当前位置:文档之家› 自动控制系统的校正

自动控制系统的校正

自动控制系统的校正

自动控制系统的校正

自动控制系统的校正

第五章自动控制系统的校正 本章要点 在系统性能分析的基础上,主要介绍系统校正的作用和方法,分析串联校正、反馈校正和复合校正对系统动、静态性能的影响。 第一节校正的基本概念 一、校正的概念 当控制系统的稳态、静态性能不能满足实际工程中所要求的性能指标时,首先可以考虑调整系统中可以调整的参数;若通过调整参数仍无法满足要求时,则可以在原有系统中增添一些装置和元件,人为改变系统的结构和性能,使之满足要求的性能指标,我们把这种方法称为校正。增添的装置和元件称为校正装置和校正元件。系统中除校正装置以外的部分,组成了系统的不可变部分,我们称为固有部分。 二、校正的方式 根据校正装置在系统中的不同位置,一般可分为串联校正、反馈校正和顺馈补偿校正。 1.串联校正 校正装置串联在系统固有部分的前向通路中,称为串联校正,如图5-1所示。为减小校正装置的功率等级,降低校正装置的复杂程度,串联校正装置通常安排在前向通道中功率等级最低的点上。 图5-1 串联校正 2.反馈校正 校正装置与系统固有部分按反馈联接,形成局部反馈回路,称为反馈校正,如图5-2所示。 3.顺馈补偿校正

顺馈补偿校正是在反馈控制的基础上,引入输入补偿构成的校正方式,可以分为以下两种:一种是引入给定输入信号补偿,另一种是引入扰动输入信号补偿。校正装 置将直接或间接测出给定输入信号R(s)和扰动输入信号D(s),经过适当变换以后,作为附加校正信号输入系统,使可测扰动对系统的影响得到补偿。从而控制和抵消扰动对输出的影响,提高系统的控制精度。 三、校正装置 根据校正装置本身是否有电源,可分为无源校正装置和有源校正装置。 1.无源校正装置 无源校正装置通常是由电阻和电容组成的二端口网络,图5-3是几种典型的无源校正装置。根据它们对频率特性的影响,又分为相位滞后校正、相位超前校正和相位滞后—相位超前校正。 无源校正装置线路简单、组合方便、无需外供电源,但本身没有增益,只有衰减;且输入阻抗低,输出阻抗高,因此在应用时要增设放大器或隔离放大器。 2.有源校正装置 有源校正装置是由运算放大器组成的调节器。图5-4是几种典型的有源校正装 置。有源校正装置本身有增益,且输入阻抗高,输出阻抗低,所以目前较多采用有源图5-2 反馈校正 图5-3 无源校正装置 a)相位滞后 b)相位超前 c)相位滞后-超前

自动控制系统组成

自动控制系统的组成及功能实现 自动控制系统作为目前工业领域控制的核心,已经为大家所熟悉。自动控制系统是指在无人直接参与下可使生产过程或其他过程按期望规律或预定程序进行的控制系统。自动控制系统是实现自动化的主要手段,其组建了整个系统的大脑及神经网络。自动控制系统的组成一般包括控制器,被控对象,执行机构和变送器四个环节组成。 一、自动控制系统的分类 自动控制系统按控制原理主要分为开环控制系统和闭环控制系统。 (一)开环控制系统 在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都比较差。开环控制系统中,基于按时序进行逻辑控制的称为顺序控制系统;由顺序控制装置、检测元件、执行机构和被控工业对象所组成。主要应用于机械、化工、物料装卸运输等过程的控制以及机械手和生产自动线。 (二)闭环控制系统 闭环控制系统是建立在反馈原理基础之上的,利用输出量同期望值的偏差对系统进行控制,可获得比较好的控制性能。闭环控制系统又称反馈控制系统。 自动控制系统按给定信号分类,可分为恒值控制系统、随动控制系统和程序控制系统。(三)恒值控制系统 给定值不变,要求系统输出量以一定的精度接近给定希望值的系统。如生产过程中的温度、压力、流量、液位高度、电动机转速等自动控制系统属于恒值系统。 (四)随动控制系统 给定值按未知时间函数变化,要求输出跟随给定值的变化。如跟随卫星的雷达天线系统。(五)程序控制系统 给定值按一定时间函数变化。如程控机床。 在我们的工业领域中,因控制的工艺流程复杂、生产数多、对产品质量控制严格,所以一般控制系统均为闭环控制系统。 二、控制系统各部分的功能 (一)控制器 目前控制系统的控制器主要包括PLC、DCS、FCS等主控制系统。在底层应用最多的就是PLC控制系统,一般大中型控制系统中要求分散控制、集中管理的场合就会采用DCS 控制系统,FCS系统主要应用在大型系统中,它也是21世纪最具发展潜力的现场总线控制系

