通,三极管开关电路工作正常,否则会使VT过热而损坏。

自动灭火的热量自动控制电路 见图2。该电路是将图1中的控制开关S换成双金属复片开关ST,就成为热控电路了。当蜡烛火焰烧烤到双金属复片时,复片趋于伸直状态,使得开关ST接通,电动机启动,带动小风扇叶片旋转,对准蜡烛吹风,自动将火焰熄灭;当双金属片冷却后,开关断开,小电风扇自动停转,完成了自动灭火的程序。

自动停车的磁力自动控制电路 见图3。开启电源开关S,玩具车启动,行驶到接进磁铁时,安装在VT基极与发射极之间的干簧管SQ闭合,将基极偏置电流短路,VT截止,电动机停止转动,保护了电动机及避免大电流放电。

光电控制电路

在光电自动控制电路中,可以选用光敏电阻器做为光电传感元件。能否将光敏电阻器直接接入图1控制开关S的位置呢?通常光敏电阻器,例如MG45有光照射时的亮阻2~10k?,远大于偏置电阻器R的电阻值,显然不能产生维持VT饱和导通所需强度的基极电流。因此,需要先用一支三极管进行电流放大,再驱动开关三极管工作。

光电自动控制电路 见图4。VT1和VT2接成

类似复合管电路形式,VT1的发射极电流也是VT2的基极电流,R2既是VT1的负载电阻器又是VT2的基极限流电阻器。因此,当VT1基极输入微弱的电流(0.1mA),

可以控制末级VT2较强电流——驱动电动机运转电流(500mA)的变化。VT1选用小功率NPN型硅管9013,h fe≈200。同前计算方法,维持两管同时饱和导通时VT1基极偏置电阻器R1约为3.3k?,减去光敏电阻器RG亮阻2k?,限流电阻器R1实取1k?。光敏传感器也可以采用光敏二极管,使用时要注意极性,光敏二极管的负极接供电电源正极。光敏二极管对控制光线有方向性选择,且灵敏度较高,也不会产生强光照射后的疲劳现象。

水位控制电路

最简单的水位传感元件是采用两个电极,当水面淹没电极时,利用不纯净水的导电性使电极之间导通,但导通电阻值较大,约50k?,不能代替光敏电阻器直接驱动如图4所示的光控电路,需要灵敏更高的控制电路。

水位自动控制电路 如图5所示。它是在图4电路的基础上,增加了一级前置放大管VT1,在其基极输入很微弱的电流(10μA)就可以使VT1~3皆饱和导通。控制开关S可以用大头针做成两个电极,当其被水淹没而导电时,小电动机会自行运转。C1为旁路电容器,防止感应交流电对控制电路的干扰。VT1选用低噪音、高增益的小功率NPN硅管9014。根据上述电路水位控制的功能,能否设计成一个感知下雨自动关窗、自动收晾晒衣服绳索的自动控制器。

下偏置水自动控制电路 见图6 。图中,将两个电极改接在VT1下偏置,R1仍为上偏置电阻器。当杯内水面低于两个电极时,相当于下偏置开路,R1产生的偏置电流使电动机起动。当水位上升到淹没电极时,两个电极之间被水导通,将R1产生的偏置电流旁路一部分,使VT1~3截止,电动机停转,与图5控制效果恰好相反。

//////************************************************** ****/////////

三极管的开关电路分析三极管的开关电路分析((12V—SW )

在这里做个小电路的分析,大家都可能用到,这里把模型分解一下,并介绍一下计算方法和各个元件的作用。

Q1:主开关,主要作用是提供12VSW 电流,特点饱和时Vec 必须很小,热阻不能太大。

Q2:副开关,主要作用是旁路Q1,在MCU 置高电平时导通,ce 拉低使Q1工作。 R1:保证MCU 无输出的时候电路不工作。

R2:限制电流,给Q2一个工作电流。

C1:去除干扰,防止Q1意外导通。

下面是这个电路图的等效模型:

然后我们定义一下输出负载,假设有N个按键开关电路检测电路(Active Low)

经过以上分析我们可以列出所有公式:

这个时候我们可以看出,要想让这个电路处于良好的状态,两个开关管必须都处于饱和状态,一般要使得开关管饱和,Ic/Ib必须小于30.

