当前位置:文档之家› 薄膜物理与技术-考试重点

薄膜物理与技术-考试重点

薄膜物理与技术-考试重点
薄膜物理与技术-考试重点

薄膜物理与技术-考试重点

1.真空环境的划分:①低真空(> 102Pa);②中真空(102—10-1Pa);③高真空(10-1—10-5Pa);④超高真空(< 10-5Pa)

真空蒸发沉积:高真空和超高真空(<10-3 Pa)溅射沉积:中、高真空(10-2—10Pa)

低压化学气相沉积:中、低真空(10—100Pa)电子显微分析:高真空

材料表面分析:超高真空

2.为了获得高真空蒸发系统,通常采用旋片式机械泵和涡轮分子泵两级真空泵联用,其中与真空室直接相连的是涡轮分子泵。

真空泵的原理和适用范围:

①旋片式机械真空泵(输运式真空泵):依靠安置在偏心转子中的可以滑进滑出的旋片将气体隔离、压缩,然后排出泵体之外。

>10-1Pa

②涡轮分子泵(输运式真空泵):高速旋转的叶片将动量传给气体分子,并使其向特定方向运动。10-8—1Pa 溅射离子泵(捕获式真空泵):高压下电离的气体分子撞击Ti阴极,溅射出大量活性很高的Ti原子,以吸附或化学反应的形式捕获大

核心的数目。

化学气相淀积:利用气态先驱反应物,通过原子、分子间化学反应的途径生成固态薄膜。物理气相淀积:利用某种物理过程,实现物质原子从源物质到薄膜的可控转移的过程。

阴影效应:蒸发的物质被障碍物阻挡而不能沉积到衬底上。

溅射:离子轰击物质表面,并在碰撞过程中发生能量与动量的转移,将物质表面原子激发出来的过程。

溅射法:将被电场加速后具有一定动能的离子引向靶电极,与靶表面原子碰撞使之溅射出来,溅射原子能够沿一定方向射向衬底并沉积下来。

等离子体鞘层:等离子体相对器壁会呈正电性,在等离子体和壁之间的非电中性薄层称为鞘层。

弹性碰撞:参加碰撞的粒子的总动能和总动量保持不变,并且不存在粒子内能的变化。

溅射产额:被溅射出来的原子数与入射离子数之比。(衡量溅射过程效率的参数)

靶材的中毒:随着活性气体压力的增加,靶材

表面可能形成一层相应的化合物,导致溅射和薄膜沉积速率降低。

等离子体辅助化学气相沉积(PECVD):在低压化学气相沉积过程进行的同时,利用辉光放电等离子体对沉积过程施加影响。

3.对元素蒸发速率影响最大的因素是蒸发源所处的温度。当环境中元素分压小于平衡蒸气压时,就发生元素的净蒸发。

4.溅射法工作于气体的异常辉光放电阶段,这一放电阶段等离子存在的区域为面积较大、分布较均匀。溅射法使用最广泛的溅射气体为Ar。对于金属材料可采用直流或射频溅射法,对非金属材料可采用射频溅射法。在溅射系统中,可以在进样室通过反溅对衬底进行预处理,通常采用射频溅射,对置于阴极的衬底进行反溅。