自动控制系统分类

1-3自动控制系统的分类 本课程的主要内容是研究按偏差控制的系统。为了更好的了解自动控制系统的特点,介绍一下自动控制系统的分类。分类方法很多,这里主要介绍其中比较重要的几种: 一、按描述系统的微分方程分类 在数学上通常可以用微分方程来描述控制系统的动态特性。按描述系统运动的微分方程可将系统分成两类: 1.线性自动控制系统描述系统运动的微分方程是线性微分方程。如方程的系数为常数,则称为定常线性自动控制系统;相反,如系数不是常数而是时间t的函数,则称为变系数线性自动控制系统。线性系统的特点是可以应用叠加原理,因此数学上较容易处理。 2.非线性自动控制系统描述系统的微分方程是非线性微分方程。非线性系统一般不能应用叠加原理,因此数学上处理比较困难,至今尚没有通用的处理方法。 严格地说,在实践中,理想的线性系统是不存在的,但是如果对于所研究的问题,非线性的影响不很严重时,则可近似地看成线性系统。同样,实际上理想的定常系统也是不存在的,但如果系数变化比较缓慢,也可以近似地看成线性定常系统。 二、按系统中传递信号的性质分类 1.连续系统系统中传递的信号都是时间的连续函数,则称为连续系统。 2.采样系统系统中至少有一处,传递的信号是时间的离散信号,则称为采样系统,或离散系统。 三、按控制信号r(t)的变化规律分类 1.镇定系统() r t为恒值的系统称为镇定系统(图1-2所示系统就是一例)。 2.程序控制系统() r t为事先给定的时间函数的系统称为程序控制系统(图1-11所示系统就是一例)。 3.随动系统() r t为事先未知的时间函数的系统称为随动系统,或跟踪系统,如图1-7所示的位置随动系统及函数记录仪系统。

自控实验报告-系统校正

西安邮电学院 自动控制原理 实验报告

实验三系统校正 一,实验目的 1.了解和掌握系统校正的一般方法。 2.熟悉掌握典型校正环节的模拟电路构成方法。二.实验原理及电路 1.未校正系统的结构方框图 图1 2.校正前系统的参考模拟方框图 图2 3.校正后系统的结构方框图

图3 4.校正后系统的模拟电路图 图4 三.实验内容及步骤 1.测量未校正系统的性能指标 (1)按图2接线 (2)加入阶跃电压观察阶跃响应曲线,并测出超调量和调节时间,并将曲线和参数记录出来。 2.测量校正系统的性能指标 (1)按图4接线

(2)加入阶跃电压,观察阶跃响应曲线,并测出超调量以及调节时间。 四.实验结果 未校正系统 理论值σ% = 60.4% t s = 3.5s 测量值σ% = 60% t s = 2.8s 校正后系统 理论值σ% = 16.3% t s = 0.35s 测量值σ% = 5% t s = 0.42s

五.心得体会 在课本的第六章,我们学习了线性系统的校正方法,包括串联校正、反馈校正以及复合校正等矫正方法,相对于之前学习的内容,理解起来相对难一些,做起实验来也不容易上手。试验期间,遇到了很多难题,反复调整修改甚至把连接好的电路全都拆了重连,最后终于完成了实验。相对于之前的几次试验,这次实验师最让人头疼的,幸好之前积累了些经验,才使得我们这次实验的时候不至于手忙脚乱,但是也并不轻松。 虽然遇到的困难很多,但是我们却收获的更多,线性系统的校正是自动控制原理中重要的部分,通过理论课的学习,再加上实验课的实践,我终于对这些内容有个系统的理解。

自动控制系统的组成

1.1 自动控制系统的组成 自动控制系统是在人工控制的基础上产生和发展起来的。为对自动控制有一个更加清晰的了解,下面对人工操作与自动控制作一个对比与分析。 图1-1所示是一个液体贮槽,在生产中常 用来作为一般的中间容器或成品罐。从前一个 工序出来的物料连续不断地流入槽中,而槽中 的液体又送至下一工序进行加工或包装。当流 入量Q i(或流出量Q0) 波动,严重时会溢出或抽空。解决这个问题的 最简单办法,是以贮槽液位为操作指标,以改 变出口阀门开度为控制手段,如图1-1所示。 当液位上升时,将出口阀门开度开大,液位上 则关小出口阀门,液位下降越多,阀门关得越 小。为了使液位上升和下降都有足够的余地,选择玻璃管液位计指示值中间的某一点为正常工作时的液位高度,通过改变出口阀门开度而使液位保持在这一高度上,这样就不会出贮槽中液位过高而溢出槽外,或使贮槽内液位抽空而发生事故的现象。归纳起来,操作人员所进行的工作有以下三个方面。 ①检测用眼睛观察玻璃管液位计(测量元件)中液位的高低。 ②运算、命令大脑根据眼睛所看到的液位高度,与要求的液位值进行比较,得出偏差的大小和正负,然后根据操作经验,经思考、决策后发出命令。 ③执行根据大脑发出的命令,通过手去改变阀门开度,以改变出口流量Q0,从而使液位保持在所需要高度上。 眼、脑、手三个器官,分别担负了检测、运算/决策和执行三个任务,来完成测量偏差、操纵阀门以纠正偏差的全过程。 若采用一套自动控制装置来取代上述人工操作,就称为液位自动控制。自动 下面结合图1-2的例子介绍几个常 用术语。 ①被控对象需要实现控制的 简称对象,如图1-2中的液体贮槽。 ②被控变量对象内要求保

基于Matlab的自动控制系统设计与校正

自动控制原理课程设计 设计题目:基于Matlab的自动控制系统设计与校正

目录 目录 第一章课程设计内容与要求分析 (1) 1.1设计内容 (1) 1.2 设计要求 (1) 1.3 Matlab软件 (2) 1.3.1基本功能 (2) 1.3.2应用 (3) 第二章控制系统程序设计 (4) 2.1 校正装置计算方法 (4) 2.2 课程设计要求计算 (4) 第三章利用Matlab仿真软件进行辅助分析 (6) 3.1校正系统的传递函数 (6) 3.2用Matlab仿真 (6) 3.3利用Matlab/Simulink求系统单位阶跃响应 (10) 3.2.1原系统单位阶跃响应 (10) 3.2.2校正后系统单位阶跃响应 (11) 3.2.3校正前、后系统单位阶跃响应比较 (12) 3.4硬件设计 (13) 3.4.1在计算机上运行出硬件仿真波形图 (14) 课程设计心得体会 (16) 参考文献 (18)

