当前位置:文档之家› CHIP SEQ技术在转录因子结合位点分析的应用

CHIP SEQ技术在转录因子结合位点分析的应用

CHIP SEQ技术在转录因子结合位点分析的应用
CHIP SEQ技术在转录因子结合位点分析的应用

ChIP-Seq技术在转录因子结合位点分析的应用

摘要:染色质免疫沉淀(Chromatin immunoprecipitaion,ChIP)技术是用来研究细胞

内特定基因组区域特定位点与结合蛋白相互作用的技术。将ChIP与第二代高通量测序技术相结合的染色质免疫沉淀测序(chromatin immunoprecipitation followed by sequencing,ChIP-Seq)技术能在短时间内获得大量研究数据,高效地在全基因组范围内检测与组蛋白、转录因子等相互作用的DNA区段,在细胞的基因表达调控网络研究中发挥重要作用。本文

简要介绍了ChIP-Seq技术的基本原理、实验设计和后续数据分析,以及ChIP-Seq技术在

研究转录因子结合位点中的。

关键词:ChIP-Seq;转录因子;

引言

染色质是真核生物基因组DNA主要存在形式,为了阐明真核生物基因表达调控机制,对于蛋白质与DNA在染色质环境下的相互作用的研究是基本途径。转录因子是参与基因表达调控的一类重要的细胞核蛋白质,基因的转录调控是生物基因表达调控层次中最关键的一层,转录因子通过特异性结合调控区域的DNA序列来调控基因转录过程。转录因子由基础转录因子和调控性转录因子两类组成,其中基础转录因子在转录起始位点附近的启动子区,与RNA聚合酶相互作用实现基因的转录;而调控性转录因子一般与位置多样的增强子序列结合,再通过形成增强体在组织发育、细胞分化等基因表达水平调控中发挥极其重要的作用[1]。

ChIP-Seq是近年来新兴的将ChIP与新一代测序技术相结合,在全基因s组范围内分析转录因子结合位点(transcription factor binding sites,TFBS)、组蛋白修饰(histone modification)、核小体定位(nucleosome positioning)和DNA甲基化(DNA methylation)的高通量方法[2-4]。其中ChIP是全基因组范围内识别DNA与蛋白质体内相互作用的标准方法[5],最初用于组蛋白修饰研究[6],后来用于转录因子[7]。同时,新一代测序技术的迅猛发展也将基因组学水平的研究带入了一个新的阶段,使得许多基于全基因组的研究成为可能。相对于传统的基于芯片的ChIP-chip(chromatin immunoprecipitation combined with DNA tiling arrays),ChIP-seq提供了一种高分辨率、低噪音、高覆盖率的研究蛋白质-DNA相互作用的手段[8],可以应用到任何基因组序列已知的物种,可以研究任何一种DNA 相关蛋白与其靶定DNA之间的相互作用,并能确切得到每一个片段的序列信息.随着测序成本的降低,ChIP-seq逐步成为研究基因调控和表观遗传机制的一种常用手段。此外,为了达到更好的检测效果和更为完整的信息,近年来,将ChIP-Seq和ChIP-chip两者融合的研究具有很好的应用前景[9,10]。

转录因子在器官发生过程中起至关重要的作用,在全基因组水平将转录因子定位于靶基因DNA是认识转录调控网络的有效方法之一,了解基因转录调控的关键是识别蛋白质与DNA的相互作用。ChIP-Seq技术能够揭示转录因子的结合位点和确定直接的靶基因序列,可在体内分析特定启动子的分子调控机制,因此被广泛应用于转录调控机制的研究。本文主要就这一技术在转录因子结合位点研究中的基本原理、实验设计和数据分析等技术层面、以及实际应用层面进行讨论。

1ChIP-seq基本原理及实验设计

1.1ChIP技术

蛋白质与DNA相互识别是基因转录调控的关键,也是启动基因转录的前提。ChIP是在全基因组范围内检测DNA与蛋白质体内相互作用的标准方法[11],该技术由Orlando等[12]于1997年创立,最初用于组蛋白修饰的研究,后来广泛应用到转录因子作用位点的研究中[13]。ChIP的基本原理为:活细胞采用甲醛交联后裂解,染色体分离成为一定大小的片段,然后用特异性抗体免疫沉淀目标蛋白与DNA交联的复合物,对特定靶蛋白与DNA片段进行富集

[8]。采用低pH值反交联,DNA与蛋白质之间的Schiff键(-C=N-)水解,释放DNA片段。通过对目标片段的纯化与检测,获得DNA与蛋白质相互作用的序列信息。

N-ChIP[14]和X-ChIP[15]是最常见的2种ChIP实验技术,前者用来研究DNA与高结合力蛋白的相互作用,采用核酸酶消化染色质,适用于组蛋白及其异构体的研究;X-ChIP主要用来研究DNA与低结合力蛋白的相互作用,采用甲醛或紫外线进行DNA和蛋白交联,然后,采用超声波将染色质断裂为小片段,适用于多数非组蛋白的蛋白质类的研究。由于生物芯片具有快速、高效、高并行性、高通量、微型化和自动化等特点,高密度生物芯片与ChIP 的结合极大地方便了DNA与蛋白质相互作用的研究。

1.2ChIP-Seq技术

ChIP-Seq是将ChIP与新一代测序技术相结合,能够高通量地得到每一个片段精确的序列信息,其实验原理是:在生理状态下,把细胞内的DNA与蛋白质交联后裂解细胞,分离染色体,通过超声或酶处理将染色质随机切割,利用抗原抗体的特异性识别反应,将与目的蛋白质相结合的DNA片段和目的蛋白质沉淀下来,再通过反交联(Reverse Crosslink)释放结合蛋白的DNA片段。此步骤获得全基因组范围内与组蛋白或转录因子等DNA结合蛋白相互作用的DNA区段信息,这些DNA区段信息的长度大约为200bp.用新一代的测序技术测序获得36~100bp的DNA片段的序列,最后这些DNA片段将会被比对到对应的参考基因组上(图1)[16]。