电弧蒸发法工作于气体的弧光放电阶段

5.真空系统设计的一个基本原则:确保真空管

。利用理路的流导C大于真空泵的理论抽速S

p

论抽速为S

的真空泵通过流导为C的管路抽除

p

真空容器中的气体(C=2S

),则真空容器出口

p

处的实际抽速S 最大为 2/3 S p ,最小为0。 实际抽速最大值:C S C S p Q S p p +==

6. 制备完整单晶薄膜的沉积条件是较高的沉积温度和较低的气相过饱和度,其生长模式为层状生长模式。

外延生长(在完整的单晶衬底上延续生长单晶薄膜)条件:较高的衬底温度和较低的沉积速率。

7. 熔结过程中原子的扩散机制有两种,即体扩散机制和表面扩散机制。其中表面扩散机制对熔结过程的贡献更大一些。

8. 合金组元蒸发速率之比:A B B B B A A A A B M M 0p x 0p x M M )(γ)(γφφ==B A

B A p p

p A :合金中A 的平衡蒸气压; p A (0):纯组元A

的平衡蒸气压;x A :合金中A 的摩尔分数;γ

A

—A 的活度系数;M A :A 的相对原子质量。

注意A 和B 的位置

11. 点蒸发源衬底上沉积物的质量密度:2r M dA dM e

s

s π4θcos = 面蒸发源衬底上沉积物的质量密度:2

r M dA dM e

s s πφcos θcos =

薄膜物理复习题

薄膜物理复习题 电子科大版 编辑者——王岳【701舆狼共舞】 一、什么是真空?真空的区域划分,对应的真空范围,真空系统组成? 1、所谓真空是指低于一个大气压的气体空间。同正常的大气压相比,是比较稀薄的气体状态。 2、A、粗真空:1*105~1*102Pa B、低真空:1*102~1*10-1Pa C、高真空:1*10-1~1*10-6Pa D、超高真空:<1*10-6Pa 3、典型的真空系统包括:待抽空的容器(真空室)、获得真空的设备(真空泵)、测量真空的器具(真空计)以及必要的阀门、管道和其他附属设备。 二、什么是饱和蒸汽压?真空蒸度原理级包括的几个基本原理,蒸发源的类型? 1、在一定温度下,真空室内蒸发物质的蒸汽与固体或液体平衡过程中所表现出的压力成为该物质的饱和蒸汽压。 2、(1)加热蒸发过程:包括由凝聚相转变为气相的相变过程。 (2)气化原子或分子在蒸发源与基片之间的运输,即这些粒子在环境气氛中的飞行过程。 (3)蒸发原子或分子在基片表面上的沉积过程,即是蒸气凝聚、成核、核生长、形成连续薄膜。 3、电阻蒸发源:对材料要求熔点要高、饱和蒸汽压低、化学性能稳定;在高温下不应与蒸发材料发生化学反应;具有良好的耐热性,热源变化时,功率密度变化较小。 电子束蒸发源:优点:可以使高熔点的材料蒸发,并且能有较高的蒸发速度;热量可以直接加到蒸度材料的表面,因而热效率高,热传导和热辐射的损失少;可以避免容器材料的蒸发,以及容器材料与蒸度材料之间的反应。 高频感应蒸发源:特点:蒸发速率大;蒸发源的温度均匀稳定,不易产生飞溅现象;蒸发材料是金属时,蒸发材料可产生热量,因此,坩埚可选用和蒸发材料反应最小的材料;温度容易控制,操作简单。 三、什么是溅射、外延生长?磁控溅射原理? 1、所谓溅射是指核能粒子轰击固体表面,是固体原子或分子从表面射出的现象。 2、外延生长技术是指在一块半导体的单晶片上沿着单晶片结晶的轴方向生长一层所需要的薄单晶层。 3、电子e在电场E作用下,在飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子e,电子飞向基片,Ar+在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子则沉积在基片上形成薄膜。 四、离子镀原理,什么是离化率?与蒸发、溅射相比离子镀特点? 1、在离子镀装置中,当真空室抽至10-1 Pa的高真空后,通入惰性气体,使真空度达到1~10-1Pa。接通高压电源,则在蒸发源与基片之间建立起一个低压气体放电的等离子区。由于基片处于负高压并被离子体包围、不断受到正离子轰击,因此可有效的清除基片表面的气体和污物,使成膜过程中膜层表面始终保持清洁状态。于此同时,镀材气化蒸发后,蒸发粒子进入等离子区,与等离子区中的正离子和被激活的惰性气体原子以及电子发生碰撞,其中一部分蒸发粒子被电离成正离子,正离子在负高压电场加速作用下,沉积到基片表面成膜。

2003级《大学物理》(上)期末统考试题(A卷)

2003级《大学物理》(上)期末统考试题(A 卷) (2004年7月5日) 说明 1考试答案必须写在答卷纸上,否则无效; 一、 选择题(33分,每题3 分) 1.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而不相 (D) 和w 都不相等 [ ] 2.一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为 (A) –1200 J (B) –700 J (C) –400 J (D) 700 J . [ ] 3.气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变 为原来的2倍。问气体分子的平均速率变为原来的几倍? (A) 21/5 (B) 22/5 (C) 21/7 (D) 22/7 [ ] 4.正方形的四个顶点分别放置四个电荷,其电量如图所示,若Q 所受合力为零,则Q 与q 的大小关系为: (A) q Q 22-= (B) q Q 2-= (C) q Q -= (D) q Q 2-= [ ] 5.半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距 轴线的距离r 的 关系曲线为: [ ] 6.一电量为-q 的点电荷位于圆心O 处, A 、B 、C 、D 为同一圆周上的四点,如图所示。现将 一试验电荷从A 点分别移到B 、C 、D 各点,则 [ ] (A) 从A 到B ,电场力作功最大 (B) 从A 到C ,电场力作功最大 (C) 从A 到D ,电场力作功最大 (D) 从A 到各点,电场力作功相等 7.两个半径相同的金属球,一为空心,一为实心。把两者各自孤立时的电容值加以比较,则 (A) 空心球电容值大 (B) 实心球电容值大 E O r (A) E ∝1/r p (×105 Pa) -3 m 3)

薄膜物理与技术A卷答案

《薄膜物理与技术》A卷试题参考答案及评分细则 一、名词解释:(本题满分20分,每小题5分) 1、饱和蒸汽压 在一定温度下(1分),真空室内蒸发物质的蒸气与固体或液体平衡过程中(2分)所表现出的压力称为该物质的饱和蒸气压。(2分) 2、溅射 是指荷能粒子轰击固体物质表面(靶),(1分)并在碰撞过程中发生动能与动量的转移,(2分)从而将物质表面原子或分子激发出来的过程。(2分) 3、化学气相沉积 把含有构成薄膜元素的一种或几种化合物的单质气体供给基片(2分),利用热、等离子体、紫外线、激光、微波等各种能源(2分),使气态物质经化学反应形成固态薄膜。(1分)。 4、外延生长 外延生长技术就是在一块半导体单晶片上(2分)沿着单晶片的结晶轴方向生长(2分)一层所需要的薄单晶层。(1分) 二、简答题:(本题满分80分) 1、什么叫真空?写出真空区域的划分及对应的真空度(10分) 答:真空是指低于一个大气压的气体空间。(2分) 对真空的划分: 1)粗真空:105-102Pa;(2分) 2)低真空:102-10-1Pa;(2分) 3)高真空:10-1-10-6Pa;(2分) 4)超高真空:<10-6Pa。(2分) 2、什么是真空蒸发镀膜法?其基本过程有哪些?(10分) 答:真空蒸发镀膜法(简称真空蒸镀)是在真空室中,加热蒸发容器中待形成薄膜的原材料,使其原子或分子从表面气化逸出(2分),形成蒸气流,入射到基片表面,凝结形成固态薄膜的方法。(2分)其基本过程包括: (1)加热蒸发过程。包括凝聚相转变为气相的相变过程。(2分) (2)输运过程,气化原子或分子在蒸发源与基片之间的输运。(2分) (3)蒸发原子或分子在基片表面的淀积过程,即使蒸气凝聚、成核、核生长、形成连续薄膜。(2分) 3、简述磁控溅射的工作原理。(10分) 答:磁控溅射的工作原理是:电子e在电场E作用下,在飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子e,电子飞向基片,Ar+在电场作用下加速飞向阴极靶,(2分)并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子则淀积在基片上形成薄膜。(2分) 二次电子e1一旦离开靶面,就同时受到电场和磁场的作用。一般可近似认为:二次电子在阴极暗区时,只受电场作用;一旦进入负辉区就只受磁场作用。(2分)

