当前位置:文档之家› 基于MATLAB的线性代数应用案例

基于MATLAB的线性代数应用案例

基于MATLAB的线性代数应用案例
基于MATLAB的线性代数应用案例

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

用MATLAB解决线性代数问题实验报告

实验三使用MATLAB解决线性代数问题学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144 实验目的: 学习MATLAB有关线性代数运算的指令,主要学习运用MATLAB解决矩阵除法,线性方程组的通解,矩阵相似 对角化问题,以及解决投入产出分析等应用问题。 实验内容: 矩阵转置:A=[1 2;3 4];B=[4 3;2 1]; >> A',B' ans = 1 3 2 4 ans = 4 3 3 1 矩阵加减:A-B ans= -3 -1 1 3 矩阵乘法:A*B,A.*B(数组乘法)||比较矩阵乘法与数组乘法的区别ans= 8 5 20 13 ans= 4 6 6 4 矩阵除法:A\B,B./A ans=

-6 -5 5 4 ans= 4 1.5 0.6667 0.25 特殊矩阵生成:zeros(m,n)||生成m行n列的矩阵 ones(m,n)||生成m行n列的元素全为一的矩阵 eye(n)||生成n阶单位矩阵 rand(m,n)||生成m行n列[0 ,1]上均匀分布随 机数矩阵 zeros(2,3) ans = 0 0 0 0 0 0 >> ones(3,3) ans = 1 1 1 1 1 1 1 1 1 >> eye(3)

ans = 1 0 0 0 1 0 0 0 1 >> rand(2,4) ans = Columns 1 through 3 0.9501 0.6068 0.8913 0.2311 0.4860 0.7621 Column 4 0.4565 0.0185 矩阵处理:trace(A)||返回矩阵的迹 diag(A)||返回矩阵对角线元素构成的向量 tril(A)||提取矩阵的下三角部分 triu(A)||提取矩阵的上三角部分 flipud(A)||矩阵上下翻转 fliplr(A)||矩阵左右翻转 reshape(A,m,n)||将矩阵的元素重排成m行n列矩阵A=[1 2 3;4 5 6;7 8 9]; >> t=trace(A),d=diag(A),u=triu(A)

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

线性代数应用案例资料

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮 食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,, x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列 方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在 一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入=实际收入+支付服务费)

解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题 意,建立方程组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得 x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴 需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609

Matlab 使用之线性代数综合实例讲解

一、上机目的 1、培养学生运用线性代数的知识解决实际问题的意识、兴趣和能力; 2、掌握常用计算方法和处理问题的方法; 二、上机内容 1、求向量组的最大无关组; 2、解线性方程组; 三、上机作业 1、设A=[2 1 2 4; 1 2 0 2; 4 5 2 0; 0 1 1 7]; 求矩阵A列向量组的一个最大无关组. >> A=[2 1 2 4;1 2 0 2;4 5 2 0;0 1 1 7] A = 2 1 2 4 1 2 0 2 4 5 2 0 0 1 1 7 >> rref(A) ans = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 所以矩阵A的列向量组的一个最大无关组就是它本身; 2、用Matlab解线性方程组 (1) >> A=[2 4 -6;1 5 3;1 3 2] A = 2 4 -6 1 5 3 1 3 2 >> b=[-4;10;5]

b = -4 10 5 >> x=inv(A)*b x = -3.0000 2.0000 1.0000 >> B=[3 41 -62;4 50 3;11 38 25] B = 3 41 -62 4 50 3 11 38 25 >> c=[-41;100;50] c = -41 100 50 >> x=inv(B)*c x = -8.8221 2.5890 1.9465 3、(选作)减肥配方的实现 设三种食物每100克中蛋白质、碳水化合物和脂肪的含量如下表,表中还给出了20世纪80年代美国流行的剑桥大学医学院的简捷营养处方。现在的问题是:如果用这三种食物作为每天的主要食物,那么它们的用量应各取多少才能全面准确地实现这个营养要求? 四、上机心得体会

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数应用题

线性代数应用题集锦 郑波 重庆文理学院数学与统计学院 2011年10月

目录 案例一. 交通网络流量分析问题 (1) 案例二. 配方问题 (4) 案例三. 投入产出问题 (6) 案例四. 平板的稳态温度分布问题 (8) 案例五. CT图像的代数重建问题 (10) 案例六. 平衡结构的梁受力计算 (12) 案例七. 化学方程式配平问题 (15) 案例八. 互付工资问题 (17) 案例九. 平衡价格问题 (19) 案例十. 电路设计问题 (21) 案例十一. 平面图形的几何变换 (23) 案例十二. 太空探测器轨道数据问题 (25) 案例十三. 应用矩阵编制Hill密码 (26) 案例十四. 显示器色彩制式转换问题 (28) 案例十五. 人员流动问题 (30) 案例十六. 金融公司支付基金的流动 (32) 案例十七. 选举问题 (34) 案例十八. 简单的种群增长问题 (35) 案例十九. 一阶常系数线性齐次微分方程组的求解 (37) 案例二十. 最值问题 (39) 附录数学实验报告模板 (40)

这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了. 案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 图1 某地交通实况 图2 某城市单行线示意图 【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).