图1ChIP-Seq实验原理图

同ChIP-Seq技术与ChIP-chip比较起来,它最大的优点在于能够精确定量分析。该技术具有许多的优点:(1)能实现真正的全基因组分析;(2)结合分辨率可精确到10~30 bp;(3)所需样本量小;(4)避免了杂交等影响因素,具有更高的敏感性等。

现在,分析ChIP-Seq的测序平台主要有454、Solexa、IIIumina、SOLiD和HeliScope,其中IIIumina测序是最常使用的测序方法。ChIP-Seq技术读取的序列越来越多,而成本也在不断下降。通常第二代高通量测序方法产生的是段序列,段序列在序列拼接和序列映射时会产生很多麻烦,但是在ChIP-Seq实验中,段序列具有很大价值,因为序列的结合位点通常都比较短。

2ChIP-Seq数据分析

ChIP-Seq的难点是测序后的生物信息学分析,DNA打碎方法、染色质开放程度的不均一性、PCR扩增偏向性、基因组的重复程度以及测序和序列比对过程中的错误都会引入系统误差造成假阳性,尽可能剔除假阳性并揭示出数据背后的机制是需要分子生物学与计算生物学工作者协同努力。对ChIP-Seq数据的处理主要分为四个部分:数据预处理、序列比对、峰值检测和模体分析。

2.1ChIP-seq数据格式及预处理

目前,IIIumina公司测序仪产出的测序数据基本都是FASTQ格式,即一种含有测序质量的FASTA文件[17]。FASTQ格式以测序读段为单位存储,每条读段占四行,第一行开头为“@”后接读段标识,第二行为测序出的碱基序列,第三行开头为“+”后接读段ID,因读段ID一般与第一行相同,所以有时可以省略以节省空间。第四行为测序质量,一般用字符表示,长度与第二行相同,对应于相应位置碱基的测序质量。由于测序仪器会得到较低质量的数据,为了去除一些低质量的数据需要进行预处理。

此外,原始数据也可以从基因表达综合数据库GEO(Gene Expression Omnibus)中下载得到。GEO是NCBI下的一个的基因表达的大型数据库,其最大功能是用来储存和检索公开的高通量基因表达和基因组杂交数据。当文章在科学文献上发表后,其中所产生的高通量实验数据就将放在公有领域上,供其他研究者免费下载,使得实验数据中的海量信息能够被多次分析与进一步挖掘。与此同时,部分文章会将数据传送到序列存档库SRA (Sequence Read Archive)。SRA数据库的数据集包含数据的上传时间,标题,物种,实验类型,文章引用,实验设计,下载地址,数据大小等信息。

2.2序列比对

由于单核苷酸多态性的存在,在短序列比对[18]时候必须要允许1-3个匹配错误,比对的时候对于不能唯一的比对到基因组的序列,可以去掉或允许多重比对,通常,多重比对带来较高的敏感度,因为它允许我们检测较低的覆盖度的区域。

目前有多种序列比对工具,但是Bowtie[19]是其中最快的而内存应用效率很高的佼佼者(表1),它采用一种称作Burrow-Wheeler变换(BWT)的压缩算法对参考基因组序列进行索引,使用大约2.2GB(2.9GB用于双末端测序)的内存,就可完成人类基因组的序列比对。每小时可以比对超过25,000,000段长度为35bp的DNA序列。Bowtie还可以同时启动多个线程来加快速度,这对于多核CPU来说尤为重要。尽管大部分软件都允许在比对中插入间隙,但是对于ChIP-Seq实验来说,寻找单核苷酸多态性或者插入与缺失并不是重点。唯一序列占整体序列数量的百分比是分析人员需要重点考虑的问题。

表1序列比对环节中的一些常用软件

软件用途软件主要特点

序列比对ELAND[20]

Illumina默认软件;比对过程中不允许碱基的空缺,且比对

序列长度受限。

BWA[21]

基于BWT(Burrows-Wheeler transform)算法;运算快速高

效,比对过程中允许适度插入与缺失。

MAQ[22]

比对过程中不允许碱基的空缺,但能考虑到每个碱基的质量

指数。

SOAP[23]比对过程中允许少量碱基的空缺和错配。

Bowtie基于BWT算法;速度超快,且具备高存储效率。

无论从哪个方面来看,Bowtie都很合适,因此本流程采用Bowtie完成序列的比对这项工作。经过比对之后,原始的测序读段将带有其在基因组中的位置信息,或者说,该测序读段被回贴到了基因组中。

2.3峰值检测

峰值检测是ChIP-Seq数据分析的一个关键步骤,很多后续分析都取决于峰值检测的结果。峰值检测是根据峰富集区域来预测DNA结合蛋白在基因组上结合的区域。不同的DNA 结合蛋白在基因组上的分布模式是不同的,具体体现于ChIP-Seq峰形的不同,如转录因子

的峰型为尖锐状,即信号高度集中。峰值检测是一种用于鉴别读段数特别集中的区域的手段,表2列举了ChIP-Seq 数据分析过程峰检测环节中常用到的软件。在峰值检测的过程中,需要综合考虑灵敏度和特异度之间的平衡,因为增加灵敏度将降低特异度,增加特异度将降低灵敏度。只有针对不同的DNA 结合蛋白选择合适的峰值检测算法和数据标准化方法,才能取得灵敏度和特异度之间的最佳平衡。

表2峰值检测环节中的一些常用软件

软件用途软件主要特点

峰值检测MACS [24]能自动将数据调整成动态泊松分布;且峰值检测过程可以

不依赖对照组数据,自动进行数据拟合。

PeakSeq [25]峰值检测过程中能兼顾基因组区域结构特点;通过计算

FDR 来确定峰富集区域。

ZINBA [26]

峰值检测过程中能兼顾基因组区域结构特点;可以分析尖

锐状峰型和连绵状峰型两类ChIP-Seq 数据。2.4模体分析

模体就是DNA、蛋白质等生物大分子中的保守序列。每种转录因子都具有不同的模体特征。本文分析比较了3种不同分析平台DMINDA,MEME 和CisGenome。

DMINDA 是一种Web server 软件[27],可以使用云计算,即将数据提交到网页服务器进

行分析处理,也具有相应的客户端程序,主要运行在Windows 系统下,具有处理数据快,模体分析单一性强等特点。数据经过序列比对和峰值检测之后,在经过进一步处理之后,就可以使用DMINDA 进行模体分析。模体分析DMINDA 软件使用步骤与结果显示如图2