第一章 课程设计内容与要求分析 1.1设计内容 针对二阶系统 )1()(+= s s K s W , 利用有源串联超前校正网络(如图所示)进行系统校正。当开关S 接通时为超前校正装置,其传递函数 11 )(++-=Ts Ts K s W c c α, 其中 132R R R K c += ,1 )(13243 2>++=αR R R R R ,C R T 4=, “-”号表示反向输入端。若Kc=1,且开关S 断开,该装置相当于一个放 大系数为1的放大器(对原系统没有校正作用)。 1.2 设计要求 1)引入该校正装置后,单位斜坡输入信号作用时稳态误差1.0)(≤∞e ,开环截止频率ωc’≥4.4弧度/秒,相位裕量γ’≥45°; 2)根据性能指标要求,确定串联超前校正装置传递函数; 3)利用对数坐标纸手工绘制校正前、后及校正装置对数频率特性曲线; c R R

温室自动控制系统在国内外的现状和发展趋势

温室自动控制系统在国内外的现状和发展趋势对于温室自动控制系统托普物联网对它的定义是:温室自动控制系统是专门为农业温室、农业环境控制、气象观测开发生产的环境自动控制系统。可测量风向、风速、温度、湿度、光照、气压、雨量、太阳辐射量、太阳紫外线、土壤温湿度等农业环境要素。托普物联网研制的温室控制系统可根据温室植物生长要求,自动控制开窗、卷膜、风机湿帘、生物补光、灌溉施肥等环境控制设备,自动调控温室内环境,达到适宜植物生长的范围,为植物生长提供最佳环境。 1、温室自动控制系统国外研究现状 温室作为一种为农作物生长创造适宜环境的农业设旌,可看成是一个半独立于自然界大气候的半封闭式的人工生态环境,它可以避开外界种种不利因素的影响,改善或创造更佳的环境气候。随着计算机技术的进步和智能控制理论的发展,近百年来,温室作为设施农业的重要组成部分,其自动控制和管理技术不断得以提高,在世界各地都得到了长足发展。 特别是二十世纪70年代电子技术的迅猛发展和微型计算机的问世,更使温室环境控制技术产生了革命性的变化。温室发展大致经历了手动一机械一分散电控系统一多功能集中电子控制台一微机综合控制”这几个发展阶段,传统的温室控制方法,都存在着明显的缺陷,采用这些方式,要模拟复杂气候环境中作物所处的局部环境几乎是不可能的,要实现对各种相互制约,相互影响的环境因素的综合控制也很困难。 温室自动控制系统操作界面图 80年代,随着微型计算机日新月异的进步和价格大幅度下降,以及对温室环境要求的提高,以微机为核心的温室综合环境控制系统,在欧美和日本获得长足的发展,并迈入网络化智能化阶段。国外现代化温室的内部设施已经发展到比较完善的程度,并形成了~定的标准。温室内的各环境因子大多由计算机集中控制,因此检测传感器也较为齐全,如温室内外的温度,湿度,光照度,C02浓度,营养液浓度等,由传感器的检测基本上可以实现对各个执行机构的自动控制,如无级调节的天窗通风系统,湿帘与风扇配套的降温系统,可以自动收放的遮阴幕或寒冷纱,由热水锅炉或热风机组成的加温系统,可定时喷灌或滴灌的灌溉系统以及二氧化碳施肥系统,有些还配有屋面玻璃冲洗系统,机器人自动收获系统,以及适用于温室作业的农业机械等。计算机对这些系统的控制已不是简单的,独立的,静态的计算机直接数字控制,而是基于环境模型上的监督控制,以及基于专家系统的人工智能控制,此系统可以为温室管理者提供包括作物种植的经济分析,病虫害防治,温室在内的管理与决策系统信息。世界发达国家如荷兰,美国,英国等大力发展集约化的温室产业,已经研制成功对温室内温度,湿度,光照,气体交换,滴灌,营养液循环等实现计算机自动控制的现代化高科技温室,甚至于育苗,移栽,清洗,包装等也实现了机械化,自动化。

自动控制系统主要有哪些环节组成

自动控制系统主要有哪些环节组 成 1?自动控制系统主要有哪些环节组成?各环节的作用是什么? a测量变送器:测量被控变量,并将其转化为标准,统一的输出信号。b 控制器:接收变送器送来的信号,与希望保持的给定值相比较得出偏差,并按某种运算规律算出结果,然后将此结果用标准,统一的信号发送出去。 c执行器:自动地根据控制器送来的信号值来改变阀门的开启度。 d被控对象:控制装备所控制的生产设备。 2?被控变量:需要控制器工艺参数的设备或装置; 被控变量:工艺上希望保持稳定的变量; 操作变量:克服其他干扰对被控变量的影响,实现控制作用的变量。 给定值:工艺上希望保持的被控变量的数值; 干扰变量:造成被控变量波动的变量。 3?自动控制系统按信号的传递路径分:闭环控制系统,开环~ (控制系统的输出端与输入端不存在反馈回路,输出量对系统的控制作用不 发生影响的系统),复合~ 4?按给定值的不同分:定值控制系统,随动控制系统(随机变化),程序控制系统(给定值按预先设定好的规律变化) 5.自动控制系统的基本要求: 稳定性:保证控制系统正常工作的必要条件