半导体薄膜材料分析

半導體薄膜材料分析 李文鴻 化學工程系 黎明技術學院 摘要 使用電子迴旋共振電漿化學氣相沉積法(electron cyclotron resonance plasma chemical vapor deposition, ECRCVD)以CH4/SiH4/Ar混合氣體於低溫下成長碳化矽薄膜為例,藉由穿透式電子顯微鏡(TEM)、X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、傅立葉轉換紅外線光譜儀(FTIR)、X射線光電子能譜儀(XPS; ESCA)、歐傑電子能譜儀(AES)、拉塞福背向散射儀(RBS)、低能量電子繞射(LEED)、反射式高能量電子繞射(RHEED)、拉曼光譜儀(Raman)來研究碳化矽薄膜的微結構、表面型態及化學組成與沉積參數之間的關係,藉由二次離子質譜儀(SIMS)來研究沉積膜的雜質濃度分佈,利用光子激發光(PL)來量測發光波長範圍。 關鍵字:材料分析、電子迴旋共振電漿化學氣相沉積法、碳化矽薄膜 一、前言光電半導體產業的發展非常迅速,其中

積體電路製程技術的發展朝向尺寸微小化,目前已邁入0.13μm以下製程及邁向奈米的範疇,並朝多層薄膜的趨勢。然而新材料和製程的開發及其分析更是必須掌握的。本文將以跨世紀的接班材料-碳化矽(silicon carbide)為例,介紹材料之薄膜成長及其分析。 碳化矽為具有許多優異特性的電子材料,如寬能隙、高電子遷移率、高飽和飄移速度、高崩潰電壓、高操作溫度、高熱傳導度、化學惰性、高融點及高硬度【1】,並具耐熱震(thermal shock resistance)、抗高溫氧化、比矽低的介電常數等優點。由Johnson 之優值指標(評估元件在高功率及高頻下運作的指標)碳化矽(β-SiC)為矽之1137.8倍,及Keyes 之優值指標(評估元件在高速下運作的指標) 碳化矽(β-SiC)為矽之5.8倍【2】,故碳化矽元件能在高功率、高頻及高速下操作的特性,在光電元件的製造上,具極大之應用價值,且可用於微機電系統(microelectromechanical system;MEMS)元件之薄膜【3】、封裝材料及濾材之分離膜等【4】。在商業應用發展方面,Cree Research、日本三洋公司及信越半導體等的碳化矽藍光LED已商品化,Motorola將碳化矽應用於RF 及微波的高頻高功率元件,General Electric 應用於高功率及高溫元件之感測器,Westinghouse 應用於高頻MESFET元件等。可見碳化矽具多用途且具發展潛力,因此被諭為跨世紀的接班材料。 由於材料之製程會影響材料結構及性質進而影響其應用,因此本文將介紹碳化矽材

大学物理期末考试题(上册)10套附答案

n 3 上海电机学院 200_5_–200_6_学年第_二_学期 《大学物理 》课程期末考试试卷 1 开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟 考生姓名: 学号: 班级 任课教师 一、填充題(共30分,每空格2分) 1.一质点沿x 轴作直线运动,其运动方程为32 62x t t m ,则质点在运动开始后4s 内 位移的大小为___________,在该时间内所通过的路程为_____________。 2.如图所示,一根细绳的一端固定, 另一端系一小球,绳长0.9L m =,现将小球拉到水平位置OA 后自由释放,小球沿圆弧落至C 点时,30OC OA θ=与成,则 小球在C 点时的速率为____________, 切向加速度大小为__________, 法向加速度大小为____________。(210g m s =)。 3.一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为: 2155.010cos(5t )6x m 、211 3.010cos(5t )6 x m 。则其合振动的频率 为_____________,振幅为 ,初相为 。 4、如图所示,用白光垂直照射厚度400d nm 的薄膜,若薄膜的折射率为 2 1.40n , 且1 2n n n 3,则反射光中 nm , 波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。 5.频率为100Hz ,传播速度为s m 300的平面波,波 长为___________,波线上两点振动的相差为3π ,则此两点相距 ___m 。 6. 一束自然光从空气中入射到折射率为1.4的液体上,反射光是全偏振光,则此光束射角

薄膜物理与技术

第一章真空技术基础 1、膜的定义及分类。 答:当固体或液体的一维线性尺度远远小于它的其他二维尺度时,我们将这样的固体或液体称为膜。通常,膜可分为两类: (1)厚度大于1mm的膜,称为厚膜; (2)厚度小于1mm的膜,称为薄膜。 2、人类所接触的真空大体上可分为哪两种? 答:(1)宇宙空间所存在的真空,称之为“自然真空”;(2)人们用真空泵抽调容器中的气体所获得的真空,称之为“人为真空”。 3、何为真空、绝对真空及相对真空? 答:不论哪一种类型上的真空,只要在给定空间内,气体压强低于一个大气压的气体状态,均称之为真空。完全没有气体的空间状态称为绝对真空。目前,即使采用最先进的真空制备手段所能达到的最低压强下,每立方厘米体积中仍有几百个气体分子。因此,平时我们所说的真空均指相对真空状态。 4、毫米汞柱和托? 答:“毫米汞柱(mmHg)”是人类使用最早、最广泛的压强单位,它是通过直接度量长度来获得真空的大小。1958 年,为了纪念托里拆利,用“托(Torr)”,代替了毫米汞柱。1 托就是指在标准状态下,1 毫米汞柱对单位面积上的压力,表示为1Torr=1mmHg。 5、真空区域是如何划分的? 答:为了研究真空和实际使用方便,常常根据各压强范围内不同的物理特点,把真空划分为以下几个区域:(1)粗真空:l′105 ~ l′102 Pa,(2)低真空:l′102 ~ 1′10-1Pa,(3)高真空:l′10-1 ~ 1′10-6Pa和(4)超高真空:< 1′10-6Pa。 6、真空各区域的气体分子运动规律。 答:(1)粗真空下,气态空间近似为大气状态,分子仍以热运动为主,分子之间碰撞十分频繁;(2)低真空是气体分子的流动逐渐从黏滞流状态向分子状态过渡,气体分子间和分子和器壁间的碰撞次数差不多;(3)高真空时,气体分子的流动已为分子流,气体分子和容器壁之间的碰撞为主,而且碰撞次数大大减少,在高真空下蒸发的材料,其粒子将沿直线飞行;(4)在超高真空时,气体的分子数目更少,几乎不存在分子间的碰撞,分子和器壁的碰撞机会也更少了。 7、何为气体的吸附现象?可分几类、各有何特点? 答:气体吸附就是固体表面捕获气体分子的现象,吸附分为物理吸附和化学吸附。 (1)物理吸附没有选择性,任何气体在固体表面均可发生,主要靠分子间的相互吸引力引起的。物理吸附的气体容易发生脱附,而且这种吸附只在低温下有效;(2)化学吸附则发生在较高的温度下,和化学反应相似,气体不易脱附,但只有当气体中的原子和固体表面原子接触并形成化合键时才能产生吸附作用。 8、何为气体的脱附现象? 答:气体的脱附是气体吸附的逆过程。通常把吸附在固体表面的气体分子从固体表面被释放出来的过程叫做气体的脱附。 9、何为电吸收和化学清除现象? 答:电吸收是指气体分子经电离后形成正离子,正离子具有比中性气体分子更强的化学活泼性,因此常常和固体分子形成物理或化学吸附;化学清除现象常在活泼金属(如钡、铁等)固体材料的真空蒸发时出现,这些蒸发的固体材料将和非惰性气体分子生成化合物,从而产生化学吸附。 10、影响气体在固体表面吸附和脱附的主要因素