所示。图2(A)DMINDA 主页面,选择模体分析;(B)上传数据,设置参数,提交即可开始运算;(C)

显示模体分析结果

MEME[28]也是一个综合性强并且应用广泛的一个Web Server软件,同样也是可以在线处理数据和客户端处理数据(主要运行于Uinix)。MEME网页版具有局限性,上传的峰数目不能超过1000条,所有脱氧核苷酸总数不能超过600000个,当使用客户端软件时无任何限制。虽然MEME软件处理数据速度相对缓慢,但其具有可信度较高、结果稳定等特点,目前应用比较广泛。模体分析MEME软件使用步骤与结果显示如图3所示。

图3(A)MEME主页面,选择模体分析;(B)上传数据,设置参数,提交即可开始运算;(C)

显示模体分析结果

CisGenome[29]是一款综合性分析软件,目前主要用于分析ChIP-chip和ChIP-Seq数据,其独特的模块化设计开创了可视化用户界面和数据自定义批量处理功能,支持数据间的交互式分析。此外,CisGenome浏览器是典型的本地版基因组浏览器,所有数据、注释信息都存于本地文件,因此不需要网络连接,方便内部考查数据用。借助CisGenome来处理ChIP-Seq海量数据将会事半功倍。CisGenome的优点在于软件的图形化,该软件运行于Windows系统之上,界面简单,操作简便,但必然会带来运行缓慢。模体分析GisGenome 软件使用步骤与结果显示如图4所示。

图4(A)GisGenome上传数据,设置参数,提交即可开始运算;(C)显示模体分析结果

3基于ChIP-Seq的转录因子结合位点研究

转录因子是一类很重要的蛋白质分子,其可以通过与DNA结合,调控一些下游效应分子,引发一系列级联反应,从而发挥强大的生物学作用.全基因组范围内明确这些转录因子的结合位点是揭示这些转录因子生物学功能和机制的基础,同时也是绘制基因调控网络不可缺少的部分。

肝脏是一以代谢功能为主的器官,同时也制造消化系统中的胆汁。Wederell[30]等研究成年小鼠肝脏组织中转录因子Foxa2结合位点,一共识别了11000个位点,其中近一半的肝脏表达基因含有相关的Foxa2结合位点。Schmidt等[31]利用ChIP-Seq技术研究多种脊椎动物肝脏中表达的两个转录因子CEBPA和HNF4A,虽然两个转录因子都有高度保守的DNA 结合结构域,绝大多数情况下表现出特异性。Bochkis等[32]通过ChIP-Seq全基因组定位分析高度同源的转录因子Foxa1和Foxa2,发现虽然Foxa1和Foxa2肝脏中的结合位点大部分重叠,在体内它们各自还有跟其他调控元件结合。肝脏的发育经历了一系列内胚层和中胚层之间复杂的相互作用,在Xu等[33]先前的研究中应用ChIP-Seq技术发现了Foxa2在DE 细胞全基因组中的结合位点,并在全基因组的水平上证明Foxa2具有先锋因子的作用,且Foxa2对特异靶基因的作用是通过修饰靶基因片段中的H3K4me2组蛋白位点实现。2010年,Hansook等[34]利用ChIP-Seq分析转录因子FXR在肝细胞染色质中的结合,发现一个额外的核受体半位点和FXR结合。之后,Hansook等[35]又分析了LRH-1在全基因组中的结合位点,进一步证实了在整个基因组范围内LRH-1与FXR具有相互作用。此外,分析结果还表明,LRH-1结合的基因位点和FXR的结合位点靠近。LRH-1/FXR共同结合的基因都与脂质代谢相关。这些结果表明,LRH-1招募FXR激活脂质代谢相关基因的表达。研究还发现,部分FXR 跟LRH-1没有共同结合域,表面FXR可能跟RORs和NR3As家族成员相互作用,调节其他代谢途径。

细胞核接头蛋白LDB1是多蛋白转录复合体中的一个核心成分。Li等[36]发现,在小鼠胚胎和成体造血干细胞中LDB1起到关键作用。在造血干细胞和前体细胞中敲除该基因会造成一些维持多能性相关基因的转录下调,ChIP-Seq结果显示,LDB1形成的复合体结合在这些基因的启动子区域,暗示LDB1维持造血干细胞中起核心作用。多能造血前体细胞是一种干细胞样细胞,表达各种基因,且有分化成包括免疫系统细胞在内的大量不同类型血细胞的能力。Zhang等[37]利用ChIP-Seq技术在小鼠全基因组内找出造血前体细胞转化成定型T 细胞中起作用的所有基因,并确定了每个基因在发育过程中的转录时间点。Olig2是一种少突胶质细胞转录因子,与前体细胞增殖和向少突胶质细胞分化密切相关。Yu等[38]利用ChIP-Seq进行全基因组分阶段研究发现Olig2充当了一种预定位因子,引导染色质重塑酶

到达少突胶质细胞活性靶点,从而激活少突胶质细胞特定基因表达。Ouyang等[39]利用ChIP-Seq技术研究小鼠胚胎干细胞,发现大约有65%的基因表达是由12个转录因子调控的。他们鉴定了两组转录因子。其中第一组通常作为激活剂起作用,第二组可能依赖于靶点不同或作为激活剂,或作为抑制剂。这两组转录因子紧密协作,激活胚胎干细胞中差异化上调的基因。在缺乏第一组转录因子结合时,第二组转录因子结合胚胎干细胞中被抑制的基因及早期分化中去抑制的基因。

