当前位置:文档之家› 棕色脂肪组织与糖代谢的关系论文

棕色脂肪组织与糖代谢的关系论文

棕色脂肪组织与糖代谢的关系论文
棕色脂肪组织与糖代谢的关系论文

万方数据

万方数据

万方数据

万方数据

肥胖症与脂代谢 (2)

肥胖症与脂质代谢 [摘要]肥胖是一种常见疾病,是体内脂肪过多的表现,与脂质代谢紊乱密切相关,二者互为 因果。其脂质代谢紊乱表现为摄食过多使脂肪合成的原料增加,棕色脂肪含量减少使能量消耗减 少素和降脂激素调节失常使脂肪合成增加、降解减少。同时也可由于脂肪动员增加使血中游离脂 肪酸、甘油三酯增加,极低密度脂蛋白和低密度脂蛋白清除减少。高胰岛素血症和胰岛素抵抗既是 肥胖的结果,也是肥胖患者脂质代谢紊乱的主要原因,其它如瘦素等也起重要作用。 [关键词]肥胖症;脂质代谢 Obesity and lipid metabolism Chenyu (student number: 1425800107 grade 2014 class two professional: anesthesia) 【Abstract】Obesity is a common disease, it is too much body fat, and the disorder of lipid metabolism are closely related, the two interact as both cause and effect. The disorder of lipid metabolism showed that the raw material of fat synthesis increased, the brown fat content decreased, and the energy consumption reduced and the lipid metabolism increased. At the same time, it also can increase the free fatty acid, triglyceride, very low density lipoprotein and low density lipoprotein in the blood. The high level of insulin resistance and insulin resistance are not only the result of obesity, but also the main reason for the disorder of lipid metabolism in obese patients. 【Keywords word】lipid ;metabolism 肥胖是体内脂肪过多的状态,是一种多因素的慢性代谢性疾病,按 WHO标准体重指数(BMI )>30kg/m2者为肥胖,按照WHO 西太平洋地区肥胖工作组对亚洲人的肥胖定义BMI>25kg/m2为肥胖。各国肥胖发病率差异较大,以西方发达国家的肥胖患病率最高,美国等肥胖患病率高达 20%以上,60% 的国民超重。肥胖症主要表现为体内脂肪含量过多,脂肪细胞的数量增多、体脂的分布失调以及局部脂肪沉积,同时多数肥胖患者存在严重的脂代谢紊乱,常与型糖尿病、冠心病、高血压等合并存在,并成为其重要的致病原因,称为代谢综合征[1]。脂肪组织是一种特殊的结缔组织,含大量的脂肪细胞,按细胞的颜色和结构分为白色脂肪细胞和棕色脂肪细胞。白色脂肪的功能主要是储存脂肪,棕色脂肪的功能主要是产热。与正常人和消瘦患者相比,肥胖患者白色脂肪较多而棕色脂肪较少,肥胖者由于棕色脂肪组织量少,致使产热这一有效的调节方式失灵,所以引起能量过度蓄积,进而转化为脂肪积聚起来。脂肪是体内储存能量的主要物质,在代谢中通过氧化而释放能量。脂肪组织内的大部分脂肪不断进行代谢更新,包括三酰甘油和葡萄糖的摄取、三织,含大量的脂肪细胞,按细胞的颜色和结构分为白色脂肪细胞和棕色脂肪细胞。白色脂肪的功能主要是储存脂肪,

糖脂代谢病的发病机制多重打击学说

龙源期刊网 https://www.doczj.com/doc/6617135560.html, 糖脂代谢病的发病机制:多重打击学说 作者:华爽吕明慧刘倩颖何兴祥荣向路叶得伟郭姣 来源:《世界中医药》2019年第03期 摘要;血糖異常、血脂异常、非酒精性脂肪肝、超重、高血压、动脉粥样硬化性心脑血管病等代谢性疾病发病率居高不下,是世界性难题。临床流行病学研究目前已证实,2型糖尿病、高脂血症等代谢性疾病常合并发生,但目前对导致上述代谢异常发生的分子机制尚未阐明,并制约了综合防控疗效优良的创新药物和诊疗手段的研发。郭姣教授率团队基于大样本临床流行病学、转化研究数据,提出“糖脂代谢病”创新理论,认为上述代谢异常以糖、脂代谢紊乱为特征,发病过程由遗传、环境、精神等多种因素参与,以神经-内分泌失调、胰岛素抵抗、氧化应激、炎性反应、肠道菌群失调为核心病理,以高血糖、血脂失调、非酒精性脂肪肝、超重、高血压及动脉粥样硬化等单一或合并出现为主要临床表现特点。本文综合神经-内分泌-免疫紊乱、胰岛素抵抗、氧化应激、炎性反应、肠道菌群失调等环节与糖脂代谢异常及其诱发多器官病变的病理机制的研究进展,提出糖脂代谢病发病机制的“多重打击学说”。该学说对于揭示多种代谢异常发生的核心、共性分子机制及从病证结合角度阐释中医证候的生物学本质具有重要意义。 关键词;糖脂代谢病;发病机制;神经-内分泌轴;胰岛素抵抗;氧化应激;代谢性炎性反应;肠道 菌群失调 The Multiple-hit Pathogenesis of Glucolipid Metabolic Disorders Hua Shuang1,2,3,Lyu Minghui1,2,3,Liu Qianying1,2,3,He Xingxiang2,Rong Xianglu1,2,3,Ye Dewei1,2,3,Guo jiao1,2,3 (1 Joint Laboratory between Guangdong and Hong Kong on Metabolic Diseases,Guangdong Pharmaceutical University,280 Waihuan Road East,Guangzhou Higher Education Mega,Guangzhou 510006,China; 2 Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine,Guangdong Pharmaceutical University,280 Waihuan Road East,Guangzhou Higher Education Mega,Guangzhou 510006,China; 3 Institute of Traditional Chinese medicine,Guangdong Pharmaceutical University,280 Waihuan Road East,Guangzhou Higher Education Mega,Guangzhou 510006,China) Abstract;The high prevalence and incidence of hyperglycemia,dyslipidemia,nonalcoholic fatty liver disease,obesity,hypertension,atherosclerosis and its related cardiovascular diseases has emerged as one of leading causes of morbidity and mortality worldwide.Epidemiological data well established that two or several above-mentioned metabolic disorders usually co-exist in obese subjects.However,the mechanisms underlying the co-existence of these metabolic disorders have not been well characterized currently,exerting negative effect on the development of new drugs and therapeutic approaches for these diseases.Based on the data from epidemiological and translational