大学物理上册期末考试重点例题

大学物理上册期末考试 重点例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

第一章 质点运动学习题 1-4一质点在xOy 平面上运动,运动方程为 x =3t +5, y = 2 1t 2 +3t -4.(SI ) (式中t 以 s 计,x ,y 以m 计.) (1)以时间t 为变量,写出质点位置矢量的表示式; (2)求出t =1 s 时刻和t =2s 时刻的位置矢量,并计算这1秒内质点的位移; (3)计算t =0 s 时刻到t =4s 时刻内的平均速度; (4)求出质点速度矢量表示式,并计算t =4 s 时质点的速度; (5)计算t =0s 到t =4s 内质点的平均加速度; (6)求出质点加速度矢量的表示式,并计算t =4s 时质点的加速度。 (请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式). 解:(1)质点位置矢量 21 (35)(34)2r xi yj t i t t j =+=+++-m (2)将1=t ,2=t 代入上式即有 211 [(315)(1314)](80.5)2t s r i j m i j m ==?++?+?-=- 221 [(325)(2324)](114)2 t s r i j m i j ==?++?+?-=+m 21(114)(80.5)(3 4.5)t s t s r r r i j m i j m i j m ==?=-=+--=+ (3) ∵ 20241 [(305)(0304)](54)2 1 [(345)(4344)](1716)2 t s t s r i j m i j m r i j m i j m ===?++?+?-=-=?++?+?-=+ ∴ 1140(1716)(54)(35)m s 404 t s t s r r r i j i j v m s i j t --==-?+--= ==?=+??-

薄膜材料与技术

薄膜技术在能源材料中的应用——薄膜太 阳能电池 一概述 能源和环境是二十一世纪面临的两个重大问题,据专家估算,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。太阳能电池作为可再生无污染能源,能很好地同时解决能源和环境两大难题,具有很广阔的发展前景。照射到地球上的太阳能非常巨大,大约40 min照射到地球上的太阳能就足以满足全球人类一年的能量需求。因此,制备低成本高光电转换效率的太阳能电池不仅具有广阔的前景,而且也是时代所需。 太阳能电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳能电池种类繁多,主要有硅太阳能电池、聚光太阳能电池、无机化合物薄膜太阳能电池、有机薄膜太阳能电池、纳米晶薄膜太阳能电池和叠层太阳能电池等几大类[1]。 二薄膜太阳能电池。 1、薄膜硅太阳能电池 薄膜硅太阳能电池(硅膜厚约50μm)的出现,相对晶体硅太阳能电池,所用的硅材料大幅度减少,很大程度上降低了晶体硅太阳能电池的成本。薄膜硅太阳能电池主要有非晶硅(a—Si)、微晶硅(μc—Si)和多晶硅(p-Si)薄膜太阳能电池,前两者有光致衰退效应,其中μc—Si薄膜太阳能电池光致衰退效应相对较弱但μc-Si薄膜沉积速率低(仅1.2 nm/s) ,光致衰退效应致使其性能不稳定,发展受到一定的限制,而后者则无光致衰退效应问题,因此是硅系太阳能电池

的发展方向[1]。 太阳能电池是制约太阳能发电产业发展的瓶颈技术之一。目前主要的研究工作集中在新材料、新工艺、新设计等方面,其目的是为了提高电池转换效率和降低电池制造成本。制造太阳能电池的材料主要有单晶硅、多晶硅、非晶硅以及其他新型化合物半导体材料,其中非晶硅属直接转换型半导体,光吸收率大,易于制成厚度0.5微米以下、面积l平方米以上的薄膜,并且容易与其他 原子结合制成对近红外高吸收的非晶硅锗集层光电池,这是目前的主攻方向之一;另一种是非晶硅和多晶硅混合薄膜材料,它转换率高、用材省,是新世纪最有前途的薄膜电池之一。 2、无机化合物薄膜太阳能电池 选用的无机化合物主要有CdTe,CdS,GaAs,CulnSe2(CIS)等,其中CdTe的禁带宽度为1.45 eV(最佳产生光伏响应的禁带宽度为1.5 eV),是一个理想的半导体材料,截止2004年,CdTe电池光电转化效率最高为16.5%;CdS的禁带宽度约为2.42 eV,是一种良好的太阳能电池窗口层材料,可与CdTe、SnS和CIS等形成异质结太阳能电池;GaAs的禁带宽度为1.43 eV,光吸收系数很高,GaAs单结太阳电池的理论光电转化效率为27%,目前GaA/Ge单结太阳电池最高光电转换效率超过20%,生产水平的光电转换效率已经达到19~20%,其与GalnP组成的双节、三节和多节太阳能电池有很大的发展前景;CIS薄膜太阳能电池实验室最高光电转化效率已达19.5%,在聚光条件下(14个太阳光强),光电转化效率达到21.5%,组件产品的光电转化效率已经超过13%;CIS 薄膜用Ga部分取代In,就形成Culn1-x Ga x Se2 (简称CIGS)四元化合物,其薄膜的禁带宽度在1.04~1.7 eV范围内可调,这为太阳能电池最佳禁带宽度的优化提供了机会,同时开发了两种新的材料,用Ga完全取代In形成CuGaSe2,用S完全取代Se形成CulnS2,以备In、Se资源不足时可以采用。但是,Cd和As是有毒元素,In和Se是稀有元素,严重地制约着无机化合物薄膜太阳能电池的大规模生