4结论与展望

目前,ChIP-Seq已广泛应用于研究一些经典转录因子和一些新的转录因子在全基因组上的结合情况,实现全基因组层面分析一些经典的转录因子的调控网络,或为新转录因子的功能研究提供一些线索。研究人员可通过分析这些转录因子结合序列的特征发现它们的经典作用基序或协同作用因子。研究人员亦可通过分析这些转录因子在基因组上的位置分布情况来拓展其基因调控作用。之前认为转录因子通常分布在基因启动子区和增强子区,然而通过ChIP-chip和ChIP-Seq考察一些转录因子在基因组上的分布情况,发现有些转录因子结合位点分布在远离已知基因TSS的位置或广泛分布在整个基因组上,这可能暗示新的靶基因或新的调控机制的存在。此外,通过比较某转录因子在不同阶段或不同状态的组织或细胞中靶定位点的差异,研究人员还可分析该转录因子在细胞不同阶段或不同状态下的不同作用。ChIP-Seq等技术通过系统整合DNA与蛋白质相互作用的数据,在揭示基因表达调控的若干机制及构建更加详细的基因表达调控网络图谱中发挥无可替代的作用。

参考文献:

[1]Messina D N,Glasscock J,Gish W,et al.An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression[J].Genome research,2004,14(10b):2041-2047.

[2]Albert I,Mavrich T N,Tomsho L P,et al.Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome.Nature,2007,446(7135):572-576. [3]Robertson G,Hirst M,Bainbridge M,et al.Genome-wide profiles of STAT1DNA association using chromatin immunoprecipitation and massively parallel sequencing.Nat Methods, 2007,4(8):651-657.

[4]Johnson D S,Mortazavi A,Myers R M,et al.Genome-wide mapping of in vivo protein-DNA interactions.Science,2007,316(5830):1497-1502.

[5]Massie CE,Mills IG.ChIPping away at gene regulation.EMBO Rep,2008,9(4):337–343.

[6]Chen H,Lin RJ,Xie W,Wilpitz D,Evans RM.Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase.Cell,1999,98(5):675–686. [7]Shang Y,Hu X,DiRenzo J,Lazar MA,Brown M.Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription.Cell,2000,103(6):843–852.

[8]Schones D E,Zhao K.Genome-wide approaches to studying chromatin modifications.Nat Rev Genet,2008,9(3):179-191.

[9]滕晓坤,肖华胜.基因芯片与高通量DNA测序技术前景分析[J].中国科学:C辑,2008, 38(10):891-899.

[10]Choi H,Nesvizhskii A I,Ghosh D,et al.Hierarchical hidden Markov model with application to joint analysis of ChIP-chip and ChIP-seq data[J].Bioinformatics,2009,25(14):1715-1721. [11]Zhang Y,Liu T,Meyer CA,et al.Model-based analysis of ChIP-seq(MACS)[J]. Genome Biol,2008,9(9):R137.

[12]Orlando V,Strutt H,Paro R.Analysis of chromatin structure by in vivo formaldehyde cross-linking[J].Methods,1997,11(2):205-214.

[13]Shang Y,Hu X,Direnzo J,et al.Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription[J].Cell,2000,103(6):843-852.

[14]Cosseau C,Azzi A,Smith K,et al.Native chromatin immunoprecipitation(N-ChIP)and ChIP-Seq of Schistosoma mansoni:Critical experimental parameters[J].Mol biochem Parasitol,2009, 166(1):70-76.

[15]Sun JM,Chen HY,Davie JR.Differential distribution of unmodified and phosphorylated

histone deacetylase in chromatin[J].J Biol Chem,2007,282(45):33227-33236.

[16]Szalkowski A M,Schmid C D.Rapid innovation in ChIP-seq peak-calling algorithms is outdistancing benchmarking efforts[J].Briefings in bioinformatics,2011,12(6):626-633. [17]Cock P J A,Fields C J,Goto N,et al.The Sanger FASTQ file format for sequences with quality scores,and the Solexa/Illumina FASTQ variants[J].Nucleic acids research,2010,38(6): 1767-1771.

[18]Park P J.ChIP–seq:advantages and challenges of a maturing technology[J].Nature Reviews Genetics,2009,10(10):669-680.

[19]Langmead B,Salzberg S L.Fast gapped-read alignment with Bowtie2[J].Nature methods, 2012,9(4):357-359.

[20]Cox A J.ELAND:Efficient large-scale alignment of nucleotide databases[J].Illumina,San Diego,2007.

[21]Li H.Aligning sequence reads,clone sequences and assembly contigs with BWA-MEM[J]. arXiv preprint arXiv:1303.3997,2013.

[22]Li H,Ruan J,Durbin R.Maq:Mapping and assembly with qualities[J].Version0.6,2008,3.

[23]Li R,Li Y,Kristiansen K,et al.SOAP:short oligonucleotide alignment program[J]. Bioinformatics,2008,24(5):713-714.

[24]Zhang Y,Liu T,Meyer C A,et al.Model-based analysis of ChIP-Seq(MACS)[J].Genome biology,2008,9(9):1.

[25]Rozowsky J,Euskirchen G,Auerbach R K,et al.PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls[J].Nature biotechnology,2009,27(1):66-75.

[26]Rashid N U,Giresi P G,Ibrahim J G,et al.ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment,even within amplified genomic regions[J].Genome biology,2011,12(7):1.

[27]Ma Q,Zhang H,Mao X,et al.DMINDA:an integrated web server for DNA motif identification and analyses[J].Nucleic acids research,2014:gku315.

[28]Machanick P,Bailey T L.MEME-ChIP:motif analysis of large DNA datasets[J]. Bioinformatics,2011,27(12):1696-1697.

[29]Jiang H,Wang F,Dyer N P,et al.CisGenome Browser:a flexible tool for genomic data visualization[J].Bioinformatics,2010,26(14):1781-1782.

[30]Wederell E D,Bilenky M,Cullum R,et al.Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing[J].Nucleic acids research,2008,36(14): 4549-4564.

[31]Schmidt D,Wilson M D,Ballester B,et al.Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding[J].Science,2010,328(5981):1036-1040.

[32]Bochkis I M,Schug J,Diana Z Y,et al.Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1and Foxa2[J].PLoS Genet,2012,8(6): e1002770.