快速性:反应系统在控制过程中的性能 准确性:衡量系统稳态精度的指标,反映了动态过程后期的性能。 提高动态过程的快速性,可能会引起系统的剧烈振荡;改善系统的平稳性,控制进程又可能很迟缓,甚至使系统稳态精度变差。 6.控制系统的静态:被控变量不随时间而变化的平衡状态。 7?自动系统的控过渡过程及其形式 控制系统在动态过程中,被控变量从一个稳态到达另一个稳态随时间 变化的过程称为~ 形式:非周期衰减过程,衰减振荡过程, 等幅振荡过程,发散振荡过程 8.衰减振荡过渡过程的性能指标 衰减比:表振荡过程中的衰减程度,衡量过渡过程稳定性的动态指标。(以新稳态值为标准计算) 最大偏差:被控变量偏离给定值的最大值 余差:系统的最终稳态误差,终了时,被控变量达到的新稳态值与设定值之差。 调节时间:从过渡过程开始到结束所需的时间 振荡周期:曲线从第一个波峰到同一方向第二个波峰之间的时间 9.对象的数学模型:用数学的方法来描述对象输入量与输出量之间的关系,这种对象特性的数学描述叫~ 动态数学模型:表示输出变量与输入变量之间随时间而变化的动态关系的数字描述 10.描述对象特性的参数 放大系数K :数值上等于对象重新稳定后的输出变化量与输入变化量之比。意义:若有一定的输入变化量Q i通过对象就被放大了K倍变为输出变量h。K越大,输入变量有一定变化时,对输出量的影响越大。描述了静态性质 时间常数T:当对象受到阶跃输入作用后,被控变量达到新的稳态值的63.2%所需的时间,就是T,意义:被控变量受到阶跃作用后,被控变量如果保持初始速度变化,达到新的稳态值所需的时间。 T越大,表对象受干扰后,被控变量变化的越慢,到达新的稳态值所需

自动控制系统的基本组成与分类

自动控制系统的基本组成与分类 自动控制系统的基本组成 如前所述,自动控制系统(即反馈控制系统)由被控对象和控制装置两大部分组成, 根 据其功能,后者又是由具有不同职能的基本元部件组成的。图1.12是一个典型的自 动控制 系统的基本组成示意图,图中组成系统的各基本环节及其功能如下。 1.被控对象 如前所述,被控对象是指对其莱个特定物理量进行控制的设备或过程 出即为系统的输出员,即被控量,通常以c(r)(或y(f))表示。 2.阁量元件 测量元件用于对输出量进行测量,并将其反馈至输入端。如果输出量与输入量的物 理 单位不同,有时还要进行相应的量纲转换*例如,温度测量装置(热电偶)用于团量湿度并 转换为电压(见固1.2),测速发电机用于测量电动机轴转速井转换为电压(见田1.9)。 3.给定元件 根据控制日的,给定元件将给定量转换为与期望输出相对应的系统治入量(通常以 r(‘)表示),作为系统的控制依据。例如,图1.9中,给定电压M2的电位器即为给 定元件。 4.比较元件 比较元件对输入量与测量元件测得的输出量进行比较,并产生偏差信号

中的电压比较电路。通常,比较元件输出的偏差信号以‘(2)表示。 5.放大元件 放大元件是特比较元件结出的(檄弱的)偏差信号进行放大(必要时还要进行物理量的转换)。例如,图1.9中的ATMEL代理放大器和晶闸管整流装置等。 6.执行元件 执行元件的功能是,根据放大元件放大后的偏差信号,推动执行元件去控制被控对 象,使其被控量按照设定的要求变化。通常,电动机、液压马达等都可作为执行元件。7.校正元件 校正元件又称补偿元件,用于改善系统的性能,通常以串联或反馈的方式连接在系 统中。 在图1.12中,作用信号从输入端沿箭头方向到达输出端的传输通路称为前向通路;系 统治出量经测旦元件反馈到输入端的传输通路称为主反馈通路;前向通路和主反馈通 路构 成的回路称为主反馈回路,简称主回路。除此之外,还有局部反馈通路以及局部反馈 回路 等*将只包含一个主反馈通路的系统称为单回路系统,将包含两个或两个以上反馈通路的 系统称为多回路系统。 1.4.2 自动控制系统的分类 如前所述,自动控制系统的组成千差万别,所完成的控制任务也不尽相同,但可以 按 不同的分类方法,将其分为各种不同的类别。例如,按控制方式可分为开环控制系统、闭 环控制系统和复合控制系TI代理统;按元件类型可分为机械系统、电气系统、机电系统、液压系

自动控制原理

《自动控制原理》综合复习资料 、简答题 1常见的建立数学模型的方法有哪几种?各有什么特点? 2、 自动控制原理中,对线性控制系统进行分析的方法有哪些? 3、 给出梅逊公式,及其中各参数意义。 4、 举例说明什么是闭环系统?它具有什么特点? 5、 系统的性能指标有哪些? 6、 幅值裕度,相位裕度各是如何定义的? 7、 画出自动控制系统基本组成方框结构图? &减小稳态误差的措施主要有? 9、 闭环控制系统由哪几个基本单元组成? 10、 增加开环零、极点对根轨迹有什么影响? 二、计算题 1已知系统输入为U i ,输出为U o ,求出传递函数 G(s) U °(s)/U i (s)。 o ------- ------------------- ------ o R L U i c 丄 U o 2、试简化下图所示系统方框图求其传递函数: 3、已知某二阶系统的单位阶跃响应为 ct 1 0.2e 60t 1.2e 10t , (2)确定系统阻尼比 、无阻尼振荡频率 试求:(1)系统传递函数 c -s R s (5 分)