脂肪代谢

脂肪代谢 消化主要在小肠上段经各种酶及胆汁酸盐的作用,水解为甘油、脂肪酸等。脂类的吸收含两种情况:中链、短链脂肪酸构成的甘油三酯乳化后即可吸收——>肠粘膜细胞内水解为脂肪酸及甘油——>门静脉入血。长链脂肪酸构成的甘油三酯在肠道分解为长链脂肪酸和甘油一酯,再吸收——>肠粘膜细胞内再合成甘油三酯,与载脂蛋白、胆固醇等结合成乳糜微粒——>淋巴入血。 目录 1概论 2甘油三酯代谢 ?合成代谢 ?分解代谢 ?脂肪酸的分解代谢—β-氧化 ?脂肪酸的其他氧化方式 ?酮体的生成及利用 ?脂肪酸的合成代谢 ?多不饱和脂肪酸的重要衍生物 3磷脂的代谢 ?甘油磷脂的代谢 ?鞘磷脂的代谢 4胆固醇的代谢 ?合成代谢 ?胆固醇的转化 5血浆脂蛋白代谢 ?血浆脂蛋白分类 ?血浆脂蛋白组成 ?脂蛋白的结构 ?载脂蛋白 ?代谢 ?高脂血症 1概论 编辑 脂类主要包括以下几种: 1脂肪:由甘油和脂肪酸合成,体内脂肪酸来源有二:一是机体自身 脂肪代谢 合成,二是食物供给特别是某些不饱和脂肪酸,机体不能合成,称必需脂肪酸,如亚油酸、α-亚麻酸。 2磷脂:由甘油与脂肪酸、磷酸及含氮化合物 代谢 生成。

3鞘脂:由鞘氨酸与脂肪酸结合的脂,含磷酸者称鞘磷脂,含糖者称为鞘糖脂。 4胆固醇脂:胆固醇与脂肪酸结合生成。 2甘油三酯代谢 编辑 合成代谢 甘油三酯是机体储存能量及氧化供能的重要形式。 1.合成部位及原料 肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意: 豆制品促进脂肪代谢 肝细胞能合成脂肪,但不能储存脂肪。合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。若肝合成的甘油三酯不能及时转运,会形成脂肪肝。脂肪细胞是机体合成及储存脂肪的仓库。 合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。 2.合成基本过程 ①甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。 ②甘油二酯途径:肝细胞和脂肪细胞的合成途径。 脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。分解代谢 即为脂肪动员,在脂肪细胞内激素敏感性甘油三酯脂的酶作用下,将脂肪分解为脂肪酸及甘油并释放入血供其他组织氧化。 甘油甘油激酶——>3-磷酸甘油——>磷酸二羟丙酮——>;糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。 脂肪酸的分解代谢—β-氧化 在氧供充足条件下,脂肪酸可分解为乙酰CoA,彻底氧化成CO2和H2O并释放出大量能量,大多数组织均能氧化脂肪酸,但脑组织例外,因为脂肪酸不能通过血脑屏障。其氧化具体步骤如下: 1.脂肪酸活化,生成脂酰CoA。 2.脂酰CoA进入线粒体,因为脂肪酸的β-氧化在线粒体中进行。这一步需要肉碱的转运。肉碱脂酰转移酶I是脂酸β氧化的限速酶,脂酰CoA进入线粒体是脂酸β-氧化的主要限速步骤,如饥饿时,糖供不足,此酶活性增强,脂肪酸氧化增强,机体靠脂肪酸来供能。3.脂肪酸的β-氧化,基本过程(见原书) 丁酰CoA经最后一次β氧化:生成2分子乙酰CoA 故每次β氧化1分子脂酰CoA生成1分子FADH2,1分子NADH+H+,1分子乙酰CoA,通过呼吸链氧化前者生成1.5分子A TP,后者生成2.5分子A TP。 4.脂肪酸氧化的能量生成 脂肪酸与葡萄糖不同,其能量生成多少与其所含碳原子数有关,因每种脂肪酸分子大小不同其生成ATP的量中不同,以软脂酸为例;1分子软脂酸含16个碳原子,靠7次β氧化生成7分子NADH+H+,7分子FADH2,8分子乙酰CoA,而所有脂肪酸活化均需耗去2分子