因此我们必须求取方法倍数,其中Q1中的Vbatt和Ib和Ic同时是正向关系,必须求取各个参数的偏导求最大的放大系数。

这样就可以求得此时三极管的状态。

另外一个需要验证的就是温度情况,公式如下:

这个主要是验证散发功率的情况。计算过程到此差不多了,在实际设计中,每个参数都是比较重要的,特别是在省电模式下,可能会打开电源后扫描接口电路,因此整个电路的响应时间非常重要。以后会讨论一下瞬态响应的做法(Laplas变换的应用。)在这里大致可以描述一下,因为每个电路都有滤波电容,在打开电源的瞬间,所有的电容都需要充电,因此此时的Ic是非常大的,所以电路一时达不到饱和状态。这个参数主要是调整R2,

R2增大,响应时间长,电路偏置功率小。R2减小,响应时间段,电路偏置功率大。做个tradeoff即可。

三极管替换及常用开关三极管

三极管替换及常用开关三极管 三极管替换及常用开关三极管 gaost 发表于2009-5-4 8:44:00 8 推荐 一、三极管的类型及材料 初学者首先必须清楚三极管的类型及材料。常用三极管的类型有NPN型与PNP型两种。由于这两类三极管工作(工作总结)时对电压的极性要求不同,所以它们是不能相互代换的。 三极管的材料有锗材料和硅材料。它们之间最大的差异就是起始电压不一样。锗管PN结的导通电压为0.2V左右,而硅管PN结的导通电压为0.6~0.7V。在放大电路中如果用同类型的锗管代换同类型的硅管,或用同类型的硅管代换同类型的锗管一般是可以的,但都要在基极偏置电压上进行必要的调整,因为它们的起始电压不一样。但在脉冲电路和开关电路中不同材料的三极管是否能互换必须具体分析,不能盲目代换。 二、三极管的主要参数 选用三极管需要了解三极管的主要参数。若手中有一本晶体管特性手册最好。三极管的参数很多,根据实践经验,我认为主要了解三极管的四个极限参数:ICM、BVCEO、PCM及fT即可满足95%以上的使用需要。 1. ICM是集电极最大允许电流。三极管工作(工作总结)时当它的集电极电流超过一定数值时,它的电流放大系数β将下降。为此规定三极管的电流放大系数β变化不超过允许值时的集电极最大电流称为ICM。所以在使用中当集电极电流IC超过ICM时不至于损坏三极管,但会使β值减小,影响电路的工作(工作总结)性能。 2. BVCEO是三极管基极开路时,集电极-发射极反向击穿电压。如果在使用中加在集电极与发射极之间的电压超过这个数值时,将可能使三极管产生很大的集电极电流,这种现象叫击穿。三极管击穿后会造成永久性损坏或性能下降。 3. PCM是集电极最大允许耗散功率。三极管在工作(工作总结)时,集电极电流在集电结上会产生热量而使三极管发热。若耗散功率过大,三极管将烧坏。在使用中如果三极管在大于PCM下长时间工作(工作总结),将会损坏三极管。需要注意的是大功率三极管给出的最大允许耗散功率都是在加有一定规格散热器情况下的参数。使用中一定要注意这一点。 4. 特征频率fT。随着工作(工作总结)频率的升高,三极管的放大能力将会下降,对应于β=1时的频率fT叫作三极管的特征频率。 三、一般小功率三极管的选用 小功率三极管在电子电路中的应用最多。主要用作小信号的放大、控制或振荡器。选用三极管时首先要搞清楚电子电路的工作(工作总结)频率大概是多少。如中波收音机振荡器的最高频率是2MHz左右;而调频收音机的最高振荡频率为120MHz左右;电视机中VHF频段的最高振荡频率为250MHz左右;UHF 频段的最高振荡频率接近1000MHz左右。工程设计中一般要求三极管的fT大于3倍的实际工作(工作总结)频率。所以可按照此要求来选择三极管的特征频率fT。由于硅材料高频三极管的fT一般不低于50MHz,