7、已知系统的结构图如所示: 当K f 0、K a 10时,试确定系统的阻尼比 、固有频率 n 和单位斜坡输 入时系统的稳态误差; 8、已知系统如下图所示,求系统的单位阶跃响应,并判断系统的稳定性。 9、RC 无源网络电路图如下图所示,试列写该系统的微分方程,并求传递函数Uc(s)/Uc(s) 4、设某系统的特征方程式为 s 6 2s 5 8s 4 12s 3 20 s 2 16s 16 判断闭环系统的稳定性,若不稳定求其不稳定特征根个数。 (利用劳斯判据) 5、RC 无源网络电路图如下图所示 ,试列写该系统的微分方程 ,并求传递函数Uc(s)/Ui(s) O U i o R i o U c 6、试简化下图所示系统方框图求其传递函数 : X r

电气自动化工程控制系统的现状及其发展趋势 逄金祥

电气自动化工程控制系统的现状及其发展趋势逄金祥 发表时间:2018-07-02T11:00:14.430Z 来源:《电力设备》2018年第7期作者:逄金祥 [导读] 摘要:随着全球经济化的不断深入发展,在我国的国民经济中,电气自动化控制系统的作用日益重要,智能化数字技术的应用也变得非常普遍,在工业电气自动化中,智能化数字技术也取得了一定的成果。 (山东斯迈格雷电气技术有限公司) 摘要:随着全球经济化的不断深入发展,在我国的国民经济中,电气自动化控制系统的作用日益重要,智能化数字技术的应用也变得非常普遍,在工业电气自动化中,智能化数字技术也取得了一定的成果。整个自动化控制系统也凸显了一些问题,亟待我们解决和改进并不断完善。作为一名电气工程技术人员,我会努力提高自己的专业水平,遵循实事求是的原则,秉着求真务实的精神,持之以恒追求技术的创新。 关键词:电气自动化工程;控制系统;现状;发展趋势 引言 电气自动化发展成为我国发展的重要组成部分,要真正使电气自动化工程控制系统得到良好发展,需要立足现实,充分了解电气自动化工程控制系统的社会发展现状以及市场化需求,进行改革与创新。在面对电气自动化工程控制系统的困难与挑战时,抓住机遇,迎难而上。 1电气自动化工程控制系统 电气自动化是国民经济水平提高和人民生活现代化的标志。电气自动化工程控制系统指没有人参与操作,电气元件比如继电器和感应器按照事先编好的程序实现控制的系统。它的基础是控制理论以及电力网方面的理论,技术手段是电力电子技术和计算机技术。 2电气自动化工程控制系统的现状 我国的电气自动化工程控制系统已经得以进步和发展,获得良好的应用效果。但是,随着现代技术的不断更新,电气自动化工程控制系统的使用也面对较大竞争。 2.1电气自动化工程中的分散控制系统 分散控制系统的基础是以微处理机,加上微机分散控制,融合了先进的CRT技术、计算机技术和通讯技术,是新型的计算机控制系统。生产过程中,它利用多台计算机来控制各个回路,这个控制系统的技术的优势在于能够集中获取数据,并且同时对这些数据进行集中管理和实施重点监控,当前计算机和信息技术飞速发展,分散控制系统的特点变得网络化和多元化,并且不同型号的分散系统可以同时并入连接相互进行信息数据的交换,然后将不同分散系统的数据经过汇总后再并入互联网,与企业的管理系统连接起来。DCS的系统控制功能可以分散开,在不同的计算机上设置系统结构采取的是容错设计,将来即使出现计算机瘫痪故障,也不会影响到整个系统的正常运行。如果采用特定的软件和专用的计算机,将更能提高电气自动化控制系统的稳定性。 2.2集中监控方式控制系统的现状 集中监控的控制系统处理的速度相当的缓慢,他是靠一个处理机进行所以功能的,它对机器本身的运行速度是非常不利的。而这些都是在一个监控中,监控的对象太多主机的空间肯定不够,电缆的数量也是加大的,这使成本会越来越高。它更是要反复的接线,内部结构复杂导致系统维护和检修工作又加大了,成本还高。实际的操作过程中失误发生的也多,整个的电气自动化工程系统也就不能正常的进行工作了。 2.3信息集成化的现状 该发展方向已经达到两个部分。①保证管理水平的提升。电气自动化工程控制系统中,能对其存在的资金、人力等进行分配,获得部门的实际生产情况,也能根据领导提出的意见,全面分析实际的生产状况。当发生一些紧急事件的时候,也能为其提出更为合理的对策。 ②实现电气自动化工程控制系统技术的延伸与扩展。在该发展方向下,能对电气自动化工程控制系统中的相关设施进行完善,也能使生产出的产品符合社会的发展需要。同时,在技术延伸和发展下,也能将电气自动化工程控制技术和各个软件结合起来。 3电气自动化工程控制系统的发展趋势 3.1 标准化接口 微软能促进技术的统一性,也能保证工作效率的稳定提升。为了避免企业内的通信问题,应用统一的技术标准,能为工作发展节约更多空间,也能基于微软系统,对其充分应用,以达到整体的操作和发展,也能在电气自动化工程控制系统模式下,对信息数据实现共享化。工作人员还需要基于PC 系统的应用,将其应用到电气自动化工程控制系统中,实现有效监控,也能对其中的问题进行处理,实现不同部门之间的相互沟通和发展,从而避免在通信中面对的问题。 3.2统一化系统 保证电气自动化工程控制系统的统一化发展,需要在工作中对产品进行设计、测试、调试和维护等工作,能避免在各个流程中产生较多时间,也能为企业的发展节约更多资金。电气自动化工程控制系统在使用期间,最为主要的是能满足客户的发展需求,因此,要基于网络结构进行分析,研究内部的安全设施、远程系统等,这样不仅能为企业的整体发展提供保障,也能促进通信监管机构的实现。 3.3 控制系统将会变得更加专业化 针对自动化控制系统的安装和设计过程,时常对技术员工进行培训,提高了技术人员的素质,扩大培训规模也会让维修人员的操作技术变得更加成熟和完善,自动化控制系统朝着专业化的方向大踏步前进。随着不断增多的技术培训,实际操作系统的工作人员也必将会得到很大的帮助,培训流程的严格化、专业化,提高了他们维修和养护的技术,同时也加快了他们今后排除故障、查明原因的速度。 3.4 自动化控制系统技术创新 整个技术市场大环境是开放型快速发展的,面对着越来越残酷的竞争,各个企业为了适应市场,提高了自动化控制系统的创新力度,并且特别注重培养创新型人才,下大力气自主研发自动化控制系统,取得了一定的成绩。企业增强自身的综合竞争实力的同时,自动化控制系统也将不断发展创新,为电气工程的持续发展提供了技术层次的支撑和智力方面的保障。 3.5 自动化控制系统日益安全化 现在,我国的工业经济正在经历着新的发展阶段,在工业发展中,电气自动化的作用是越来越重要,新型的工业化发展道路是建立在