薄膜物理与技术复习资料

第一章 最可几速率:根据麦克斯韦速率分布规律,可以从理论上推得分子速率在m v 处有极大值,m v 称为最可几速率 M RT M RT m kT 41.122==,Vm 速度分布 平均速度: M RT m RT m kT 59.188==ππ,分子运动平均距离 均方根速度:M RT M RT m kT 73.133==平均动能 真空的划分:粗真空、低真空、高真空、超高真空。 真空计:利用低压强气体的热传导和压强有关; (热偶真空计) 利用气体分子电离;(电离真空计) 真空泵:机械泵、扩散泵、分子泵、罗茨泵 机械泵:利用机械力压缩和排除气体 扩散泵:利用被抽气体向蒸气流扩散的想象来实现排气作用 分子泵:前级泵利用动量传输把排气口的气体分子带走获得真空。 平均自由程:每个分子在连续两次碰撞之间的路程称为自由程;其统计平均值成为平均自由程。 常用压强单位的换算 1Torr=133.322 Pa 1 Pa=7.5×10-3 Torr 1 mba=100Pa 1atm=1.013*100000Pa 真空区域的划分、真空计、各种真空泵 粗真空 1×105 to 1×102 Pa 低真空 1×102 to 1×10-1 Pa 高真空 1×10-1 to 1×10-6 Pa 超高真空 <1×10-6 Pa 旋转式机械真空泵 油扩散泵 复合分子泵 属于气体传输泵,即通过气体吸入并排出真空泵从而达到排气的目的 分子筛吸附泵 钛升华泵 溅射离子泵 低温泵 属于气体捕获泵,即通过各种吸气材料特有的吸气作用将被抽气体吸除,以达到所需真空。 不需要油作为介质,又称为无油泵 绝对真空计: U 型压力计、压缩式真空计 相对真空计:

薄膜物理与技术课程教学大纲

薄膜物理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:薄膜物理与技术 所属专业:电子器件与材料工程 课程性质:必修课 学分:3 (二)课程简介、目标与任务; 本课程讲授薄膜的形成机制和原理、薄膜结构和缺陷、薄膜各项物理性能和分析方法等物理内容;讲授薄膜各种制备技术。通过本课程学习,使学生具备从事电子薄膜、光学薄膜、以及各种功能薄膜研究与开发的能力 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 《量子力学》、《热力学与统计物理》、《固体物理》、《电子技术》、《电路分析》等。 (四)教材与主要参考书。 教材:杨邦朝,王文生. 《薄膜物理与技术》,成都:电子科技大学出版社,1994 主要参考书:1.陈国平.《薄膜物理与技术》,东南大学出版社,1993 2.田民波,薄膜技术与薄膜材料,清华大学出版社,2006-8 二、课程内容与安排 本课程全部为课堂讲授。重点:真空的获得和真空测量的工作原理;物理气相沉积和化学气相沉积的原理及方法;薄膜生长的机理。 难点:磁控溅射的机理及控制;MOCVD技术;薄膜形成过程的机理 (一)绪论2学时 1、薄膜的概念和历史 2、薄膜材料与薄膜技术的发展 3、薄膜科学是边缘交叉学科 4、薄膜产业是腾飞的高科技产业

(二)真空技术基础2学时 1、真空的基本知识 2、真空的获得 3、真空的测量 (三)真空蒸发镀膜4学时 1、真空蒸发原理 2、蒸发源的蒸发特性及膜厚分布 3、蒸发源的类型 4、合金及化合物的蒸发 5、膜厚和淀积速率的测量与控制 (四)溅射镀膜4学时 1、溅射镀膜的特点 2、溅射的基本原理 3、溅射镀膜类型 4、溅射镀膜的厚度均匀性 (五)离子镀膜2学时 1、离子镀原理 2、离子镀的特点 3、离子轰击的作用 4、离子镀的类型 (六)化学气相沉积镀膜4学时 1、化学气相沉积的基本原理 2、化学气相沉积的特点 3、化学气相沉积方法简介 4、低压化学气相沉积 5、等离子体化学气相沉积 6、其他化学气相沉积 (七)溶液镀膜法2学时 1、化学反应沉积 2、阳极氧化法