2020年自噬在白色脂肪棕色化的作用:潜在的心血管保护靶点

2020年自噬在白色脂肪棕色化的作用:潜在的心血管保护靶点 摘要 近年来,白色脂肪棕色化成为肥胖及相关代谢疾病的潜在治疗靶点,但其具体机制尚未完全明确。研究发现抑制自噬可促进脂肪组织棕色化,改善肥胖及相关代谢性疾病。因此,本文综述了自噬在白色脂肪棕色化的作用,白色脂肪棕色化在机体代谢及心血管保护中的影响。 尽管心血管疾病(cardiovascular disease,CVD)的治疗手段不断改进,但其仍然是全球疾病发病率和死亡率的主要影响因素[1]。前期研究发现,肥胖与CVD密切相关[2]。同时,脂肪过度积累被认为是肥胖及其相关代谢疾病的主要危险因素。机体除了白色脂肪和棕色脂肪以外,还存在第3种脂肪组织,即米色脂肪,它分布于白色脂肪分布的区域,但是具有类似棕色脂肪的特性[3]。近期研究发现,在环境因素(如低温)及药物的作用下,白色脂肪组织中可募集米色脂肪细胞,这一过程称为白色脂肪棕色化(或米色化)[4]。白色脂肪棕色化具有调节机体代谢和保护心血管的作用[5],这为CVD的危险因素——肥胖、糖尿病等代谢性疾病的治疗提供了新的思路。然而,其具体机制仍然不清。自噬是一种高度保守的分解代谢过程,与蛋白质受损、脂肪聚集以及线粒体受损有关。众所周知,肥胖与白色脂肪组织肥大、增生以及棕色脂肪组织萎缩以及发育不全有关,这是脂质代谢紊乱、游离脂肪酸过度释放以及线粒体功能失衡的重要原因[6]。另外,研究发现,在肥胖和糖尿病患者的白色脂肪组织中可观察到自噬过

度激活现象;进一步通过敲除小鼠自噬相关基因来抑制自噬,发现小鼠的肥胖得到改善[6]。因此,通过白色脂肪细胞棕色化将储能的白色脂肪细胞转变成产热的米色脂肪细胞是防治肥胖症的潜在策略之一,而白色脂肪细胞棕色化过程需要自噬的调控;但是,其具体机制尚未完全明确。本文综述了自噬在白色脂肪棕色化的作用,白色脂肪棕色化在机体代谢及心血管保护中的影响,从而为心血管保护提供潜在靶点。 1 脂肪组织分类及特点 脂肪组织根据体内分布、细胞形态、结构以及生物学功能不同,可分为白色脂肪,棕色脂肪以及米色脂肪3类[7]。 1.1 白色脂肪 白色脂肪细胞是一种单房性大脂滴的脂肪细胞,含有少量线粒体[8]。人体内的白色脂肪主要分布于皮下和腹膜后、肠系膜、心外膜、生殖腺等内脏器官周围。其主要功能是将多余的能量以三酰甘油的形式贮存起来,当机体能量缺乏时,将其分解用于能量的产生。另外,研究发现白色脂肪细胞还具有内分泌功能,可分泌瘦素、肿瘤坏死因子、脂联素等脂肪因子,参与调节胰岛素敏感性和机体代谢[7]。 1.2 棕色脂肪 棕色脂肪细胞是一种多房性小脂滴的脂肪细胞,含有大量线粒体[7],主要分布于肩胛间、腋窝下、肾周及脊柱旁。前期研究表明,不仅婴幼儿体内存在棕色脂肪,成人体内也存在少量棕色脂肪[8]。棕色脂肪的主要功能是通过非战栗性产热,调节体温。因为棕色脂肪细胞富含解偶联蛋白1(uncoupling protein 1,UCP1),UCP1可消除跨线粒体内膜的质子浓

脂肪进行合成代谢的过程

郑州增肥专科医院 来源:河南省现代研究院中医院增肥专科脂肪是怎样消耗的——脂肪分解的“三大环节” 为了方便大家理解这个相对专业的生化反应过程,我画了一张图(如下),我就按图解说了。 建议大家先仔细阅读一下图,再接着看下文—— 第一环节:脂肪动员 我们的脂肪主要以“甘油三酯(TG)”的形式储存在脂肪组织内,另外,心肌、骨骼肌、血浆中也有少量甘油三酯存在。对于减肥瘦身来说,主要是将脂肪组织内的甘油三酯动员起来用于供能,才能达到理想的效果。如果一个人脂肪动员的能力较低,就更容易产生肥胖,或者更不容易减肥。 一些特定的食物也能促进脂肪动员,如茶(茶多酚、咖啡碱)、咖啡、辣椒,以及瓜拉那等草本提取物,同时伴有心跳加速、血压增高的反应,因此需慎重使用。 第二环节:活性脂酸转移 当脂肪酸从脂肪组织中分解出来进入血浆后,在血浆蛋白的帮助下运送到全身各处的活动细胞内,开始了它的第二个环节——活化。只有被活化的脂肪酸才能进入被称作“细胞内动力工厂”的“线粒体”内,进一步被氧化分解。这个进入过程就是第三环节:活性脂酸转移。 脂肪酸被活化是受一系列酶的催化作用完成的,因此,这些酶的活性成为脂肪分解的一个限制因素。当然,这个因素主要受遗传决定,同时也受特定的代谢物质(如共轭亚油酸,CLA)影响。 第三环节:脂肪酸β氧化 这是脂肪酸在线粒体内最后被分解成二氧化碳和水,并产生能量的过程,受一系列酶和其他代谢反应影响。值得重视的是,脂肪酸的β氧化和糖的氧化在最后阶段都必须进入一个叫“三羧酸循环”的生化反应过程,才能最终分解成二氧化碳和水,最大限度地释放能量。