控制科学与工程学科发展现状及趋势

控制科学与工程学科发展现状及趋 势 控制科学与工程学科发展现状及趋势2010-05-18 17:49一、引言 自动化是人类文明进步和社会现代化的标志。人类最初的活动,便具有扩展自身体力和智力的意识和追求。自动化伴随人类社会的发展与进步、在社会需求的不断推动下不断发展,人类的生产活动是自动化发展的主要推动力。控制科学与工程学科的研究、应用和推广,对人类生产、生活等方式已经并正在产生深远的影响。 小到一个全自动化的洗衣机、恒温的电冰箱,稍大一点的工厂现场的生产以及设备等自动运行、工厂自动化,甚至于无人智能化工厂,还有智能建筑,这些都是与自动化息息相关的产业。还有航空航天更是一个自动化应用的大舞台。 自动化是一门涉及到多个学科,应用广泛的综合性科学技术。其主要涉及到自动控制和信息处理两个方面,主要研究包括理论、方法、硬件和软件等。在我国,控制科学与工程作为一级学科,共包括五个下属二级学科:(1)控制理论与工程 (2)模式识别与智能系统(3)系统工程(4)检测与自动化装置(5)导航、制导与控制。 二、国内外的研究状况 自动化是延伸人能体能和智能、提高劳动生产率和产品质量的关键技术,自动控制理论是自动化的研究方法,是自动化的基础和灵魂,自动化器件和系统是实现自动控制原理的工具和载体。 自动化总的来说分成如下几个阶段: 20世纪30年代到40年代:经典控制理论发展初期,这一段时期工作主要建立 在频率法和根轨迹法的基础上,这一阶段通常被称之为经典控制理论。经典控制理论主要研究对象一般为单输入、单输出系统,特别是线性定常系统。其特点是以输入输出特性为系统的数学模型,采用频率响应法和根轨迹法来分. 析系统的性能和设计控制装置。其数学基础是Laplas变换,占主导地位的分析方法和综合方法是频域方法。主要研究系统运动的稳定性、时域和频域中系统的运动特性、控制系统的设计原理和校正方法。 20世纪50年代:自动控制经历了从经典控制理论到现代控制理论的转变。这一时期的代表性的工作包括前苏联数学家Pontryagin的极大值原理和美国数学家的Bellman的动态规划和kalman递推滤波以及状态空间模型的能控性、能观测性、反馈正定等定理的出现。现代控制理论主要以线性代数和微分方程为主要的数学工具,以状态空间法为基础,分析与设计控制系统。状态空间是一种时域的方法,它不仅描述了系统的外部特性,而且描述和揭示了系统的内部状态和性能。较之经典控制理论,现代控制理论的研究要广泛的多。 20世纪70年代以后,控制论想社会、经济领域渗透,从工程领域向非工程领域扩散,在更广阔的范围内得到了应用和发展。在此期间,出现了经济控制论、社

自动控制原理_线性系统串联校正

或施二佥2罟 W口h;u 】Institute of Technology 线性系统串联校正 专业班级______________________________________ 学号_________________________________________

姓名_________________________________________ 任课老师______________________________________ 学院名称___________ 电气信息学院_____________

、实验目的 1 ?熟练掌握用MATLAB?句绘制频域曲线。 2 ?掌握控制系统频域范围内的分析校正方法。 3 ?掌握用频率特性法进行串联校正设计的思路和步骤 、基础知识 控制系统设计的思路之一就是在原系统特性的基础上,对原特性加以校正, 使之达到要求的性能指标。最常用的经典校正方法有根轨迹法和频域法。而常用 的串联校正装置有超前校正、滞后校正和超前滞后校正装置。本实验主要讨论在 MATLAB^境下进行串联校正设计。 、实验内容 校正装置,使校正后系统的静态速度误差系数 K v 20s 1 ,相位裕量 50°,增 益裕量 20lgK g 10dB 解:(1)根据题意,则校正后系统的增益 K 20, 20 取 GS ) E 求出现系统的相角裕度 num0=20; den 0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margi n(num 0,de n0); [mag1,phase1]=bode (num 0,de n0 ,w); [gm1,pm1,wcg1,wcp1] margi n(num 0,de n0) 运行结果: ans = Inf 12.7580 Bode 图如下: 1 ?某单位负反馈控制系统的开环传递函数为 G(s) 中,试设计一超前 Inf 4.4165