三极管开关电路工作原理解析

三极管开关电路工作原理解析 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(C utoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (VBE 亦趋近于0),C 极与E 极间约呈断路状态,IC = 0,VCE = VCC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,I B 的值适中(VBE = 0.7 V),I C =h F E I B 呈比例放大,Vce = Vcc -Rc I c = V cc - Rc hFE I B可被IB 操控。若三极管在饱和区,IB 很大,VBE = 0.8 V,VCE = 0.2 V,VBC = 0.6 V,B-C 与B -E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc ,I c 与IB 无关了,因此时的IB大过线性放大区的IB 值,Ic

图3、截止态如同断路线图图4、饱和态如同通路 实验:三极管的开关作用 简单三极管开关:电路如图5,电阻RC是LED限流用电阻,以防止电压过高烧坏LED(发光二极管),将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对的VOUT 以及LED 的亮度。当三极管开关为断路时,VOUT =VCC =12 V,LED 不亮。当三极管开关通路时,VOUT = 0.2V ,LED 会亮。改良三极管开关:因为三极管由截止区过度到饱和区需经过线性区,开关的效果不会有明确的界线。为使三极管开关的效果明确,可串接两三极管,电路如图六。同样将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对应的VOUT 以及LED 的亮度。

三极管在电路中的使用(超详细有实例)

一种三极管开关电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接 点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电 子开关的基本电路图。由图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 Vcc 输入电压Vin则控制三极管开关的开启(open)与闭合(closed )动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由 于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off )区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturatiON )。 1三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低 于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上, 则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。 欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的 集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为: Vcc Ic(tfefi)二—— R LD 因此,基极电流最少应为: 丁Ic(sat) VCC T 二一二閒

三极管开关电路分析及Rb计算

1.输入电压Vin,输入电阻Rin,三极管导通电压取0.6V,三极管电流放大倍数是B,输出电阻(在C极的电阻)是Rout。这样很好计算了: 5V / Rout = A, A / B = C,所以C是你最小的基极电流。 如果你的输入电压Vin也用5V,那么(5 - 0.6)/C = Rin,你就可以选Rin了,为使三极管可靠饱和,选(5 - 0.6)/Rin > C就可以了。 2.先求I先求Ic=Vc/Rc Ib=Ic/B 基极电阻Rb=(Vb-Vbe)/Ib c=Vc/Rc Ib=Ic/B 基极电阻Rb=(Vb-Vbe)/Ib 举例: 已知条件:输入Vi=5V,电源电压Vcc=5V,三极管直流放大系数beta=10. 查规格书得,集-射饱和电压Vcesat=0.2V,此时集电极电流Ic=10mA(或其它值),则集电极电阻Rc=(Vcc-Vcesat)/Ic = (5-0.2)/10 = 480 欧。 则Ib=Ic/beta=10/10=1 mA,基极限流电阻Rb=(Vi-Vbe)/Ib=(5-0.6)/1=4.4K,取为4.2K。 这时要注意,输入高电平为5V是理想情况,有可能在2.5V(输入的一半)以上就为高了,这时我们以5V输入而得到的基极电流很可能不够,因此要重新计算。以2.5V为逻辑电平的阈值来计算,则Rb==(Vi-Vbe)/Ib=(2.5-0.6)/1=1.9K,取为1.8K,或2K。 如何使三极管工作于开关状态? 晶体三极管的实际开关特性决定于管子的工作状态。晶体三极管输出特性三个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。 如果要使晶体三极管工作于开关的接通状态,就应该使之工作于饱和区; 要使晶体三极管工作于开关的断开状态,就应该使之工作于截止区,发射极电流 iE=0,这时晶体三极管处于截止状态,相当于开关断开。集电结加有反向电压,集电极电流iC=ICBO,而基极电流iB=-ICBO。说明三极管截止时,iB并不是为0,而等于-ICBO。基极开路时,外加电源电压VCC使集电结反向偏置,发射结正向偏置晶体三极管基极电流iB=0时,晶体管并未进入截止状态,这时iE=iC =ICEO还是较大