如果脂肪分解过程中,糖供应不足,导致三羧酸循环不能顺利进行,脂肪分解也会受到抑制,从而产生“酮体”。高浓度的酮体对人体是有害的,可能造成“酮中毒”。

棕色脂肪组织

2 BAT产热机制——去甲肾上腺素(NE)控制产热 哺乳类动物BAT活动的最终目的是产生热量。BAT主要作用是调节机体温度,参与能量的消耗,因而与保持机体重量也有关。 2.1 去甲肾上腺素对BAT的快速作用——控制产热 去甲肾上腺素是交感神经的主要递质,冷暴露条件下,交感神经末梢释放NE激活组织,是产热增加的生理基础(HimmsH agen,1990;Baumuratov等,2003;Baumuratov等,2005)。寒冷刺激, 脂肪细胞周围交感神经末梢释放的去甲肾上腺素,通过作用于棕色脂肪细胞上的受体,使细胞内cAMP浓度发生改变,最终影响甘油三酯分解为甘油和脂肪酸。 机体中的肾上腺素能受体(AR)有α、β两种,其中β分为β1、β2、β3,β1在成熟的棕色脂肪组织中表达;β2在棕色脂肪组织中没有表达;β3在棕色脂肪组织和白色脂肪组织中都有表达。每种受体的作用方式和机理不同。 NE信号主要通过β3肾上腺素能受体控制产热 (HimmsHagen等,1990;Smith等,2004;Oana等,2006),NE通过作用于棕色脂肪细胞上的β3肾上腺素能受体,与Gs蛋白偶联活化腺苷酸环化酶(AC),使细胞内cAMP浓度增加,从而激活cAMP依赖的PKA,后者使敏感脂酶磷酸化,最终使促进脂滴中贮存的甘油三酯分解为甘油和脂肪酸(见图1);PK A 使cAMP反应元件结合蛋白(CREB)磷酸化,成为有活性的形式,有活性的CREB能直接诱导PPAR激活UCP1和PG C-1α的表达。这种生热主要是通过脂解作用激活了UCP1,是大多数哺乳动物的主要生热方式。但是对于像猪这样的BAT 中缺乏β3肾上腺素能受体的动物的产热方式则主要是通过β1肾上腺素能受体的作用(Atgie等,1996;Himms-Hagen 等,1995)。NE刺激BAT,β1肾上腺素能受体表达增加,使交感神经紧张,从而产热。α2肾上腺素能受体抑制产热(Mc Mahon等,1982),NE通过作用于棕色脂肪细胞上的α2肾上腺素能受体,与Gi蛋白偶联,抑制腺苷酸环化酶(AC),使细胞内cAMP浓度降低,抑制产热(见图1)。α1肾上腺素能受体作用方式:NE刺激或冷暴露,α1肾上腺素能受体增加,使线粒体内Ca2+浓度增加,增加产热,这种产热可能还是与cAMP有关(Zhao,1997;Baumuratov等,2005)。Ca2+在此扮演着第三信使的作用,类似于cAMP(Baumuratov等,2005)。 2.2 去甲肾上腺素对BAT的慢性作用 去甲肾上腺素对BAT的慢性作用主要是引起棕色脂肪细胞的增殖和分化。 2.2.1 细胞增殖 1964年Camerond等就发现动物在寒冷环境中BAT分裂指数增加,10 d左右细胞内DNA含量可增加3~4倍。给小鼠和大鼠注射NA(核酸)也可产生类似的变化(Rehnmark等,1989;Geloen等,1990)。为了进一步研究这个过程,Bronnik ov等(1992)用原代培养的棕色脂肪细胞进行研究。细胞在含有小牛血清的培养基中可自然分裂,通常在6 d左右就可达到融合。在细胞融合前的增殖阶段,NA可明显增加DNA合成。在无小牛血清环境下,培养细胞不出现自然分裂,此时N A也能明显刺激DNA合成。这表明NA确实具有促进棕色脂肪细胞增殖的作用。一些能促进细胞内cAMP浓度增高的物质都可通过与NA类似的方式增加DNA合成。因此可以说cAMP是非成熟细胞增殖的信使。 2.2.2 细胞分化 在生理性诱导的募集反应中,也出现细胞分化程度的增高,表现在线粒体生成增多和UCP基因表达增加,这些变化可增加组织的产热能力。细胞分化的调节也可用培养细胞来研究。NA可增加UCP mRNA的表达和细胞内UCP的含量,这种刺激反应在细胞融合期最为明显(Rehnmark等,1990)。利用能增高细胞内cAMP浓度的物质(如forskolin或cAMP的类似物)也能引起相同的反应,很明显NA引起基因表达主要是由β-AR介导。因此在成熟棕色脂肪细胞,NA通过激活β3-AR和cA MP增高诱导基因的表达,cAMP也是棕色脂肪细胞分化的信使。cAMP引起非成熟细胞DNA的合成,在成熟细胞中则引起UCP的表达。 棕色脂肪组织 - BAT与解偶联蛋白 3 BAT与解偶联蛋白 线粒体内膜的解偶联蛋白(UCP)是决定BAT功能的关键因素(Heaton等,1978)。UCP是参与能量代谢的重要蛋白质。解偶联蛋白是一种在棕色脂肪组织特异表达的线粒体内膜蛋白质,分子量为32 kDa。UCP的作用是作为脂肪酸阴离子转运载体。

运动与脂肪代谢

运动与脂肪代谢 安静、运动时骨骼肌的主要供能物质之一。 第一节运动时脂肪分解 一、概述 60%—65%最大摄氧量或以下强度运动,脂肪分解能够提供运动肌所需的大部分能量。 (一)长时间运动时骨骼肌细胞燃料的选择 每克脂肪完全氧化可产生ATP的克数就是糖的2.5倍;糖原以水化合物的形式储存在细胞内,而脂肪则以无水的形式储存,以脂肪分子形式储能具有体积小的特点。 (二)运动时脂肪的供能作用 运动肌对各种供能物质的利用比例主要取决于运动强度及运动持续时间。 1、在短时间激烈运动时,无论就是动力性运动还就是静力性运动,肌肉基本上不能利用脂肪酸。 2、当以70%—90%最大摄氧量强度运动时,在开始运动10—15分钟以后。 3、在低于60%—65%最大摄氧量强度的长时间运动中,尤其就是在60%最大摄氧量以下强度的超长时间运动中,脂肪成为运动肌的重要供能物质。 (三)运动时脂肪参与供能的形式与来源 1.运动时脂肪参与供能的形式 (1)在心肌、骨骼肌等组织中,脂肪酸可经氧化,生成二氧化碳与水。这就是脂肪供能的主要形式。 (2)在肝脏中,脂肪酸氧化不完全,生成中间产物乙酰乙酸、β-羟丁酸与丙酮,合称酮体。酮体参与脂肪组织脂解的调节。 (3)在肝、肾细胞中,甘油作为非糖物质经过糖异生途径转变成葡萄糖,对维持血糖水平起重要作用。