薄膜物理与技术

薄膜物理与技术 第一章 1、真空:低于一个大气压的气体空间。P1 2、真空度与压强的关系:真空度越低,压强越高。P1 3、1Torr = 1/760 atm =133.322Pa.(或1Pa=7.5×10-3Torr)P2 4、平均自由程:每个分子在连续两次碰撞之间的路程。P5 5、余弦定律:碰撞于固体表面的分子,它们飞离表面的方向与原入射方向无关,并按与表 面法线方向所成角度θ的余弦进行分布。P7 6、极限压强(或极限真空):对于任何一个真空系统而言,都不可能得到绝对真空(p=0), 而是具有一定的压强。P7 7、抽气速率:在规定压强下单位时间所抽出气体的体积,它决定抽真空所需要的时间。P7 8、机械泵的原理:利用机械力压缩和排除气体。P8 9、分子泵的工作原理:靠高速转动的转子碰撞气体分子并把它驱向排气口,由前级泵抽走, 而使被抽容器获得超高真空。P13 第二章 1、真空蒸发镀膜的三个基本过程:P17 (1)加热蒸发过程:…… (2)气化原子或分子在蒸发源与基片之间的输运:…… (3)蒸发原子或分子在基片表面上的淀积过程:…… 2、为什么真空蒸发镀膜的三个过程必须在空气非常稀薄的真空环境中进行?P18 答:如果不是真空环境,蒸发物原子或分子将与大量空气分子碰撞,使膜层受到严重污染,甚至形成氧化物;或者蒸发源被加热氧化烧毁;或者由于空气分子的碰撞阻挡,难以形成均匀连续的薄膜。 3、饱和蒸气压:在一定温度下,真空室内蒸发物质的蒸气与固体或液体平衡过程中所表现 出的压力。P18 4、蒸发温度:物质在饱和蒸气压为10-2托时的温度。P18 5、碰撞几率:。P23 6、点蒸发源:能够从各个方向蒸发等量材料的微小球状蒸发源。P25-27 计算:公式2-28、2-33 7、蒸发源与基板的相对位置配置P33 (1)点源与基板相对位置的配置:为了获得均匀膜厚,点源必须配置在基板所围成的球体中心。 (2)小平面源与基板相对位置的配置:当小平面源为球形工作架的一部分时,该小平面蒸发源蒸发时,在内球体表面上的膜厚分布是均匀的。 (3)大、小面积基板和蒸发源的配置。 8、对蒸发源材料的要求:①熔点要高;②饱和蒸气压低;③化学性能稳定,在高温下不应 与蒸发材料发生化学反应;④具有良好的耐热性,热源变化时,功率密度变化较小;⑤原料丰富,经济耐用。P35、37 9、表2-5 适合于各种元素的蒸发源(蒸发源材料)。P36 10、外延:在适当的衬底与合适条件下,沿衬底材料晶轴方向生长一层结晶结构完整的新单 晶层薄膜的方法。P46 11、同质外延:外延薄膜和衬底属于同一物质;异质外延:外延薄膜和衬底属于不同物质。

薄膜材料与薄膜技术复习资料

1.为了研究真空和实际使用方便,根据各压强范围内不同的物理特点,把真空划分为 粗真空,低真空,高真空,超高真空四个区域。 2.在高真空真空条件下,分子的平均自由程可以与容器尺寸相比拟。 3.列举三种气体传输泵旋转式机械真空泵,油扩散泵和复合分子泵。 4.真空计种类很多,通常按测量原理可分为绝对真空计和相对真空计。 5.气体的吸附现象可分为物理吸附和化学吸附。 6.化学气相反应沉积的反应器的设计类型可分为常压式,低压式,热壁 式和冷壁式。 7.电镀方法只适用于在导电的基片上沉积金属和合金,薄膜材料在电解液中是以 正离子的形式存在。制备有序单分子膜的方法是LB技术。 8.不加任何电场,直接通过化学反应而实现薄膜沉积的方法叫化学镀。 9.物理气相沉积过程的三个阶段:从材料源中发射出粒子,粒子运输到基片和粒子 在基片上凝聚、成核、长大、成膜。 10.溅射过程中所选择的工作区域是异常辉光放电,基板常处于负辉光区,阴极 和基板之间的距离至少应是克鲁克斯暗区宽度的3-4倍。 11.磁控溅射具有两大特点是可以在较低压强下得到较高的沉积率和可以在较低 基片温度下获得高质量薄膜。 12.在离子镀成膜过程中,同时存在吸附和脱附作用,只有当前者超 过后者时,才能发生薄膜的沉积。 13.薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与 结合生长过程。 14.原子聚集理论中最小稳定核的结合能是以原子对结合能为最小单位不连续变化 的。 15.薄膜成核生长阶段的高聚集来源于:高的沉积温度、气相原子的高的动能、 气相入射的角度增加。这些结论假设凝聚系数为常数,基片具有原子级别的平滑度。 16.薄膜生长的三种模式有岛状、层状、层状-岛状。 17.在薄膜中存在的四种典型的缺陷为:点缺陷、位错、晶界和 层错。 18.列举四种薄膜组分分析的方法:X射线衍射法、电子衍射法、扫描电子 显微镜分析法和俄歇电子能谱法。 19.红外吸收是由引起偶极矩变化的分子振动产生的,而拉曼散射则是由引起极化率 变化的分子振动产生的。由于作用的方式不同,对于具有对称中心的分子振动,红外吸收不敏感,拉曼散射敏感;相反,对于具有反对称中心的分子振动,红外吸收敏感而拉曼散射不敏感。对于对称性高的分子振动,拉曼散射敏感。 20.拉曼光谱和红外吸收光谱是测量薄膜样品中分子振动的振动谱,前者 是散射光谱,而后者是吸收光谱。 21.表征溅射特性的主要参数有溅射阈值、溅射产额、溅射粒子的速度和能 量等。 什么叫真空?写出真空区域的划分及对应的真空度。 真空,一种不存在任何物质的空间状态,是一种物理现象。粗真空 105~102Pa 粘滞流,分子间碰撞为主低真空 102~10-1 Pa 过渡流高真空 102~10-1 Pa分子流,气体分子与器壁碰撞为主超高真空 10-5~10-8 Pa气体在固体表面吸附滞留为主极高真空 10-8 Pa 以下