常用开关管对照

常用开关管、场管、IC参数、国内外相似替换型号 分类:液晶屏维修实例 2009.7.9 12:15 作者:龙哥 | 评论:0 | 阅读:0 2SC1885 150V,0.05A 0.75,200MHZ BF297,BF422,BF391,3DG180K NPN 2SC2336 180V,1.5A,25W,95MHZ 2SC2238A,2SC2238B,2SC2660, NPN 2SD478,2SD608A,2SD760,2SD1138, 3DA25F 2SC3306 500V,10A,100W BUV48A,BUV48B,BUV48C,BUW13 NPN 2SC2740,2SC3042,2SC3277,2SC3365 2SC3842,2DK308C 2SC3461 1100V,8A,140W BU902,2SC3643,2SC3847,2SC3982, NPN 2SD1433 2SC3746 80V,5A,20W 2SC3253,2SC3258,2SC3540,2SC3691 NPN 2SC4549,2SD1270,2SC1832 2SC3866 900V,3A,40W 2SC2979,2SC3178,2SC3559,2SC3979 NPN 2SC4303 2SC3953 2SC3886 1400V,8A,50W BU508AF,2SC3847,2SC3896,2SD1850 NPN 2SD1886 2SC3997 1500V,20A,250W - NPN 2SC4111 1500V,10A,150W 2SC3307,2SC3897,2SC3995 N PN 2SC4159 180V,1.5A,15W 2SC3298A,2SC3298B,2SD1763A,2SD177 2 NPN 2SC4288 1400V,12A,200W 2SC3910,2SC3995 NPN 2SC4538 2SC4633 1500V,0.03A,7W 2SC4451,2SC4576 NPN 2SC4686A 1500V,0.05A,10W 2SC4578 NPN 2SC4833 500V,5A,35W BUT11AF,2SC3310,2SC3570,2SC4026 NPN 2SC4054,2SC4160,2SC4073,2SC4371 2SC4834 500V,8A,45W BU306F,BUT12AF,2SC3626,2SC4130, NPN

三极管开关电路

三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的 回路上。 Vcc 團1基本的三极管开关 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off) 区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturati on) 。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838 电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为:

谈谈三极管的开关功能

谈谈三极管的开关功能 三极管的工作机理本质上就是通过be之间的电流来控制ce之间的电流。所以b极叫基极也叫控制极。本科生们关于三极管的一个粗糙的印象是三极管有放大作用,至于放大什么东西,可能有相当一部分人也含糊不清。我们这里说的放大,当然是指be间的电流来控制gemfield倍于它的流经ce之间的电流,这个gemfield,通常是100左右。形象的说,Ic就是将Ib放大100倍所得的电流。 三极管的工作有三种状态,即截止状态、线性放大状态、饱和状态。其实我本人是非常不喜欢这三个名字的。只是另起炉灶的话,会浪费更多的精力,也就罢了。不过深刻了解了这三种工作状态,以后便可以真正做到胸有成竹,从而看透电路中万变不离其宗的三级管用法。 那就先说截止状态吧。在描述三极管工作条件时,经常会蹦出正偏或者反偏这类词语,比如集电结反偏。这些词语也是令我很讨厌的一类词语,仿佛就是一个个骗子,将初始时我们对于森林的好奇最终引向了弥漫着雾气的杂草丛生的沼泽地带。所以我先费些笔墨来解释一下这个词语。所谓正偏,即两极间加的电压与PN结的导通方向一致,如本例中的2n5550 安森美NPN硅管,对于b、e构成的发射结来说,b极电位高于e极电位,就叫发射结正偏,相反则叫反偏!而对于b、c构成的集电结来说,b极电位高于c极电位,就叫集电结正偏,相反就叫反偏。 那么这个2n5550三极管什么时候处于截止状态呢?我们说当我们打开三极管的钥匙——be间的电压,有一个开启的电压,大约在0.5到0.6v之间。注意是b比e高0.5到0.6v,也就是说当b的电位比e 的电位高不出这个电压时,比如是0.4v或者0.1v或者-0.1v,我们就说三极管陷入了截止状态。这个时候,从c流向e的电流很小——只有1微安以下,因为我们还不具备开启三极管的钥匙。在multisim 10的电路仿真中,当ce间的电压为5v,Vbe钥匙电压为0.4v时,流经ce电流(Ic)为800多纳安。ce之间5v 这个还算可以的电压才仅仅产生了Ic纳安级渺小的电流。只能说ce间的电阻太大了。所以说,这个时候的ce间电阻很大,我们把它近似于开路。 所以对截止状态做个总结时,我们就说当be这把开启钥匙没有达到开启电压时(0.5到0.6)时,ce开路。这时的三极管你可以说它是装饰物,也可以说它是石头,甚至你把它从电路中拿走也没关系。这就是第一个我们要阐述的三极管的官员状态——我在休息,什么也不做。 不过不幸的是,下面还有一大段话要啰嗦。这些谆谆教诲对于三极管的任意一种工作状态都是适用的: 截止状态也不是说因为不用工作,所以就没有什么参数限制了。这是不对的,就像官员上班时间也在休息,甚至都有人在打麻将,ok,这是没关系的,反正也不会丢掉乌纱帽。但你不能放火烧房子,这个就不行了。同样,三极管在be的电位差不足前面提到的那个钥匙电压时不工作,但是be之间的电位差也不能太低了。比如,是一个很大的负值,这就是说e的电位反而比b的电位高很多。我们都知道三极管的be之间像一个pn结,那么毫无疑问也有一个反向耐压值。所以这块儿也有一个这样的值,就是说发射极的电位不能比基极高出那么多的一个值,是多少呢?对于2N5550来说,是6v,也就是说当Vbe<-6v时,三极管的发射结可能会被反向击穿。