2.参与骨骼肌供能的脂肪酸来源 (1)脂肪组织(即脂库)储存的脂肪; (2)循环系统即血浆脂蛋白含有的脂肪; (3)肌细胞浆中的脂肪。运动时人体基本上不利用肝脏内储存的脂肪。 二、运动时脂肪(甘油三酯)分解代谢 (一)脂肪组织中脂肪分解 1.脂肪酸动员 2.脂肪分解:甘油二酯脂肪酶与甘油一酯脂肪酶的活性比甘油三酯脂肪酶大得多。 3.脂肪组织释放脂肪酸与甘油:甘油三酯—脂肪酸循环(甘油产生后基本上全部被释放入血,大部分脂肪酸在脂肪细胞内直接参与再酯化过程) (二)血浆甘油三酯分解 (三)肌细胞内甘油三酯分解 1.肌内甘油三酯含量:每千克骨骼肌内甘油三酯含量平均值为12毫摩尔 2.肌内甘油三酯分解:骨骼肌内LPL也就是甘油三酯水解的限速酶,它与脂肪组织内LPL相似,也受多种激素调节。它的活性受低浓度肾上腺素、胰高糖素抑制,受高浓度肾上腺素、胰高糖素激活。在超过1小时的长时间运动中,骨骼肌内LPL 活性提高近两倍,而脂肪组织内仅提高约20%。训练影响骨骼肌LPL活性,在耐力训练中这一作用更明显。 3.肌内甘油三酯的供能作用:在70%最大摄氧量强度的长时间运动时,脂肪酸供能的75%来自肌内脂肪。肌内甘油三酯水解速率平均值就是每100克肌肉2—5微摩尔/分,在有氧代谢能力强的慢收缩肌纤维中甘油三酯消耗最为明显。 第二节运动时脂肪酸的利用 运动时骨骼肌氧化的脂肪酸依靠肌内甘油三酯水解与摄取血浆FFA,随运动时间延长,血浆FFA供能起主要作用。 一、血浆游离脂肪酸浓度及其转运率

糖脂代谢异常指导方案

一、保肝肝指导 (一)生活起居: 1、注意肝脏保护,禁烟限酒,合理用药,减少酒精性、药物性肝损伤。 2、保证良好睡眠,避免熬夜,夜间12-2点是肝脏排毒的最佳时间,熬夜会降低肝脏排毒效果,加重肝脏负担。 3、生活中注意避免各种化学物质对肝脏的慢性伤害如:烟尘、汽车尾气、家装材料及烟酒刺激等。 (二)饮食指导 1、低脂、适量高蛋白及高维生素饮食,高蛋白饮食可提高肝脏的免疫功能。 2、高维生素饮食,维生素有营养、保护、支持肝细胞作用,新鲜蔬菜、水果中含有丰富的维生素物质,应每天吃500克左右蔬菜,吃3~4种水果。少吃油炸、烧烤食物,不一次大量摄入鸡、肉、鱼、蛋、豆制食品,以免蛋白质摄入过多加重肝脏负担。 3、丹参有抗肝炎病毒,活血化淤,保肝护心作用,可用少量丹参、黄芪饮片泡水饮用,也可口服丹参片3片/次,每日三次。 4、合理膳食:宜高碳水化合物、高维生素、适量高蛋白质饮食。 5、适量饮水,以促进机体代谢及代谢废物的排泄。 6、多食富含甲硫氨基酸丰富的降脂食物,如小米、燕麦等粗粮、黑芝麻、黑木耳、油菜、菠菜、菜花、甜菜头、海米、海带、干贝、淡菜等食品可促进体内磷脂合成,协助肝细胞内脂肪的转变。 饮食禁忌:(1)绝对禁酒(2)忌食辛辣刺激食品。如尽量不食洋葱、蒜、姜、辣椒、胡椒、咖喱等;少食用肉汤、鸡汤、鱼汤等含氮浸出物高的食物。(3)控制食糖,各种甜食及高热量食物,如含糖量高的蔬菜、水果、粉条、巧克力、甜点心等。(4)少吃或不吃煎炸等油类含量高的食品。(5)忌食用动物油,少食植物油等,少吃动物内脏、肥肉等。(6)忌过量或不科学用保健食品 (二)糖代谢失调指导 (一)生活起居: 树立正确的进食观,热量摄入过多、营养过剩、肥胖、运动缺乏是导致糖尿病的重要原因。应注意合理膳食。 1、低糖饮食,限制食量,每日三餐以6~7分饱为宜,避免进食速度过快,不要吃的过饱。控制体重,加强运动,消耗体内过剩能量,每天做有氧运动40—60分钟,可分俩个阶段进行,参加适当体力劳动,适当的体力劳动及适量运动能促进糖吸收,减轻胰岛负担。 2、避免过度紧张、劳累,人体在紧张、劳累时,体内交感神经兴奋,胰岛α细胞分泌增加,