Matlab线性代数实验指导书

Matlab线性代数实验指导书 理学院线性代数课程组 二零零七年十月

目录 一、基础知识 (1) 1.1、常见数学函数 (1) 1.2、系统在线帮助 (1) 1.3、常量与变量 (2) 1.4、数组(矩阵)的点运算 (3) 1.5、矩阵的运算 (3) 二、编程 (4) 2.1、无条件循环 (4) 2.2、条件循环 (5) 2.3、分支结构 (5) 2.4、建立M文件 (6) 2.5、建立函数文件 (6) 三、矩阵及其运算 (7) 3.1、矩阵的创建 (7) 3.2、符号矩阵的运算 (11) 四、秩与线性相关性 (14) 4.1、矩阵和向量组的秩以及向量组的线性相关性 (14) 4.2、向量组的最大无关组 (14) 五、线性方程的组的求解 (16) 5.1、求线性方程组的唯一解或特解(第一类问题) (16) 5.2、求线性齐次方程组的通解 (18) 5.3、求非齐次线性方程组的通解 (19) 六、特征值与二次型 (22) 6.1、方阵的特征值特征向量 (22) 6.2、正交矩阵及二次型 (23)

一、基础知识 1.1常见数学函数 函数数学计算功能函数数学计算功能 abs(x) 实数的绝对值或复数的幅值floor(x) 对x朝-∞方向取整acos(x) 反余弦arcsinx gcd(m,n) 求正整数m和n的最大公约数acosh(x) 反双曲余弦arccoshx imag(x) 求复数x的虚部angle(x) 在四象限内求复数x的相角lcm(m,n)求正整数m和n的最小公倍 自然对数(以e为底数) asin(x) 反正弦arcsinx log(x) 常用对数(以 10 为底数) asinh(x) 反双曲正弦arcsinhx log10(x) atan(x) 反正切arctanx real(x) 求复数 x 的实部atan2(x,y) 在四象限内求反正切rem(m,n) 求正整数m和n的m/n之余数atanh(x) 反双曲正切arctanhx round(x) 对x四舍五入到最接近的整数 符号函数:求出 x 的符号ceil(x) 对x朝+∞方向取整 sign(x) conj(x) 求复数x的共轭复数 sin(x) 正弦sinx 反双曲正弦sinhx cos(x) 余弦cosx sinh(x) cosh(x) 双曲余弦coshx sqrt(x) 求实数x的平方根exp(x) 指数函数e x tan(x) 正切tanx fix(x) 对 x 朝原点方向取整 tanh(x) 双曲正切tanhx 如:输入 x=[-4.85 -2.3 -0.2 1.3 4.56 6.75],则: ceil(x)= -4 -2 0 2 5 7 fix(x) = -4 -2 0 1 4 6 floor(x) =-5 -3 -1 1 4 6 round(x) = -5 -2 0 1 5 7 1.2 系统的在线帮助 1.2.1 help 命令: 1.当不知系统有何帮助内容时,可直接输入 help以寻求帮助: >> help(回车) 2.当想了解某一主题的内容时,如输入: >> help syntax (了解Matlab的语法规定) 3.当想了解某一具体的函数或命令的帮助信息时,如输入: >> help sqrt (了解函数sqrt的相关信息) 1.2.2 lookfor 命令 现需要完成某一具体操作,不知有何命令或函数可以完成,如输入: >> lookfor line (查找与直线、线性问题有关的函数) 1.3 常量与变量