[33]Xu C,Lv X,Chen E Z,et al.Genome-wide roles of Foxa2in directing liver specification[J]. Journal of molecular cell biology,2012,4(6):420-422.

[34]Chong H K,Infante A M,Seo Y K,et al.Genome-wide interrogation of hepatic FXR reveals an asymmetric IR-1motif and synergy with LRH-1[J].Nucleic acids research,2010,38(18):6007-6017.

[35]Chong H K,Biesinger J,Seo Y K,et al.Genome-wide analysis of hepatic LRH-1reveals a promoter binding preference and suggests a role in regulating genes of lipid metabolism in concert with FXR[J].BMC genomics,2012,13(1):1.

[36]Li L Q,Jothi R,Cui K,et al.Nuclear adaptor Ldb1regulates a transcriptional program essential for the maintenance of hematopoietic stem cells[J].Nature immunology,2011,12(2): 129-136.

[37]Zhang J A,Mortazavi A,Williams B A,et al.Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity[J].Cell,2012,149(2):467-482.

[38]Yu Y,Chen Y,Kim B,et al.Olig2targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation[J].Cell,2013,152(1):248-261.

[39]Ouyang Z,Zhou Q,Wong W H.ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells[J].Proceedings of the National Academy of Sciences,2009,106(51):21521-21526.

转录调节位点和转录因子数据库介绍_张光亚

10生物学通报2005年第40卷第11期 2003年即Watson和Crick发表DNA双螺旋结构50周年,宣布了人类基因组计划的完成,与此同时,其他许多生物的基因组计划已完成或在进行中,在此过程中产生的大量数据库对科学研究的深远影响是以前任何人未曾预料到的。然而遗憾的是,许多生物学家、化学家和物理学家对这些数据库的使用甚至去何处寻找这些数据库都只有一个比较模糊的概念。 基因转录是遗传信息传递过程中第一个具有高度选择性的环节,近20年来对基因转录调节的研究一直是基因分子生物学的研究中心和热点,因此亦产生了大量很有价值的数据库资源,对这些数据库的了解将为进一步研究带来极大便利,本文对其中一些数据库进行简要介绍。 1DBTSS DBTSS(DataBaseofTranscriptionalStartSites)由东京大学人类基因组中心维护,网址:http://dbtss.hgc.jp。最初该数据库收集用实验方法得到的人类基因的TSS(TranscriptionalStartSites,转录起始位点)数据。对转录起始位点(TSS)的确切了解具有非常重要的意义,可更准确的预测翻译起始位点;可用于搜索决定TSS的核苷酸序列,而且可更精确地分析上游调控区域(启动子)。自2002年发布第一版以来已作了多次更新。目前包含的克隆数为190964个,含盖了11234个基因,在SNP数据库中显示了人类基因中的SNP位点,而且现在含包含了鼠等其他生物的相关数据。DBTSS最新的版本为3.0。 在该最新的版本中,还新增了人和鼠可能同源的启动子,目前可以显示3324个基因的启动子,通过本地的比对软件LALIGN可以图的形式显示相似的序列元件。另一个新的功能是可进行与已知转录因子结合位点相似的部位的定位,这些存贮在TRANSFAC(http://transfac.gbf.de/TRANSFAC/index.html)数据库中,免费用于研究,但TRANSFAC专业版是商业版本。 DBTSS对匿名登录的用户是免费的,该网站要求用户在使用前注册,用户注册后即可使用。主页分为2个区域,一个介绍网站的部分信息和用户注册,另一区域为用户操作区,该区约分为10个部分,可分别进行物种和数据库的选择、BLAST、SNP以及TF(转录因子)结合部位搜索等部分。后者的使用可以见网页中的Help部分,里面有比较详细的介绍。DBTSS还提供了丰富的与其他相关网站的链接,如上文提到的TRANSFAC数据库、真核生物启动子数据库(Eukaryot-icPromoterDatabase,http://www.epd.isb-sib.ch/)以及人类和其他生物cDNA全长数据库等。 2JASPAR JASPAR是有注释的、高质量的多细胞真核生物转录因子结合部位的开放数据库。网址http://jaspar.cgb.ki.se。所有序列均来源于通过实验方法证实能结合转录因子,而且通过严格的筛选,通过筛选后的序列再通过模体(motif)识别软件ANN-Spec进行联配。ANN-Spec利用人工神经网络和吉布斯(Gibbs)取样算法寻找特征序列模式。联配后的序列再利用生物学知识进行注释。 目前该数据库收录了111个序列模式(profiles),目前仅限于多细胞真核生物。通过主页界面,用户可进行下列操作:1)浏览转录因子(TF)结合的序列模式;2)通过标识符(identifier)和注解(annotation)搜索序列模式;3)将用户提交的序列模式与数据库中的进行比较;4)利用选定的转录因子搜索特定的核苷酸序列,用户可到ConSite服务器(http://www.phylofoot.org/consite)进行更复杂的查询。JASPAR数据库所有内容可到主页下载。 与相似领域数据库相比,JASPAR具有很明显优势:1)它是一个非冗余可靠的转录因子结合部位序列模式;2)数据的获取不受限制;3)功能强大且有相关的软件工具使用。JASPAR与TRANSFAC(一流的TF数据库)有较明显的差异,后者收录的数据更广泛,但包含不少冗余信息且序列模式的质量参差不齐,是商业数据库,只有一部分是可以免费使用。用户在使用过程中会发现二者的差异,这主要是由于二者对数据的收集是相互独立的。另外该数据库还提供了相关的链接:如MatInspector检测转录因子结合部位,网址http://transfac.gbf.de/programs/matinspector/;TESS转录元件搜索系统,网址http://www.cbil.upenn.edu/tess/。 转录调节位点和转录因子数据库介绍! 张光亚!!方柏山 (华侨大学生物工程与技术系福建泉州362021) 摘要转录水平的调控是基因表达最重要的调控水平之一,对转录调节位点和转录因子的研究具有重要意义。介绍了DBTSS、JASPAR、PRODORIC和TRRD等相关数据库及其特征、内容和使用。 关键词转录调节位点转录因子数据库生物信息学 !基金项目:国务院侨办科研基金资助项目(05QZR06) !!通讯作者