白色脂肪棕色化的影响因素及临床意义

·综述· 白色脂肪棕色化的影响因素及临床意义 1 唐海灵,2鲁晓岚,3沈生荣(1西安市中心医院消化科,西安 710004;2复旦大学附属浦东医院消化科,上海 201399;3浙江大学生物系统工程与食品科学学院,杭州 310058) 基金项目:上海市浦东新区卫生系统重点学科建设(PWZX2017-27)通讯作者:鲁晓岚,电子邮箱:xiaolan_lu@https://www.doczj.com/doc/6617135560.html, 摘要: 脂肪组织是人体非常重要的能量储存组织。哺乳动物体内一般存在三种类型脂肪组织: 白色脂肪组织、经典棕色脂肪组织、诱导性棕色脂肪组织或米色脂肪组织。白色脂肪组织的主要功能是以甘油三酯的形式贮存能量及内分泌功能;经典棕色脂肪组织和诱导性棕色脂肪组织的主要功能则是产热及保持机体能量平衡。寒冷的环境、运动等因素均可刺激白色脂肪棕色化,而PRDM16、PPARγ和PGC-1α是与该过程相关的三个核心转录因子。白色脂肪棕色化是一个复杂的、由多种因素参与的调控过程。研究显示,棕色脂肪的活化和白色脂肪棕色化,一方面有利于肥胖、糖尿病、脂肪肝等疾病的治疗,但另一方面有可能促进恶性肿瘤患者的病情进展。可见,不同类型脂肪组织在健康人体内始终是保持在一个动态平衡状态。如何在各种类型脂肪组织早期代谢失衡阶段,通过关键靶点干预治疗将是未来研究的一个新思路。 关键词:白色脂肪棕色化;米色脂肪;疾病;代谢失衡 Impact factors and clinical significance of the browning of white adipose tissue 1 TANG Hai-ling, 2LU Xiao-lan, 3SHEN Sheng-rong 1 Department of Gastroenterology, Xi’an Central Hospital, Xi’an 710003, Shanxi, China; 2Department of Gastroenterology, Fudan University Pudong Medical Center, Shanghai 201399, China; 3College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China Abstract: The adipose tissue is an extreme important tissue for energy storage. There are three types of adipose tissue in mammals: white fat tissue, classic brown adipose tissue, and inducible brown adipose tissue, or beige adipose tissue. The main function of white fat tissue is to store energy in the form of triglyceride and maintain the endocrine function. The main function of classic brown adipose tissue and inducible brown adipose tissue is to generate heat and maintain the energy balance of the body. Cold environment and exercise can stimulate the browning of white adipose tissue, and PRDM16, PPARγ and PGC-1α are the three core transcription factors related to this process. The browning of white adipose tissue is a complex process involving many factors. Previous studies showed that the browning of white adipose tissue is beneficial to the treatment of obesity, diabetes, fatty liver, and other diseases, on the other hand, it can promote the progress of the patients with malignant tumor. Also, it can be seen that different types of adipose tissue always maintain a dynamic balance in healthy human body. How to intervene in various types of adipose tissue at the early stage of metabolic imbalance, through key targets, will be a new idea for the further researches . Key words: The browning of white adipose tissue; Beige adipose tissue; Disease; Metabolic imbalance DOI:10.16689/https://www.doczj.com/doc/6617135560.html,11-9349/r.2019.01.026 棕色脂肪组织(brown adipose tissue ,BA T )是人体主要的能量储存组织,与骨骼肌一样,也是人体利用产热维持体温和能量平衡的重要组织,它们有共同的祖细胞。运动诱导多种肌肉因子表达,通过旁分泌/内分泌作用于脂肪组织促进其棕色化。最新研究显示,棕色脂肪的活化和白色脂肪棕色化对能量代谢有重要影响,可能会是未来代谢性疾病治疗的一个靶标。 目前研究认为哺乳动物体内一般存在三种类型脂肪组织,分别是白色脂肪组织(white adipose tissue ,W A T )、经典棕色脂肪组织(classic brown adipose tissue ,cBA T )、诱导性棕色脂肪组织(in-ducible brown adipose tissue ,iBA T )或米色脂肪组 织(beige adipose tissue )。传统观念认为,人类的棕色脂肪随着年龄的增长逐渐减少,成年人体内棕色脂肪的含量极低[1]。而2009 年有多项研究显示,在成人颈部背侧脊骨区域、锁骨上方以及主动脉周围等部位存在棕色脂肪组织[2-4]。尽管含量很少,但其具有潜在的快速产生大量热量的能力,也影响着糖脂和能量代谢的平衡。另有研究发现,与小鼠体内经典棕色脂肪及米色脂肪相比,人体内的棕色脂肪更类似于小鼠的诱导性棕色脂肪细胞,而不是经典棕色脂肪细胞[5]。 米色脂肪,即白色脂肪细胞中一小簇棕色化样的脂肪细胞,可能具有促进能量代谢的作用。以下将主要针对诱导性棕色脂肪(米色脂肪)组织的影响因素及其对于诸多慢性疾病的临床意义做一综述。1 脂肪的分类及功能 1.1 白色脂肪组织 W A T 富含有白色脂肪细胞、血管 ·144· 肿瘤代谢与营养电子杂志 2019年3月9日?第6卷第1期 Electron?J?Metab?Nutr?Cancer,Mar.?9,2019,Vol.?6,No.?1