薄膜物理与技术题库完整

一、填空题 在离子镀膜成膜过程中,同时存在沉积和溅射作用,只有当前者超过后者时,才能发生薄膜的沉积 薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与结合生长过程 薄膜形成与生长的三种模式:层状生长,岛状生长,层状-岛状生长 在气体成分和电极材料一定条件下,起辉电压V只与气体的压强P和电极距离的乘积有关。 1.表征溅射特性的参量主要有溅射率、溅射阈、溅射粒子的速度和能量等。 2. 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在 1~100nm 之间。 3.薄膜的组织结构是指它的结晶形态,其结构分为四种类型:无定形结构,多晶结构,纤维结构,单晶结构。 4.气体分子的速度具有很大的分布空间。温度越高、气体分子的相对原子质量越小,分子的平均运动速度越快。 二、解释下列概念 溅射:溅射是指荷能粒子轰击固体表面 (靶),使固体原子(或分子)从表面射出的现象 气体分子的平均自由程:每个分子在连续两次碰撞之间的路程称为自由程,其统计平均值: 称为平均自由程, 饱和蒸气压:在一定温度下,真空室蒸发物质与固体或液体平衡过程中所表现出的压力。 凝结系数:当蒸发的气相原子入射到基体表面上,除了被弹性反射和吸附后再蒸发的原子之外,完全被基体表面所凝结的气相原子数与入射到基体表面上总气相原子数之比。 物理气相沉积法:物理气相沉积法 (Physical vapor deposition)是利用某种物理过程,如物质的蒸发或在受到粒子轰击时物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移的过程 真空蒸发镀膜法:是在真空室,加热蒸发容器中待形成薄膜的源材料,使其原子或分子从表面汽化逸出,形成蒸气流,入射到固体(称为衬底、基片或基板)表面,凝结形成固态 溅射镀膜法:利用带有电荷的离子在电场加速后具有一定动能的特点,将离子引向欲被溅射的物质作成的靶电极。在离子能量合适的情况下,入射离子在与靶表面原子的碰撞过程中将靶原子溅射出来,这些被溅射出来的原子带有一定的动能,并且会沿着一定的方向射向衬底,从而实现薄膜的沉积。 离化率:离化率是指被电离的原子数占全部蒸发原子数的百分比例。是衡量离子镀特性的一个重要指标。 化学气相沉积:是利用气态的先驱反应物,通过原子、分子间化学反应的途径生成固态薄膜的技术。 物理气相沉积:是利用某种物理过程,如物质的蒸发或在受到离子轰击时物质表面原子溅射的现象,实现物质原子从源物质到薄膜的可控转移过程。 溅射阈值:溅射阈值是指使靶材原子发生溅射的入射离子所必须具有的最小能量。

大学普通物理((下册))期末考试题

大学物理学下册考试题 1 两根长度相同的细导线分别密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,2R r =,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小R B 、 r B ,满足 ( ) (A )2R r B B = (B )R r B B = (C )2R r B B = (D )4R r B B = 选择(c ) N N r N R N 222='?'=ππ 2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为 ( ) (A )2 2r B π (B )2 r B π (C )2 2cos r B πα (D )—2 cos r B πα 选择(D ) 3在图(a )和(b )中各有一半经相同的圆形回路1L 、2L ,圆周有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,1P 、2P 为两圆形回路上的对应点,则 ( ) (A )1 21 2,P P L L B dl B dl B B ?=?=?? (B )1 21 2 ,P P L L B dl B dl B B ?≠ ?=?? (C ) 1 21 2 ,P P L L B dl B dl B B ?=?≠?? (D )1 21 2 ,P P L L B dl B dl B B ?≠ ?≠?? 选择(c ) 习题11图 习题13图 1L 1P L 2P 3 (a) (b)

4 在磁感应强度为B的均匀磁场中,有一圆形载流导线, a、b、c、是其上三个长度相等的电流元,则它们所受安培 力大小的关系为: 选择(c) 二,填空题 1、如图5所示,几种载流导线在平面分布,电流均为I,他们在o点的磁感应强度分别为(a)(b)(c) 图5 (a)0() 8 I R μ 向外(b)0() 2 I R μ π 1 (1-)向里(c)0() 42 I R μ π 1 (1+)向外 2 已知一均匀磁场的磁感应强度B=2特斯拉,方向沿X轴正方向,如图所示,c点为原点,则通过bcfe面的磁通量0 ;通过adfe面的磁通量2x0.10x0.40=0.08Wb ,通过abcd面的磁通量0.08Wb 。 ? I R O (a) O R I (b) O O (C) R I

青岛科技大学大学物理期末试题及答案

2010-2011 2 大学物理B 上(Ⅰ卷) 数理学院 48学时 各专业 (答案写在答题纸上,写在试题纸上无效) 一、选择题(每小题3分,共36分) 1. 质量为m =0.5 kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI ), 从t =2 s 到t =4 s 这段时间内,外力对质点作的功为:[ ] (A) 1.5 J . (B) 3 J . (C) 4.5 J . (D) -1.5 J . 2. 两辆小车A 、B ,可在光滑平直轨道上运动.第一次实验,B 静止,A 以0.5 m/s 的速率向右与B 碰撞,其结果A 以 0.1 m/s 的速率弹回,B 以0.4 m/s 的速率向右运动;第二次实验,B 仍静止,A 装上1 kg 的物体后仍以 0.5 m/s 1 的速率与B 碰撞, 结果A 静止,B 以0.5 m/s 的速率向右运动,如图.则A 和B 的质量分别为:[ ] (A) m A =2 kg , m B =3 kg (B) m A =3 kg , m B =2 kg (C) m A =3 kg , m B =5 kg (D) m A =5 kg, m B =3 kg 3. 设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在一次卡诺循环中, 传给低温热源的热量是从高温热源吸取热量的:[ ] (A) n 倍. (B) n -1倍. (C) n 1倍. (D) n n 1 +倍. 4. 如图所示,一水平刚性轻杆,质量不计,杆长l =30 cm ,其上 穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =10cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速度的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为:[ ] (A) 094ω (B) 049ω (C) 1 3 ω 0 (D)03ω 课程考试试题 学期 学年 拟题学院(系): 适 用 专 业: 1 kg v =0.5 m/s

大学物理期末考试题(上册)10套附答案

n 3 电机学院 200_5_–200_6_学年第_二_学期 《大学物理 》课程期末考试试卷 1 2006.7 开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟 考生: 学号: 班级 任课教师 一、填充題(共30分,每空格2分) 1.一质点沿x 轴作直线运动,其运动方程为()3262x t t m =-,则质点在运动开始后4s 位移的大小为___________,在该时间所通过的路程为_____________。 2.如图所示,一根细绳的一端固定, 另一端系一小球,绳长0.9L m =,现将小球拉到水平位置OA 后自由释放,小球沿圆弧落至C 点时,30OC OA θ=o 与成,则 小球在C 点时的速率为____________, 切向加速度大小为__________, 法向加速度大小为____________。(210g m s =)。 3.一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为: 215 5.010cos(5t )6x p p -=?m 、211 3.010cos(5t )6 x p p -=?m 。则其合振动的频率 为_____________,振幅为 ,初相为 。 4、如图所示,用白光垂直照射厚度400d nm =的薄膜,为 2 1.40n =, 且12n n n >>3,则反射光中 nm ,