第十二章质谱分析

第十二章质谱分析 1.试指出下面哪一种说法是正确的( ) (1) 质量数最大的峰为分子离子峰 (2) 强度最大的峰为分子离子峰 (3) 质量数第二大的峰为分子离子峰 (4) 上述三种说法均不正确 解:(4) 2.下列化合物含 C、H或O、N,试指出哪一种化合物的分子离子峰为奇数( ) (1) C 6H 6 (2) C 6 H 5 NO 2 (3) C 4 H 2 N 6 O (4) C 9 H 10 O 2 解:(2) 3.下列化合物中分子离子峰为奇数的是( ) (1) C 6H 6 (2) C 6 H 5 NO 2 (3) C 6 H 10 O 2 S (4) C 6 H 4 N 2 O 4 解:(2) 4.在溴己烷的质谱图中,观察到两个强度相等的离子峰,最大可能的是:( ) (1) m/z为 15 和 29 (2) m/z为 93 和 15 (3) m/z为 29 和 95 (4) m/z为 95 和 93 解:(4) 5.在C 2H 5 F中, F对下述离子峰有贡献的是( ) (1) M (2) M+1 (3) M+2 (4) M及M+2 解:(1) 6.一个酯的质谱图有m/z74(70%)的强离子峰,下面所给结构中哪个与此观察值最为一致( ) (1) CH 3CH 2 CH 2 COOCH 3 (2) (CH 3 ) 2 CHCOOCH 3 (3) CH 3CH 2 COOCH 2 CH 3 (4) (1)或(3) 解:(1) 7.某化合物分子式为C 6H 14 O, 质谱图上出现m/z59(基峰)m/z31以及其它弱峰

m/z73,m/z87和m/z102. 则该化合物最大可能为 ( ) (1) 二丙基醚 (2) 乙基丁基醚 (3) 正己醇 (4) 己醇-2 解:(2) 8.某胺类化合物, 分子离子峰其M=129, 其强度大的m/z58(100%), m/z100(40%),则该化合物可能为( ) (1) 4-氨基辛烷 (2) 3-氨基辛烷 (3) 4-氨基-3-甲基庚烷 (4) (2)或(3) 解:(2) 9.分子离子峰弱的化合物是:() (1)共轭烯烃及硝基化合物 (2)硝基化合物及芳香族 (3)脂肪族及硝基化合物 (4)芳香族及共轭烯烃 解:(3) 10.某化合物的质谱图上出现m/z31的强峰, 则该化合物不可能为( ) (1) 醚 (2) 醇 (3) 胺 (4) 醚或醇 解:(3) 11.某化合物在一个具有固定狭峰位置和恒定磁场强度B的质谱仪中分析, 当加速电压V慢慢地增加时, 则首先通过狭峰的是:( ) (1) 质量最小的正离子 (2) 质量最大的负离子 (3) 质荷比最低的正离子 (4) 质荷比最高的正离子 解:(4) 12.下述电离源中分子离子峰最弱的是( ) (1) 电子轰击源 (2) 化学电离源 (3) 场电离源 (4) 电子轰击源或场电离源 解:(3) 13.溴己烷经均裂后, 可产生的离子峰的最可能情况为:( )

ChIP-Seq技术在转录因子结合位点分析的应用

ChIP-Seq技术在转录因子结合位点分析的应用 摘要:染色质免疫沉淀(Chromatin immunoprecipitaion, ChIP)技术是用来研究细胞 内特定基因组区域特定位点与结合蛋白相互作用的技术。将ChIP与第二代高通量测序技术相结合的染色质免疫沉淀测序(chromatin immunoprecipitation followed by sequencing,ChIP-Seq)技术能在短时间内获得大量研究数据,高效地在全基因组范围内检测与组蛋白、转录因子等相互作用的DNA区段,在细胞的基因表达调控网络研究中发挥重要作用。本文 简要介绍了ChIP-Seq技术的基本原理、实验设计和后续数据分析,以及ChIP-Seq技术在 研究转录因子结合位点中的。 关键词:ChIP-Seq;转录因子; 引言 染色质是真核生物基因组DNA主要存在形式,为了阐明真核生物基因表达调控机制,对于蛋白质与DNA在染色质环境下的相互作用的研究是基本途径。转录因子是参与基因表达调控的一类重要的细胞核蛋白质,基因的转录调控是生物基因表达调控层次中最关键的一层,转录因子通过特异性结合调控区域的DNA序列来调控基因转录过程。转录因子由基础转录因子和调控性转录因子两类组成,其中基础转录因子在转录起始位点附近的启动子区,与RNA聚合酶相互作用实现基因的转录;而调控性转录因子一般与位置多样的增强子序列结合,再通过形成增强体在组织发育、细胞分化等基因表达水平调控中发挥极其重要的作用[1]。 ChIP-Seq是近年来新兴的将ChIP与新一代测序技术相结合,在全基因s组范围内分析转录因子结合位点(transcription factor binding sites,TFBS)、组蛋白修饰(histone modification)、核小体定位(nucleosome positioning)和DNA 甲基化(DNA methylation)的高通量方法[2-4]。其中ChIP是全基因组范围内识别DNA与蛋白质体内相互作用的标准方法[5],最初用于组蛋白修饰研究[6],后来用于转录因子[7]。同时,新一代测序技术的迅猛发展也将基因组学水平的研究带入了一个新的阶段,使得许多基于全基因组的研究成为可能。相对于传统的基于芯片的ChIP-chip (chromatin immunoprecipitation combined with DNA tiling arrays),ChIP-seq 提供了一种高分辨率、低噪音、高覆盖率的研究蛋白质-DNA 相互作用的手段[8],可以应用到任何基因组序列已知的物种,可以研究任何一种DNA 相关蛋白与其靶定DNA 之间的相互作用,并能确切得到每一个片段的序列信息.随着测序成本的降低,ChIP-seq 逐步成为研究基因调控和表观遗传机制的一种常用手段。此外,为了达到更好的检测效果和更为完整的信息,近年来,将ChIP-Seq和ChIP-chip两者融合的研究具有很好的应用前景[9,10]。 转录因子在器官发生过程中起至关重要的作用,在全基因组水平将转录因子定位于靶基因DNA是认识转录调控网络的有效方法之一,了解基因转录调控的关键是识别蛋白质与DNA的相互作用。ChIP-Seq技术能够揭示转录因子的结合位点和确定直接的靶基因序列,可在体内分析特定启动子的分子调控机制,因此被广泛应用于转录调控机制的研究。本文主要就这一技术在转录因子结合位点研究中的基本原理、实验设计和数据分析等技术层面、以及实际应用层面进行讨论。 1 ChIP-seq基本原理及实验设计 1.1 ChIP技术 蛋白质与DNA相互识别是基因转录调控的关键,也是启动基因转录的前提。ChIP是在全基因组范围内检测DNA与蛋白质体内相互作用的标准方法[11],该技术由Orlando等[12]于1997年创立,最初用于组蛋白修饰的研究,后来广泛应用到转录因子作用位点的研究中[13]。ChIP的基本原理为:活细胞采用甲醛交联后裂解,染色体分离成为一定大小的片段,然后用特异性抗体免疫沉淀目标蛋白与DNA交联的复合物,对特定靶蛋白与DNA片段进行