matlab实验二

实验2 MATLAB数值计算、符号运算功能 一、实验目的 1、掌握建立矩阵、矩阵分析与处理的方法。 2、掌握线性方程组的求解方法。 3、掌握数据统计和分析方法、多项式的常用运算。 4、掌握求数值导数和数值积分、常微分方程数值求解、非线性代数方程数值求解的方法。 5、掌握定义符号对象的方法、符号表达式的运算法则及符号矩阵运算、符号函数极限及导数、符号函数定积分和不定积分的方法。 二、预习要求 (1)复习4、5、6章所讲内容; (2)熟悉MATLAB中的数值计算和符号运算的实现方法和主要函数。 三、实验内容 1、已知 29618 20512 885 A -?? ?? =?? ?? - ?? ,求A的特征值及特征向量,并分析其数学意义。 >> A=[-29,6,18;20,5,12;-8,8,5]; >> [V,D]=eig(A) V = 0.7130 0.2803 0.2733 -0.6084 -0.7867 0.8725 0.3487 0.5501 0.4050 D = -25.3169 0 0 0 -10.5182 0 0 0 16.8351 V为A的特征向量,D为A的特征值,3个特征值是-25.3169、10.5182和16.8351。 >> A*V ans = -18.0503 -2.9487 4.6007 15.4017 8.2743 14.6886 -8.8273 -5.7857 6.8190 >> V*D

ans = -18.0503 -2.9487 4.6007 15.4017 8.2743 14.6886 -8.8273 -5.7857 6.8190 经过计算,A*V=V*D 。 2、 不用rot90函数,实现方阵左旋90°或右旋90°的功能。例如,原矩阵为A ,A 左旋后得到B ,右旋后得到C 。 147102581136912A ????=??????,101112789456123B ??????=??????,321654987121110B ??????=?????? 提示:先将A 转置,再作上下翻转,则完成左旋90°;如将A 转置后作左右翻转,则完成右旋转90°,可用flipud 、fliplr 函数。 >> a=[1 4 7 10;2 5 8 11;3 6 9 12] a= 1 4 7 10 2 5 8 11 3 6 9 12 >> B=rot90(a) B = 10 11 12 7 8 9 4 5 6 1 2 3 >>C= rot90(s,3) C= 3 2 1 6 5 4 9 8 7 12 11 10

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

南邮MATLAB数学实验答案(全)

第一次练习 教学要求:熟练掌握Matlab 软件的基本命令和操作,会作二维、三维几何图形,能够用Matlab 软件解决微积分、线性代数与解析几何中的计算问题。 补充命令 vpa(x,n) 显示x 的n 位有效数字,教材102页 fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形 在下面的题目中m 为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算30sin lim x mx mx x →-与3 sin lim x mx mx x →∞- syms x limit((902*x-sin(902*x))/x^3) ans = 366935404/3 limit((902*x-sin(902*x))/x^3,inf) ans = 0 1.2 cos 1000 x mx y e =,求''y syms x diff(exp(x)*cos(902*x/1000),2) ans = (46599*cos((451*x)/500)*exp(x))/250000 - (451*sin((451*x)/500)*exp(x))/250 1.3 计算 22 11 00 x y e dxdy +?? dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1) ans = 2.1394 1.4 计算4 2 2 4x dx m x +? syms x int(x^4/(902^2+4*x^2)) ans = (91733851*atan(x/451))/4 - (203401*x)/4 + x^3/12 1.5 (10)cos ,x y e mx y =求 syms x diff(exp(x)*cos(902*x),10) ans = -356485076957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x) 1.6 0x =的泰勒展式(最高次幂为4).

用Matlab学习线性代数_行列式

用Matlab学习线性代数__行列式 实验目的理解行列式的概念、行列式的性质与计算 Matlab函数det 实验内容 前面的四个练习使用整数矩阵,并演示一些本章讨论的行列式的性质。最后两个练习演示我们使用浮点运算计算行列式时出现的不同。 理论上将,行列式的值应告诉我们矩阵是否是奇异的。然而,如果矩阵是奇异的,且计算其行列式采用有限位精度运算,那么由于舍入误差,计算出的行列式的值也许不是零。一个计算得到的行列式的值很接近零,并不能说明矩阵是奇异的甚至是接近奇异的。此外,一个接近奇异的矩阵,它的行列式值也可能不接近零。 1.用如下方法随机生成整数元素的5阶方阵: A=round(10*rand(5)) 和B=round(20*rand(5))-10 用Matlab计算下列每对数。在每种情况下比较第一个是否等于第二个。(1)det(A) ==det(A T) (2)det(A+B) ;det(A)+det(B) (3)det(AB)==det(A)det(B) (4)det(A T B T) ==det(A T)det(B T) (5)det(A-1)==1/det(A) (6)det(AB-1)==det(A)/det(B) > A=round(10*rand(5)); >> B=round(20*rand(5))-10; >> det(A) ans = 5972 >> det(A') ans 5972 >> det(A+B) ans =