糖脂代谢稳态调控的分子机制

项目名称:糖脂代谢稳态调控的分子机制首席科学家:林圣彩厦门大学 起止年限:2011.1至2015.8 依托部门:教育部

二、预期目标 1. 总体目标 确定机体和细胞在不同生理状况和环境因素下维持糖脂代谢稳态的分子机制,阐明在细胞生长和应激反应中起重要作用的调节因子调控细胞代谢的信号通路网络,为糖脂代谢紊乱造成的肥胖、脂肪肝、糖尿病和癌症的早期诊断和治疗提供理论依据。 2. 五年预期目标 (1) 建立对实验动物代谢相关的生理生化指标分析的技术平台,发现相关基因敲 除或转基因小鼠造成糖脂代谢紊乱的信号通路。 (2) 较系统地描述在逆境下机体和细胞调控糖脂代谢的分子网络以及调控过程 中关键蛋白质和蛋白质复合体的动态调控机制。 (3) 发现新的参与代谢调控的基因,为代谢性疾病和肿瘤的防治提供新的分子靶 标。 (4) 培养高质量博士研究生20-30名,培养3-5名享有国际知名度的专家和5-8名 中青年学术带头人。 (5) 在国际重要刊物发表SCI论文15-25篇,其中争取在Cell、Nature、Science或其 子刊等影响因子10以上杂志发表研究论文5-10篇,申请发明专利3-5项。

三、研究方案 1. 总体研究方案 细胞能量代谢是细胞最基本、最重要的活动之一,与细胞的繁殖、分化、凋亡、运动、信号转导及多种重要疾病的发生密切相关,是生命科学的一个重要领域。细胞要通过能量感应系统随时监测其能量水平状态,在不同的物质和能量状态下要不断地通过细胞内的代谢调控途径来调节其代谢水平以达到一种稳态。同时,细胞在面对内外界一些不良因素时也会做出相应的代谢变化,这些应激反应对细胞正常的生长和功能是极其重要的。如果这些应激反应失调,就会使细胞代谢发生异变,导致如前所述的多种人类重大疾病的发生。本项目的总体研究方案拟利用我们在蛋白质科学、细胞代谢、细胞信号转导等研究领域的研究优势和技术手段,结合细胞生物学、动物生理学等学科的研究方法,集中力量多层次、多角度地研究与细胞代谢调控相关的信号通路网络,分离和鉴定参与细胞代谢调控的新的基因和信号通路,探讨各个信号通路之间的动态调控机制,并研究细胞异常代谢的信号通路,揭示代谢异常与糖尿病、肿瘤等重大疾病的关系。项目总体研究方案如下图1:

棕色脂肪组织在肥胖与代谢综合征发生发展中的作用及其机制研究

《发育医学电子杂志》 2019年1月第7卷第1期 J Development Med,Jan 2019,V ol.7,No.1·75·棕色脂肪组织在肥胖与代谢综合征发生 发展中的作用及其机制研究 杨帆 李晓南(南京医科大学附属儿童医院 儿童保健科,江苏 南京 210008) ·综述· 脂肪组织是一种复杂的器官,拥有多种生理功能。脂肪组织主要有两种类型:一种是白色脂肪组织(white adipose tissue,W A T),又分为皮下和内脏脂肪,主要用于能量储存;另一种是棕色脂肪组织(brown adipose tissue,BA T),主要用于产热,是一种特殊类型的脂肪组织,在寒冷的时候能够通过“非颤抖性产热”维持体温[1]。BA T在胎儿时期形成,出生时已经成熟,人类新生儿时期BA T主要储存在纵隔大血管周围、肾周围和肩胛间区。既往认为,随着年龄增长,人体内BA T的含量会逐渐减少,至成年时消失[2]。近年使用18F-脱氧葡萄糖正电子发射断层扫描发现成年人仍留存有活性的BA T[3-4]。进一步研究发现,BA T除了产热功能外,同时具备内分泌功能,可通过自分泌、旁分泌和内分泌的方式调节机体代谢,影响肥胖与代谢综合征的发生发展[5]。目前,肥胖及其代谢综合征已成为21世纪最关注的公共卫生问题之一,随着生活水平的提高、生活方式的改变,儿童期肥胖率更是呈逐年上升的趋势。因此,以BA T为靶标,研究其内分泌作用及其调控机制,有可能为肥胖及其代谢紊乱的诊断和干预提供新的思路。本研究围绕近年国际上对BA T功能的研究进展综述如下。 1 BAT的结构特征 BAT在形态、标志性因子和细胞来源等方面 与WAT有明显区别,BAT的分化与生肌因子5(myogenic factor 5,Myf5)密切相关,Myf5阳性的祖细胞可诱导分化为中央生皮肌节,进而分化为肩胛间经典的棕色脂肪细胞(brown adipocyte,BAC)和骨骼肌细胞。BAC含有大量线粒体和小脂滴,其线粒体内膜上特异性地存在解耦联蛋白1(uncoupling protein 1,UCP1),可将内膜间隙的大量质子转入线粒体基质,通过氧化磷酸化作用解耦联释放能量[2]。虽然BAT对婴幼儿的重要性早已明确[6],但其在成人体内是否存在以及其功能如何,近期才得到重视[7]。 WAT是能量储存场所,BAT则是能量释放的场所,两者作用截然相反,但在某些特殊的WAT位点,存在着一类可被诱导成多房形态、UCP1阳性的细胞,称为米色脂肪细胞[8]。值得注意的是,在消瘦儿童的皮下、肾周、内脏脂肪组织中也存在米色脂肪细胞[9],并在动物模型中证实米色脂肪细胞也可改善机体能量和糖代谢[10-12]。寒冷刺激及激素、药物等可诱导米色脂肪细胞表达UCP1蛋白,具有依赖UCP1的产热能力[13-16]。因此米色脂肪细胞又称为棕色样变的白色脂肪细胞。 2 BAT的产热作用 BAT产热功能的激活主要是冷刺激、食物等激活交感神经系统,触发儿茶酚胺和甲状腺素的 DOI:10.3969/j.issn.2095-5340.2019.01.017 基金项目:国家自然科学基金面上项目(81773421)通讯作者:李晓南(Email:xiaonan6189@https://www.doczj.com/doc/6617135560.html,)