植物MYB类转录因子研究进展

综 述R evie w 2002201215收到,2002201228接受。 国家重点基础研究发展规划项目(973项目G 1999011604)资助。3联系人,E 2mail :zywang @https://www.doczj.com/doc/6915274507.html, ,Tel :02126404209024423。 植物MYB 类转录因子研究进展 陈 俊 王宗阳3 (中国科学院上海植物生理研究所,上海200032) 摘要:植物M Y B 转录因子以含有保守的M Y B 结构域为共同特征,广泛参与植物发育和代谢的调节。含单一M Y B 结构域的M Y B 转录因子在维持染色体结构和转录调节上发挥着重要作用,是M Y B 转录因子家族中较为特殊的一类。含两个M Y B 结构域的 M Y B 转录因子成员众多,在植物体内主要参与次生代 谢的调节和控制细胞的形态发生。含3个M Y B 结构域的M Y B 蛋白与c 2M Y B 蛋白高度同源,可能在调节细胞周期中起作用。 关键词:M Y B 结构域,M Y B 转录因子,组合调控学科分类号:Q74 随着多种模式生物基因组计划的完成,如何 从这些浩如烟海的DNA 序列中揭示基因的功能以及它们有序的时空表达,已成为后基因组时代的重要课题。人类基因组计划的完成显示人类只有30000~50000个基因,生命体是如何以如此少的 基因完成如此复杂的生命活动的呢?很重要的一点在于基因的表达调控,使得每一个基因能适时、适地、适量地表达,并且使得某些基因可以产生多种功能各异的蛋白质。真核基因的表达随细胞内外环境的改变而在不同层次上受到精确调控,如染色体DNA 水平、转录水平及转录后水平的调控等。而转录水平的调控发生在基因表达的初期阶段,是很多基因表达调控的主要方式。转录水平的调控指一类称为转录因子(有时又称反式作用因子)的蛋白质特异结合到靶基因调控区的顺式作用元件上,或调节基因表达的强度,或应答激素刺激和外界环境胁迫,或控制靶基因的时空特异性表达。 转录因子通常是一种模块化的蛋白,一般由几个独立的功能域组成,包括DNA 结合功能域,转录激活功能域,蛋白2蛋白相互作用功能域,信号分子结合功能域,核定位信号区等。根据DNA 结合功能域的结构,转录因子可分为以下几类:bHL H (碱性螺旋2环2螺旋)、bZIP (碱性亮氨酸拉链)、homeodomain 蛋白、MADS 2box 蛋白、zinc 2finger 蛋 白、Myb 蛋白、Ap2/EREBP 蛋白、HSF 蛋白、HM G 蛋白和A T hook 蛋白等(Schwechheimer 和Bevan 1998)。 本文试以植物中数量最多、功能最多样化的M Y B 类转录因子为例,对该类转录因子的研究历 史和现状作一简单介绍。阐述了M Y B 转录因子的结构、功能和进化,并举例说明M Y B 类转录因子如何与其它转录因子家族成员相互作用,通过组合调控(combinatorial control )的方式实现对靶基因的精密调控。 1 MYB 类转录因子 M Y B 类转录因子家族是指含有M Y B 结构域 的一类转录因子。M Y B 结构域是一段约51~52个氨基酸的肽段,包含一系列高度保守的氨基酸残基和间隔序列(图1)。首先是每隔约18个氨基酸规则间隔的色氨酸(W )残基,它们参与空间结构中疏水核心的形成。有时色氨酸残基会被某个芳香族氨基酸或疏水氨基酸所取代,尤其是在植物R2R32M Y B 转录因子中,R3M Y B 结构域的第一 个色氨酸经常被亮氨酸、异亮氨酸或苯丙氨酸所取 代。其次,在每个保守的色氨酸前后都存在一些高度保守的氨基酸,例如在第一个色氨酸的C 2末端通常是一簇酸性氨基酸(图1)。正是上述这些保守的氨基酸残基使M Y B 结构域折叠成螺旋2螺旋2转角2螺旋(helix 2helix 2turn 2helix )结构。 1982年K lempnauer 等在禽成髓细胞瘤病毒(avian myeloblastosis virus )中鉴定出一个能直接导致急性成髓细胞白血病(acute myeloblastic leukemia )的癌基因,称为v 2myb ,不久发现在正常动物细胞中也存在相应的原癌基因c 2myb ,随后研究结果表明v 2M Y B ,c 2M Y B 蛋白都定位在细胞核中,与核基质和染色质紧密相连,而且都具有DNA 1 8植物生理与分子生物学学报,J ournal of Plant Physiology and Molecular Biology 2002,28(2):81-88