三极管最简单易懂原理总结

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、偏置电路 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。

三极管放大、开关、判断管脚的原理

三极管的工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E 的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、偏置电路 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,

三极管开关电路设计详细过程

揭秘:三极管开关电路设计详细过程 电源网首页| 分类:功率开关| 2011-03-10 09:15:39 | 评论(0) 摘要:三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电... 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。

同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕ 因此,基极电流最少应为: 上式表出了IC和IB之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间,有着甚大的差异。欲使开关闭合,则其V in值必须够高,以送出超过或等于(式1) 式所要求的最低基极电流值。由于基极回路只是一个电阻和基射极接面的串联电路,故Vin可由下式来求解﹕

三极管和MOS管做开关用时的区别

三极管和MOS管做开关用时的区别 ?我们在做电路设计中三极管和MOS管做开关用时候有什么区别工作性质: 1.三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,MOS管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:MOS管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和MOS晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而MOS三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 ?(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。

三极管作为开关电路的设计及应用

第一节基本三极管开关基本电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上, 图1 基本的三极管开关 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。838电子 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源) 当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕

三极管开关电路详解

一 三极管只做开关作用,不需要调整输出电压。驱动功率大的设备。也不是很大,1A就行。哪种方法能最大利用三极管效率,哪种方法三极管发热最小?用补充的驱动好不好?R选 多少合适?还有别的好办法吗?负载是电磁阀。 答:1、特点不同,要看前后级的关系,第一种是跟随输出,输入阻抗高,输出阻抗小, 当前级是高压小电流的时候好,并且输出电压是受控前级电压,可做限幅开关,输出是电 压源。第二种是反向共射集电极输出,适合前级是低压大电流,输出是阻抗高,也是电流源,当负载变化时,电流不变。如果前级是低阻,如TTL,适合第二种。补充的电路是二 者的结合,光耦的漏电流容易被放大,所以要加R大约2K左右(看光耦的参数),如是 继电器线圈,当释放电压低时,容易误动作,电流优点是可给线圈提快速建立电压。本例 中如是继电器,属电流驱动,最好用集电极输出,但也要有R。 补充:你是驱动电磁阀啊,又要晶体管功耗低,补充的驱动管子压降很大,只能是第二种,把阀接到集电极上,并且1A的驱动电流要再加一级组成复合管 2、第二种更好,这表现在两个方面: 首先,三极管的集电结比发射结更结实不易损坏,所以一般用集电极作为功率输出端; 其次,用共发射极放大器可以利用的电源电压幅度为电源电压-0.3V(集电结饱和电压),而用射极跟随器可以利用的电源电压幅度为电源电压-0.3V-0.7V(集电结饱和电压和发射 结导通电压),显然前者对电源利用的效率更高。 建议你采用第二种,集电器输出方式的电路负载特性好,很多自控图纸中多是把继电器的 线圈作为集电极负载。无基流时,集电极几乎无电流。再者,集电极输出的动态特性好