项目名称-糖脂代谢稳态调控的分子机制-首席科学家-林圣彩厦门大学-

项目名称-糖脂代谢稳态调控的分子机制-首席科学家-林圣 彩厦门大学- 项目名称: 糖脂代谢稳态调控的分子机制首席科学家: 林圣彩厦门大学 起止年限: 2011.1至2015.8 依托部门: 教育部 二、预期目标 1. 总体目标 确定机体和细胞在不同生理状况和环境因素下维持糖脂代谢稳态的分子机制~阐明在细胞生长和应激反应中起重要作用的调节因子调控细胞代谢的信号通路网络~为糖脂代谢紊乱造成的肥胖、脂肪肝、糖尿病和癌症的早期诊断和治疗提供理论依据。 2. 五年预期目标 (1) 建立对实验动物代谢相关的生理生化指标分析的技术平台~发现相关基因敲 除或转基因小鼠造成糖脂代谢紊乱的信号通路。 (2) 较系统地描述在逆境下机体和细胞调控糖脂代谢的分子网络以及调控过程 中关键蛋白质和蛋白质复合体的动态调控机制。 (3) 发现新的参与代谢调控的基因~为代谢性疾病和肿瘤的防治提供新的分子靶 标。 (4) 培养高质量博士研究生20-30名~培养3-5名享有国际知名度的专家和 5-8名 中青年学术带头人。

(5) 在国际重要刊物发表SCI论文15-25篇~其中争取在Cell、Nature、Science或其 子刊等影响因子10以上杂志发表研究论文5-10篇~申请发明专利3-5项。 三、研究方案 1. 总体研究方案 细胞能量代谢是细胞最基本、最重要的活动之一~与细胞的繁殖、分化、凋亡、运动、信号转导及多种重要疾病的发生密切相关~是生命科学的一个重要领域。细胞要通过能量感应系统随时监测其能量水平状态~在不同的物质和能量状态下要不断地通过细胞内的代谢调控途径来调节其代谢水平以达到一种稳态。同时~细胞在面对内外界一些不良因素时也会做出相应的代谢变化~这些应激反应对细胞正常的生长和功能是极其重要的。如果这些应激反应失调~就会使细胞代谢发生异变~导致如前所述的多种人类重大疾病的发生。本项目的总体研究方案拟利用我们在蛋白质科学、细胞代谢、细胞信号转导等研究领域的研究优势和技术手段~结合细胞生物学、动物生理学等学科的研究方法~集中力量多层次、多角度地研究与细胞代谢调控相关的信号通路网络~分离和鉴定参与细胞代谢调控的新的基因和信号通路~探讨各个信号通路之间的动态调控机制~并研究细胞异常代谢的信号通路~揭示代谢异常与糖尿病、肿瘤等重大疾病的关系。项目总体研究方案如下图1: 内外环境因素(缺氧、营养缺乏或过剩、癌基因突变等)内外环境因素(缺氧、营养缺乏或过剩、癌基因突变等)

脂肪代谢总结

脂类代谢 一、脂肪=甘油+脂肪酸 二、脂肪的降解 脂肪脂肪酶 甘 油 激 酶 α- (一)脂肪酸的氧化分解 包括:α、β(重点)、ω氧化 1、脂肪酸的活化以及转运 细胞定位:活化:——细胞质 转运:——从细胞质→线粒体内膜→线粒体基质 (1)活化 脂肪酸脂酰-CoA合成酶脂酰-CoA (2)转运 【注意】:肉碱脂酰基转移酶Ⅰ是β氧化的限速酶 2、脂肪酸的β氧化 细胞定位:线粒体基质 (1)饱和、偶数碳脂肪酸的β氧化 脂酰-CoA 脂酰-CoA脱氢酶烯脂酰-CoA 烯脂酰-CoA水合酶L-?-羟脂酰CoA H+ 脂酰-CoA(-2C) ?-酮脂酰-CoA 乙酰-CoA (2)不饱和脂肪酸的氧化 1.1单不饱和脂肪酸的氧化 特殊的酶:烯酰-CoA顺反异构酶(只有当底物是反式的时候β氧化第二步的水合酶才能够识

别) 1.2多不饱和脂肪酸的氧化 特殊的酶:烯酰-CoA顺反异构酶 二烯酰-CoA还原酶(减少一个双键,并且消耗2.5ATP) 烯酰-CoA异构酶(移动双键位置) (3)奇数碳脂肪酸的氧化 最后生成的丙酰-CoA可转化为琥珀酰-CoA 3、脂肪酸的α-氧化作用 概念:脂肪酸在一些酶的催化下,其α–碳原子也可发生氧化,结果生成一分子二氧化碳和比原来少一个碳原子的脂肪酸,这种氧化作用称为脂肪酸的α-氧化作用。 底物:奇数碳脂肪酸、支链脂肪酸、或过长的C22、C24 等长链脂肪酸 4、脂肪酸的ω氧化途径 概念:在酶的催化下,脂肪酸的烷基端碳,即远离羧基的末断碳原子(ω–碳原子)发生氧化,生成α、ω-二羧酸。脂肪酸的这种氧化作用称ω–氧化作用。 底物:动物体内10或12碳脂肪酸 (二)乙醛酸循环 生物学意义:是连接糖脂代谢的枢纽 关键酶:异柠檬酸裂解酶、苹果酸合酶 (三)酮体的生成与利用 丙酮 酮体乙酰乙酸 β-羟基丁酸 (四)磷脂代谢 磷脂=溶血磷脂+脂肪酸 参与甘油磷脂代谢的酶有四种:磷脂酶A、B、C、D

相关主题
文本预览
相关文档 最新文档