波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。 5.频率为100Hz ,传播速度为s m 300的平面波,波 长为___________,波线上两点振动的相差为3 π ,则此两点相距 ___m 。 6. 一束自然光从空气中入射到折射率为1.4的液体上,反射光是全偏振光,则此光束射角等于______________,折射角等于______________。 二、选择題(共18分,每小题3分) 1.一质点运动时,0=n a ,t a c =(c 是不为零的常量),此质点作( )。 (A )匀速直线运动;(B )匀速曲线运动; (C ) 匀变速直线运动; (D )不能确定 2.质量为1m kg =的质点,在平面运动、其运动方程为x=3t ,315t y -=(SI 制),则在t=2s 时,所受合外力为( ) (A) 7j ? ; (B) j ?12- ; (C) j ?6- ; (D) j i ? ?+6 3.弹簧振子做简谐振动,当其偏离平衡位置的位移大小为振幅的4 1 时,其动能为振动 总能量的?( ) (A ) 916 (B )1116 (C )1316 (D )1516 4. 在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍 射角为300的方向上,若单逢处波面可分成3个半波带,则缝宽度a 等于( ) (A.) λ (B) 1.5λ (C) 2λ (D) 3λ 5. 一质量为M 的平板车以速率v 在水平方向滑行,质量为m 的物体从h 高处直落到车子里,两者合在一起后的运动速率是( ) (A.) M M m v + (B). (C). (D).v

薄膜材料技术复习题090526

1.薄膜定义:按照一定需要,利用特殊的制备技术,在基体表面形成厚度为亚微米至微米级的膜层。这种二维伸展的薄膜具有特殊的成分、结构和尺寸效应而使其获得三维材料所没有的特性,同时又很节约材料,所以非常重要。通常是把膜层无基片而能独立成形的厚度作为薄膜厚度的一个大致的标准,规定其厚度约在1μm左右。 2.一些表面定义: 1)理想表面:沿着三维晶体相互平行的两个面切开,得到的表面,除了原子 平移对称性破坏,与体内相同。 2)清洁表面:没有外界杂质。 3)弛豫表面:表面原子因受力不均向内收缩或向外膨胀。 4)重构表面:表面原子在与表面平行的方向上的周期也发生变化,不同于晶 体内部原子排列的二维对称性(再构)。 5)实际表面:存在外来原子或分子。 3. 薄膜的形成的物理过程 驰豫 重构驰豫+重构? ? ? ? ? 驰豫:表面向下收缩,表面层原子与内层原子 结构缺陷间距比内层原子相互之间有所减小。 重构:在平行表面方向上原子重排。

①小岛阶段——成核和核长大,透射电镜观察到大小一致(2-3nm)的核突然出现.平行基片平面的两维大于垂直方向的第三维。说明:核生长以吸附单体在基片表面的扩散,不是由于气相原子的直接接触。 ②结合阶段——两个圆形核结合时间小于0.1s,并且结合后增大了高度,减少了在基片所占的总面积。而新出现的基片面积上会发生二次成核,复结合后的复合岛若有足够时间,可形成晶体形状,多为六角形。核结合时的传质机理是体扩散和表面扩散(以表面扩散为主)以便表面能降低。 ③沟道阶段——圆形的岛在进一步结合处,才继续发生大的变形→岛被拉长,从而连接成网状结构的薄膜,在这种结构中遍布不规则的窄长沟道,其宽度约为5-20nm ,沟道内发生三次成核,其结合效应是消除表面曲率区,以使生成的总表面能为最小。 ④连续薄膜——小岛结合,岛的取向会发生显著的变化,并有些再结晶的现象。沟道内二次或三次成核并结合,以及网状结构生长→连续薄膜。 4. 薄膜的附着类型及影响薄膜附着力的工艺因素 ???????????????????????(在新面积处)稳定核(在捕获区)单体的吸附形成小原子团临界核临界核(在非捕获区)大岛大岛连合沟道薄膜小岛 二次成核二、三次成核二、三次成核 连续薄膜(在沟道和孔洞处)三次成核

大学物理上册期末考试题库

质 点 运 动 学 选择题 [ ]1、某质点作直线运动的运动学方程为x =6+3t -5t 3 (SI),则点作 A 、匀加速直线运动,加速度沿x 轴正方向. B 、匀加速直线运动,加速度沿x 轴负方向. C 、变加速直线运动,加速度沿x 轴正方向. D 、变加速直线运动,加速度沿x 轴负方向. [ ]2、某物体的运动规律为2v dv k t dt =-,式中的k 为大于零的常量.当0=t 时,初速v 0,则速度v 与时间t 的函数关系是 A 、0221v kt v += B 、022 1v kt v +-= C 、02211v kt v +=, D 、02211v kt v +-= [ ]3、质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻 质点的速率) A 、dt dv B 、R v 2 C 、R v dt dv 2+ D 、 242)(R v dt dv + [ ]4、关于曲线运动叙述错误的是 A 、有圆周运动的加速度都指向圆心 B 、圆周运动的速率和角速度之间的关系是ωr v = C 、质点作曲线运动时,某点的速度方向就是沿该点曲线的切线方向 D 、速度的方向一定与运动轨迹相切 [ ]5、以r 表示质点的位失, ?S 表示在?t 的时间内所通过的路程,质点在?t 时间内平均速度的大小为 A 、t S ??; B 、t r ?? C 、t r ?? ; D 、t r ?? 填空题 6、已知质点的运动方程为26(34)r t i t j =++ (SI),则该质点的轨道方程 为 ;s t 4=时速度的大小 ;方向 。 7、在xy 平面内有一运动质点,其运动学方程为:j t i t r 5sin 105cos 10+=(SI ), 则t 时刻其速度=v ;其切向加速度的大小t a ;该质 点运动的轨迹是 。 8、在x 轴上作变加速直线运动的质点,已知其初速度为v 0,初始位置为x 0加速度为a=C t 2 (其中C 为常量),则其速度与时间的关系v= , 运动

相关主题
文本预览
相关文档 最新文档