二 利用三极管饱和导通和截止的的特性,本身就可以实现接通和断开的功能,但由于它的带载功率有限,所以需配继电器扩流,并且可以扩充触点的数量,该电路是PNP三极管,所以采用集电极接低电平方式输出,P37为上拉电阻,当基极没有输入脉冲或电压时,基极为高电平,因为这是反极性三极管,所以平时是截止的,只有基极输入低电平,降低基极电压,这时三极管导通,继电器线圈得电吸合,原常闭触点断开,常开触点吸合,完成设备的接通与断开功能。图中二极管反向接在线圈两端,是保护线圈不受反峰电压的冲击,对继电器起到保护作用。

PNP三极管结构及工作原理解析

PNP三极管工作原理解密 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量,但三极管厉害的地方在于:它可以通过小电流控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 晶体三极管是一种电流控制元件。发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结。晶体三极管按材料分常见的有两种:锗管和硅管。而每一种又有NPN 和PNP两种结构形式,使用最多的是硅NPN和PNP两种,两者除了电源极性不同外,其工作原理都是相同的,三极管工作在放大区时,三极管发射结处于正偏而集电结处于反偏,集电极电流Ic受基极电流Ib的控 制,Ic的变化量与Ib变化量之比称作三极管的交流电流放大倍数β(β=ΔIc/ΔIb,Δ表示变化量。)在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。 要判断三极管的工作状态必须了解三极管的输出特性曲线,输出特性曲线表示Ic随Uce的变化关系(以Ib为参数),从输出特性曲线可见,它分为三个区域:截止区、放大区和饱和区。 根据三极管发射结和集电结偏置情况,可以判别其工作状态: 对于NPN三极管,当Ube≤0时,三极管发射结处于反偏工作,则Ib≈0,三极管工作在截止区;当晶体三极管发射结处于正偏而集电结处于反偏工作时,三极管工作在放大区,Ic随Ib近似作

三极管开关电路分析

站内搜索: 永生 RSS 电路测试仪正达电路测试 电路测试仪-北京正达专营电路测试仪 https://www.doczj.com/doc/5f16327739.html, 高校实验教学解决方案 集成电路维修检测仪. STC 51 新39.99 USB ISP 5 in 1(USB 能在线 录器 45.0 搜索

图1 基本的三极管开关 因此,基极电流最少应为: ( 流值。由于基极回路只是一个电阻和基射极接面的串联电路,故 (

为了避免混淆起见,本文所介绍的三极管开关均采用NPN三极管,当然NPN三极管亦可以被当作开关来使用,只是比较不常见罢了。 例题1 试解释出在图2的开关电路中,欲使开关闭合(三极管饱和) 所须的输入电压为何﹖并解释出此时之负载电流与基极电流值﹖ 解﹕由2式可知,在饱和状态下,所有的供电电压完全跨降于负载电阻上,因此 由方程式 (1) 可知 因此输入电压可由下式求得﹕ 图2 用三极管做为灯泡开关 由例题得知,欲利用三极管开关来控制大到1.5A的负载电流之启闭动作,只须要利用甚小的控制电压和电流即可。此外,三极管虽然流过大电流,却不须要装上散热片,因为当负载电流流过时,三极管呈饱和状态,其VCE趋近于零,所以其电流和电压相乘的功率之非常小,根本不须要散热片。 二、三极管开关与机械式开关的比较 截至目前为止,我们都假设当三极管开关导通时,其基极与射极之间是完全短路的。事实并非如此,没有任何三极管可以完全短路而使VCE=0,大多数的小信号硅质三极管在饱和时,VCE(饱和) 值约为0.2伏特,纵使是专为开关应用而设计的交换三极管,其VCE(饱和) 值顶多也只能低到0.1伏特左右,而且负载电流一高,VCE(饱和) 值还会有些许的上升现象,虽然对大多数的分析计算而言,VCE(饱和) 值可以不予考虑,但是在测试交换电路时,必须明白VCE(饱和) 值并非真的是0。 虽然VCE(饱和)的电压很小,本身微不足道,但是若将几个三极管开关串接起来,其总和的压降效应就很可观了, 不幸的是机械式的开关经常是采用串接的方式来工作的,如图3(a)所示,三极管开关无法模拟机械式开关的等效电 路(如图3(b)所示)来工作,这是三极管开关的一大缺点。表 步进电机控制工作原理 直流电机的PWM冲调速控制技术 消除按键抖动电路 伺服电机工作原理LED驱动原理