36495 >> det(A)+det(B) ans = 26384 >> det(A*B) ans = 4 >> det(A)*det(B) ans = 4 >> det(A'*B') ans = 4 >> det(A')*det(B') ans = 4 >> det(inv(A)) ans = 0.00016745 >> 1/det(A) ans = 0.00016745 >> det(A*inv(B)) ans = 0.29257 >> det(A)/det(B) ans = 0.29257 >> 2.n阶的幻方阵是否奇异?用Matlab计算n=3、4、5、…、10时的det(magic(n))。看起来发生了什么?验证当n=24和25时,结论是否仍然成立。【当n为奇数时,det(magic(n))不为0;当n为偶数时,det(magic(n))为0;】>> det(magic(3)) ans = -360 >> det(magic(4)) ans = >> det(magic(5)) ans = 5070000

线性代数MATLAB仿真实验报告

合肥学院 2018—2019学年第2学期 线性代数及应用 (模块) 实验报告 实验名称:线性代数MATLAB实验 实验类别:综合性 设计性□验证性 专业班级: 17通信工程(2)班 实验时间: 9-12周 组别:第组人数 3人 指导教师:牛欣成绩: 完成时间: 2019年 5 月9日

一. 小组成员 姓名学号具体分工 汪蔚蔚(组长) 1705022025 A报告最后的整合,编写,案例四的计算与应用 以及案例一的计算与证明 陶乐 1 1705022009 C案例二,化学方程式配平问题 程赢妹1505022036 A案例三,应用题灰度值的计算问题 二. 实验目的 1、案例一利用MATLAB进行线性代数计算,求出矩阵B 2、案例二利用MATLAB计算出每一个网格数据的值,然后每一个网格数据的值乘以256以后进行归一化处理,根据每个网格中的灰度值,绘制出灰度图像。 3、案例三利用MATLAB完成对化学方程式进行配平的应用 4、案例四利用MATLAB求极大线性无关组,并表示出其余向量 三. 实验内容 1、案例一: 0,1,0 ,=1,0,0, 0,0,0 A B AB BA A B ?? ?? =?? ?? ?? 已知矩阵和矩阵满足乘法交换律,即且求矩阵。 2、案例二 配平下列化学方程式: 3、案例三: 3*32 0.81.21.70.20.3 0.6021.61.20.6. 1MATLAB 2256MATLAB 给定一个图像的个方向上的灰度叠加值:沿左上方到右 下方的灰度叠加值依次为,,,,;沿右上方到左下 方的灰度叠加值依次为,。,,, )建立可以确定网络数据的线性方程组,并用求解 )将网络数据乘以,再取整,用绘制该灰度图像

实验汇总

《MATLAB语言与应用》实验课报告 学院:信息学院 班级:测控0902 姓名:陈白杨 学号:20092352

《MATLAB 语言与应用》实验课程任务书 一、 实验教学目标与基本要求 上机实验是本课程重要的实践教学环节;实验的目的不仅仅是验证理论知识,更重要的是通过上机实验,加强学生的实验手段与实践技能,掌握应用MATLAB 语言求解问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。 上机实验共8学时。主要实验内容是基于理论课所学知识对课后典型习题进行MATLAB 求解,基本掌握常见数学问题的求解方法与命令调用,更深入地认识和了解MATLAB 语言强大的计算功能。 上机实验最终以书面报告的形式提交,并作为期末成绩考核内容的一部分。 二、 实验内容(8学时) 第一部分MATLAB 语言编程、科学绘图与基本数学问题求解(4学时) 主要内容:掌握MATLAB 语言编程基础、科学绘图方法、微积分问题、线性代数问题等基本数学问题的求解与应用。 练习题: 1、 安装MATLAB 软件,应用demo 命令了解主要功能,熟悉基本功能,会用help 命令。 2、 用MATLAB 语句输入矩阵A 和B ? ? ??? ???? ???=1423 143212344321 A , ? ? ??? ?? ?? ???++++++++++++++++=4j 11j 43j 22j 34j 11j 42j 33j 24j 13j 22j 31j 41j 42j 33j 24j 1B 前面给出的是44?矩阵,如果给出5)6,5(=A 命令将得出什么结果? >> A=[1 2 3 4;4 3 2 1;2 3 4 1;3 2 4 1] A = 1 2 3 4 4 3 2 1 2 3 4 1 3 2 4 1 >> B=[1+4j,2+3j,3+2j,4+1j;4+1j,3+2j,2+3j,1+4j;2+3j,3+2j,4+1j,1+4j;3+2j,2+3j,4+1j,1+4j] B =

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算22 1 12312231315 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ? 3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A