暖通空调自动控制系统的现状与发展

暖通空调自动控制系统的现状与发展 【摘要】适应和平与发展的时代主题,人们对空调系统的节能、绿色以及环保的要求越来越迫切,对此,暖通空调自动控制系统的研究提上了日程,空调系统与自动化技术二者合二为 一已经成为时下的一种发展潮流,既能够符合节能的需求,又可以增强使用效果,其作为空 调领域的常规技术,本文将详细分析其现状与发展,为后期工作的研究与开展提供参考。 【关键词】暖通空调;自动控制;现状 最新官方统计数字表明,我国能源对外的依存度高达百分之七十五,这说明我国虽然是一个 能源大国,但同时也是一个能耗大国,我国目前的能源已经无法满足我国社会发展的需要在 这样的大环境之下,我国发改委适时提出了节能减排的发展口号,号召各行各业都要降低能 耗排放,走可持续发展的道路、在我国各类能源消耗中,占据了很大一部分的就是建筑暖通 空调的能源消耗,在这其中,高层建筑的暖通空调能耗成为建筑能耗的重要组成部分。所以 必须要加快对高层建筑暖通空调控制系统的设计进行研究,对建筑暖通空调的控制系统实现 合理科学的设计,使暖通空调的能耗得到有效控制,最大程度的降低高层建筑的暖通空调所 产生的能耗。 1.暖通空调自动控制系统的现状 1.1暖通空调自动控制系统的主要构成 该系统是一个综合性的结构,主要由温度调节器、净化控制装置、湿度以及压力装置等各方 面协调组成,这已经成为社会中较为普遍的空调配置系统,其运行模式与通风和冷却水机制 如出一辙,即由所谓的采集体系将收集的流量以及温度常数,比照模糊算术公式得出一般的 控制参数,在运行过程中,时刻依照所得参数的变动决定变频体系的操作,进而生产出足以 符合目前环境质量与空气指标要求的既定能量。 1.2暖通空调自动控制系统中所出现的问题 1.2.1设计员工素质较低。 在设置暖通空调时,较多的是参照各地的气候差异来开展工作的,气候环境的差异,使得暖 通空调的自动调节系统可以据此产生节能的运行结果。而在当前的设计工作中,部分设计员 工对这方面的认识不够深入,在设计想法上存在问题,距离既定的节能标准还有一定的差距。另外,由于设计团队对暖通空调的实际运行以及存在的问题掌握不全面,自动化控制系统的 理想目标并未实现,在很多时候,暖通空调的多数设计员工仅仅将自动化系统作为一种百变 的工具来使用,对于其参数设置等问题并未给予太多关注,这限制了自动化系统最大化功能 的发挥,同时,也弱化了暖通空调自动化控制系统的节能效益。 1.2.2空调设计与自动控制设计之间配合存在失误。 空调设计人员在设计空调方面并无多大的障碍,但其队自动化知识掌握的并不全面,多数为 非专业知识,由于自动化的实际工作经验少,即出现“自动化控制设计死胡同”的现象,因此,在有关自动化设计方面的工作较多的依赖于自动化设计专员,本质上,这属于两个不同的领域,由于沟通、协调等方面的不及时、不到位,难免会出现两者配合失误等问题。 1.2.3暖通空调自动控制系统管理水平有待提高。 系统运行的具体管理工作应当交由专业人员进行承担,管理人员除了具备丰富的专业知识外,还必须积累足够的管理经验,同时,要主动学习前端领域的知识与管理技巧,并积极主动地 与国外先进企业的管理人员进行经验借鉴,以提升自身的管理水平,但目前的管理人员却并

楼宇自动化系统的现状和发展

龙源期刊网 http://www.qikan.com.cn 楼宇自动化系统的现状和发展 作者:张源李淑展 来源:《工业设计》2016年第03期 摘要:楼宇自动化系统是智能建筑的重要组成部分,它是实现智能建筑“智能”的关键所在,楼宇自动化系统通过自动控制系统的集成能够实现对建筑内相关电气设备的远程控制以及协调管理。本文主要介绍了楼宇自动化系统的作用与目的、组成、控制技术以及发展趋势。 关键词:楼宇自动化;现场总线;发展趋势 日新月异的科技发展,促进了建筑技术的进一步提升。与此同时,计算机技术与电子信息技术的高速发展,以及与其他技术的交叉融合,智能建筑在这样的时代背景以及技术支持下应运而生。楼宇自动化系统是智能建筑的重要组成部分,它是实现智能建筑“智能”的关键所在,楼宇自动化系统通过自动控制系统的集成能够实现对建筑内相关电气设备的远程控制以及协调管理。本文主要介绍了楼宇自动化系统的作用与目的、组成、控制原理以及技术。 1楼宇自动化系统概述 1.1 楼宇自动化的作用与目的 楼宇自动化系统是智能建筑的重要组成部分,它涉及到建筑物内部多个设备与系统,主要包括有空调系统、给排水系统、照明系统、安全管理系统等,楼宇自动化的作用是为了实现对这些设备与系统的集中监控,实现高度自动以及智能的建筑功能管理,以提供给建筑物用户一个稳定、安全、舒适的工作生活环境,同时通过高度智能化的集中控制,有利于提升建筑物内部管理效率,降低设备故障率,降低建筑物后期的运营、维护成本。 设计楼宇自动化系统的主要目的在于将建筑内各种机电设备的信息进行分析、归类、处理和判断,采用最优化的控制手段,对各系统设备进行集中监控和管理,使各子系统设备始终处于有条不紊、协同一致和高效有序的状态下运行,在创造出一个高效、舒适、安全的工作环境中,降低各系统造价,尽量节省能耗和日常管理的各项费用,保证系统充分运行,从而提高智能建筑高水平的现代化管理和服务,使投资能得到一个良好的回报。 1.2 楼宇自动化系统组成 一个典型的楼宇自动化系统通常包括给排水、照明、空调、电梯、消防、安全防范、供配电等子系统. 给排水系统:其主要功能是实现建筑物内的排水泵、给水泵以及潜污泵等给排水设备的实时监测,根据监测数据来进行对应的水泵开启或者关闭的操作指令,确保建筑物内供水排水正常。