常用电源开关管参数

常用电源开关管参数 型号反压V 电流A 功率W 型号反压V 电流A 功率W BU108 1500 5 12.5 C4291 1500 5 100 BU208A 1500 5 12.5 C4292 1500 6 100 BU208D 1500 5 12.5 C4303A 1500 6 80 BU209A 1500 5 12.5 2SD348 1500 7 50 BU308 1500 5 12.5 D820 1500 5 50 BU500 1500 6 75 D821 1500 6 50 BU508A 1500 7.5 75 D822 1500 7 50 BUY71 2200 2 40 D838 2500 3 50 2SC1942 1500 3 50 D869 1500 3.5 50 C2027 1500 5 50 D870 1500 5 50 C2125 2200 5 50 D871 1500 6 50 C3480 1500 3.5 80 D898 1500 3 50 C3481 1500 5 120 D899 1500 4 50 C3482 1500 6 120 D900 1500 5 50 C3484 1500 3.5 80 D903 1500 7 50 C3485 1500 6 120 D950 1500 3 42 C3685 1500 6 120 D952 1500 3 65 C3686 1500 7 120 D953 1500 5 70 C3687 1500 8 150 D954 1500 5 80 C3688 1500 10 150 D957A 1500 6 95 C3729 1500 5 50 D994 1500 8 50 C3883 1500 5 50 D995 2500 3 50 C4199A 1500 10 100 D1016 1500 7 50 型号反压V 电流A 功率W 型号反压V 电流A 功率W D1142 1500 3.5 50 D1455 1500 5 50 D1143 1500 5 65 D1456 1500 6 50 D1172 1500 5 65 D1545 1500 5 50 D1173 1500 5 70 D1546 1500 6 50 D1174 1500 5 85 D1547 1500 7 50

三极管开关电源的原理及其应用

三极管开关原理[2009年05月21日] 2009-05-21 22:09 图1 NPN 三极管共射极电路图2 共射极电路输出特性曲 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(Cutoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (V BE亦趋近于0),

C 极与E 极间约呈断路状态,I C = 0,V CE = V CC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,IB 的值适中(V BE = 0.7 V),I C =h F E I B呈比例放大,Vce = Vcc -Rc I c = V cc - Rc h FE I B可被I B操控。若三极管在饱和区,I B很大,V BE= 0.8 V,V CE = 0.2 V,V BC = 0.6 V,B-C 与B-E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc,Ic与I B无关了,因此时的I B大过线性放大区的I B值,Ic

开关三极管

开关三极管

开关三极管 目录 开关三极管 (2) 目录 (2) 1 三极管开关电路设计 (2) 2 三极管开关电路工作原理解析 (20) 三极管开关电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。 由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上,

图1 基本的三极管开关 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。838电子

一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin 必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕ 因此,基极电流最少应为:

三极管的开关原理

BJT的开关工作原理: 形象记忆法: 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。它只是把电源的能量转换成信号的能量罢了。但三极管厉害的地方在于:它可以通过小电流控制大电流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。 所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随

之打开,汹涌的江水滔滔流下。 如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果水流处于可调节的状态,这种情况就是三极管中的线性放大区。 如果那个小的阀门开启的还不够,不能打开大阀门,这种情况就是三极管中的截止区。 如果小的阀门开启的太大了,以至于大阀门里放出的水流已经到了它极限的流量,这种情况就是三极管中的饱和区。但是你关小小阀门的话,可以让三极管工作状态从饱和区返回到线性区。 如果有水流存在一个水库中,水位太高(相应与Uce太大),导致不开阀门江水就自己冲开了,这就是二极管的反向击穿。PN结的击穿又有热击穿和电击穿。当反向电流和反向电压的乘积超过PN结容许的耗散功率,直至PN结过热而烧毁,这种现象就是热击穿。电击穿的过程是可逆的,当加在PN结两端的反向电压降低后,管子仍可以恢复原来的状态。电击穿又分为雪崩击穿和齐纳击穿两类,一般两种击穿同时存在。电压低于5-6V的稳压管,齐纳击穿为主,电压高于5-6V 的稳压管,雪崩击穿为主。电压在5-6V之间的稳压管,两种击穿程度相近,温度系数最好,这就是为什么许多电路使用5-6V稳压管的

相关主题
文本预览
相关文档 最新文档