4.设矩阵210120001A ?? ??=?? ???? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+ 2.设00021000531 23004580034600A ?? ??? ? ??=?? ?????? ,求1.A - 二、讨论抽象矩阵的可逆性 1.设n 阶矩阵A 满足关系式320A A A E +--=,证明A 可逆,并求1.A -

matlab线性代数实验

线性代数MATLAB 实验指导书 MATLAB 是Matrix Laboratory 的缩写,是一个集数值计算、图形处理、符号运算、文字处理、数学建模、实时控制、动态仿真和信号处理等功能为一体的数学应用软件,而且该系统的基本数据结构是矩阵,又具有数量巨大的内部函数和多个工具箱,使得该系统迅速普及到各个领域,尤其在大学校园里,许多学生借助它来学习大学数学和计算方法等课程,并用它做数值计算和图形处理等工作。我们在这里介绍它的基本功能,并用它做与线性代数相关的数学实验。 在正确完成安装MATLAB 软件之后,直接双击系统桌面上的MATLAB 图标,启动MATLAB ,进入MATLAB 默认的用户主界面,界面有三个主要的窗口:命令窗口(Commend Window ), 当前目录窗口(Current Directory ),工作间管理窗口(Workspace )。 命令窗口是和Matlab 编译器连接的主要窗口,“>>”为运算提示符,表示Matlab 处于准备状态,当在提示符后输入一段正确的运算式时,只需按Enter 键,命令窗口中就会直接显示运算结果。 实验1 矩阵的运算,行列式 实验名称:矩阵的运算,行列式 实验目的:学习在matlab 中矩阵的输入方法以及矩阵的相关运算,行列式。 实验原理:介绍相关的实验命令和原理 (1)一般矩阵的输入 (2)特殊矩阵的生成 (3)矩阵的代数运算 (4)矩阵的特征参数运算 (5)数字行列式和符号行列式的计算 实验命令 1 矩阵的输入 Matlab 是以矩阵为基本变量单元的,因此矩阵的输入非常方便。输入时,矩阵的元素用方括号括起来,行内元素用逗号分隔或空格分隔,各行之间用分号分隔或直接回车。 例1 输入矩阵 ???? ? ??--=654301211A ,可以在命令窗口中输入 >>A=[1 1 2;-1 0 3;4 -5 6] A = 1 1 2 -1 0 3 4 - 5 6 2 特殊矩阵的生成 某些特殊矩阵可以直接调用相应的函数得到,例如: zeros(m,n) 生成一个m 行n 列的零矩阵

线性代数方程组数值解法及MATLAB实现综述

线性代数方程组数值解法及MATLAB 实现综述 廖淑芳 20122090 数计学院 12计算机科学与技术1班(职教本科) 一、分析课题 随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。其数值计算中线性代数方程的求解问题就广泛应用于各种工程技术方面。因此在各种数据处理中,线性代数方程组的求解是最常见的问题之一。关于线性代数方程组的数值解法一般分为两大类:直接法和迭代法。 直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。 迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。迭代法包括Jacobi 法SOR 法、SSOR 法等多种方法。 二、研究课题-线性代数方程组数值解法 一、 直接法 1、 Gauss 消元法 通过一系列的加减消元运算,也就是代数中的加减消去法,以使A 对角线以下的元素化为零,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。 1.1消元过程 1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。 11121121222212n n n n nn n a a a b a a a b a a a b ?? ? ? ? ???L L M M O M M L (1)(1)(1)(1)(1)11121311(2)(2)(2)(2)222322(3)(3)(3)3333()()000000n n n n n nn n a a a a b a a a b a a b a b ?? ? ? ? ? ? ???L L L M M M O M M L 步骤如下:

matlab数学实验

《管理数学实验》实验报告 班级姓名 实验1:MATLAB的数值运算 【实验目的】 (1)掌握MATLAB变量的使用 (2)掌握MATLAB数组的创建, (3)掌握MA TLAB数组和矩阵的运算。 (4)熟悉MATLAB多项式的运用 【实验原理】 矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。 【实验步骤】 (1)使用冒号生成法和定数线性采样法生成一维数组。 (2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。 (3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。 (4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。 【实验内容】 (1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。 0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50) (2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。 reshape(A,2,9) ans = Columns 1 through 7 1 3 5 7 9 11 13 2 4 6 8 10 12 14 Columns 8 through 9 15 17 16 18 reshape(A,2,3,3) ans(:,:,1) = 1 3 5 2 4 6 ans(:,:,2) = 7 9 11 8 10 12 ans(:,:,3) = 13 15 17 14 16 18

相关主题
文本预览
相关文档 最新文档