自动控制系统主要有哪些环节组成

1.自动控制系统主要有哪些环节组成?各环节的作用是什么? a测量变送器:测量被控变量,并将其转化为标准,统一的输出信号。b控制器:接收变送器送来的信号,和希望保持的给定值相比较得出偏差,并按某种运算规律算出结果,然后将此结果用标准,统一的信号发送出去。 c执行器:自动地根据控制器送来的信号值来改变阀门的开启度。 d被控对象:控制装备所控制的生产设备。 2.被控变量:需要控制器工艺参数的设备或装置; 被控变量:工艺上希望保持稳定的变量; 操作变量:克服其他干扰对被控变量的影响,实现控制作用的变量。给定值:工艺上希望保持的被控变量的数值; 干扰变量:造成被控变量波动的变量。 3.自动控制系统按信号的传递路径分:闭环控制系统,开环~(控制系统的输出端和输入端不存在反馈回路,输出量对系统的控制作用不发生影响的系统),复合~ 4.按给定值的不同分:定值控制系统,随动控制系统(随机变化),程序控制系统(给定值按预先设定好的规律变化) 5.自动控制系统的基本要求: 稳定性:保证控制系统正常工作的必要条件 快速性:反应系统在控制过程中的性能 准确性:衡量系统稳态精度的指标,反映了动态过程后期的性能。提高动态过程的快速性,可能会引起系统的剧烈振荡;改善系统的平稳性,控制进程又可能很迟缓,甚至使系统稳态精度变差。 6.控制系统的静态:被控变量不随时间而变化的平衡状态。 7.自动系统的控过渡过程及其形式 控制系统在动态过程中,被控变量从一个稳态到达另一个稳态随时间变化的过程称为~ 形式:非周期衰减过程,衰减振荡过程, 等幅振荡过程,发散振荡过程 8.衰减振荡过渡过程的性能指标

衰减比:表振荡过程中的衰减程度,衡量过渡过程稳定性的动态指标。(以新稳态值为标准计算) 最大偏差:被控变量偏离给定值的最大值 余差:系统的最终稳态误差,终了时,被控变量达到的新稳态值和设定值之差。 调节时间:从过渡过程开始到结束所需的时间 振荡周期:曲线从第一个波峰到同一方向第二个波峰之间的时间 9.对象的数学模型:用数学的方法来描述对象输入量和输出量之间的关系,这种对象特性的数学描述叫~ 动态数学模型:表示输出变量和输入变量之间随时间而变化的动态关系的数字描述 10.描述对象特性的参数 放大系数K:数值上等于对象重新稳定后的输出变化量和输入变化量之比。意义:若有一定的输入变化量Q1通过对象就被放大了K倍变为输出变量h。K越大,输入变量有一定变化时,对输出量的影响越大。描述了静态性质 时间常数T:当对象受到阶跃输入作用后,被控变量达到新的稳态值的63.2%所需的时间,就是T,意义:被控变量受到阶跃作用后,被控变量如果保持初始速度变化,达到新的稳态值所需的时间。 T越大,表对象受干扰后,被控变量变化的越慢,到达新的稳态值所需的时间越长。动态特性 滞后时间:对象在受到输入作用后,被控变量不能立即而迅速的变化,要经过一段纯滞后时间以后,才开始等量地反应原无滞后时的输出量的变化~ 动态特性 11.测量范围:指仪表按规定的精度进行测量的被测量值得范围。 绝对误差=X-X0=测量-标准 引用误差=(绝对误差/量程)*100% 最大引用误差=(最大绝对误差/量程)*100%=+-A% 允许误差(允许最大引用误差) 灵敏度S:表示仪表对被测变量变化的灵敏程度=输出的变化量/输入

控制系统的校正

基于MATLAB 控制系统的校正设计 1实验目的 ① 掌握串联校正环节对系统稳定性的影响。 ② 了解使用SISO 系统设计工具(SISO Design Tool )进行系统设计。 2 设计任务 串联校正是指校正元件与系统的原来部分串联,如图1所示。 图1串联校正图 图中,()c G s 表示校正部分的传递函数,()o G s 表示系统原来前向通道的传递函数。()()111c aTs G s a Ts +=>+,为串联超前校正;当()()111o aTs G s a Ts +=<+,为串联迟后校正。 我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。 (1)打开 SISO 系统设计工具 在 MATLAB 命令窗口中输入 sisotool 命令, 可以打开一个空的 SISO Design Tool , 也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。注意先在 MATLAB 的当前工作空间中定义好该模型。如图 2 所示。

图2 SISO系统的图形设计环境 (2)将模型载入 SISO设计工具 通过file/import命令,可以将所要研究的模型载入SISO设计工具中。点击该菜单项后,将弹出Import System Data对话框,如图3所示。 图3 Import System Data对话框 (3)当前的补偿器(Current Compensator) 图2中当前的补偿器(Current Compensator)一栏显示的是目前设计的系统补偿器的结构。缺省的补偿器增益是一个没有任何动态属性的单位增益,一旦在跟轨迹图和Bode图中添加零极点或移动曲线,该栏将自动显示补偿器结构。(4)反馈结构 SISO Design Tool 在缺省条件下将补偿器放在系统的前向通道中,用户可以通过“+/-”按钮选择正负反馈,通过“FS”按钮在如下图4几种结构之间进行切换。

相关主题
文本预览
相关文档 最新文档