植物转录因子及转录调控数据与分析平台

植物转录因子及转录调控数据与分析平台 PlantTFDB:植物转录因子数据库 URL: https://www.doczj.com/doc/6915274507.html, 包含资源:植物转录因子的家族分类规则、基因组转录因子全谱、丰富的注释、转录因子结合图谱(binding motifs)、转录因子预测、系统发生树等 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等165个物种。 PlantRegMap:植物转录调控数据与分析平台 URL: https://www.doczj.com/doc/6915274507.html, 包含资源:植物转录调控元件、植物转录调控网络、转录因子结合位点预测、转录调控预测与富集分析、GO富集分析、上游调控因子富集分析等。 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等156个物种。 ATRM: 拟南芥转录调控网络及其结构和演化分析 URL: https://www.doczj.com/doc/6915274507.html, 包含资源:基于文本挖掘和人工校验的拟南芥转录调控网络、植物转录调控网络的结构和演化特征 涉及物种:拟南芥 植物转录因子及转录调控数据与分析平台(导航页) 我们致力于为广大科研人员提供一个关于植物转录因子和转录调控、集数据和分析于一体的高质量平台,为研究和理解植物转录调控系统保驾护航。 植物转录因子数据库(PlantTFDB) 一套完整的植物转录因子分类规则 覆盖绿色植物各大分支的转录因子全谱 丰富的功能和演化注释 基因组范围的高质量转录因子结合矩阵(156个物种) 在线转录因子预测平台 植物转录调控数据与分析平台(PlantRegMap) 基于高通量实验(ChIP-seq和DNase-seq)和比较基因组方法鉴定的多种转录调控元件 基于转录因子结合矩阵和转录调控元件推测的转录调控网络 涉及165物种的GO注释 一套植物转录调控预测与分析工具,包括转录因子结合位点预测、转录调控预测与富集分析、GO富集分析及上游调控因子富集分析等 拟南芥转录调控网络及其结构和演化特征(ATRM) 基于文本挖掘和人工校验的拟南芥转录调控网络 植物转录调控网络的结构和演化特征

转录因子Oct-4的研究进展

第6期农垦医学第31卷 转录因子Oct-4的研究进展 符毓豪王菊谢松松周宗瑶+ (石河子大学医学院组织胚胎学教研室/石河子大学医学院新疆地方 与民族高发病教育部重点实验室,新疆石河子,832002) 【摘要】oct4是维持干细胞多能性和自我更新的转录因子,它通过结合靶基因调控区,选择性地抑制分化基因表达或促进多能性基因表达。通常只在多能干细胞中表达,在分化细胞中不表达;它最终决定干细胞是保持多能性还是分化,以及向哪个方向分化。此外。Oct-4在生殖细胞肿瘤研究中也发挥重要作用。 【关键词】0ct4;多能性干细胞;研究进展 中图分类号:Q754文献标识码:A TheresearchdevelopmentoftranscriptionalfactorOct-4 FUYu-hao,WANGJu,XIESong—song,ZHOUZong—yao术 (DepartmentofHistologyandEmbryology,ShiheziUniversityschoolofmedicine,shiheziXinjiang,832002) 【Abstract】OctMisacriticaltranscriptionalfactomtokeeppluripotencyandself-renewalofstemceilsinvivoandinvitm,anditusuallyexpressasonlyinpluripotentcells.Itbindstotheregulatoryregionsoftargetedgene.Itfinallydeter-minesthecellsdestiny:keepingpluripotencyorturningtodifferentiation.Also,itplaysanimportantpartintheGermcelltumor. 【Keywords】Oct4;pluripotent;development Oct-4是具有较强特异性的胚胎干细胞标志物,它参与胚胎发育过程中多向性分化的调节。胚胎干细胞自我更新分子机制是干细胞研究的前沿及热点课题。除外源性信号如LIF、BMP、Wnt能维持干细胞的未分化状态外,转录因子Oct-4特异性表达于全能胚胎干细胞,并与其它转录因子如Sox2一起构成调控网络,共同调控与胚胎干细胞多能性相关的一系列重要分子,是保持胚胎干细胞自我更新和多潜能性的关键分子。 1Oct-4的结构 Oct-4是由Pou5F1基因编码产生的,是含POU(Pit.Oct—Unc)结构域的转录因子家族中的一员。Oct-4基因定位于人类染色体6p21.3,其编码的蛋白Oct-4(也叫Oct-3)是一种POU转录因子,属于V类POU蛋白。POU转录因子是DNA结合蛋白,由POU特异域(POUS)和POU同源域(POUH)的双枝结构构成。POU特异域位于N端,由富含脯氨酸和酸性残基的75个氨基酸组成;POU同源域位于c端,由富含脯氨酸、丝氨酸和苏氨酸的60个氨基酸组成。这两个亚区间通过含有15—56个氨基酸组成的易变区相连接,经螺旋一转角一螺旋结构与DNA结合位点发生联系,激活启动子或增强子区域内带有顺式反应元件基因的转录。后者的特征性结构为ATGCAAAT八聚体结构域,又称为Oct结构。它通过结合含ATGCAAAT的八聚体结构域而活化相应靶基因,激活或抑制干细胞分化过程中基因表型的转变。 2Oct-4的上游调控机制 Oct-4的表达由定位于其基因上游的顺式作用元件在转录水平进行调控。①增强子:Oct-4基因有两个增强子DE和PE。发育中Oct-4的表达依次由DE(桑椹胚、ICM)_÷PE(上胚层)一DE(PGCs)控 基金项目:兵团科技攻关计划项目项目编号:2006GG33 t通讯作者:周宗瑶,组织胚胎学教授,从事生殖与发育方面研究。?542?

转录因子

转录因子 ? 1 简介 ? 2 方法 ? 3 转录因子 转录因子-简介 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 转录因子-方法 这篇文章的试验方法是,通过高密度的寡核苷酸芯片,反映出人21和22号染色体的几乎所有的非重复序列,通过这种芯片,检测三种转录因子,Sp1、 cMyc、和p53的结合位点。结果表明,每种转录因子都有大量的TFBS与之结合。然而,只有22%的转录因子结合位点分布在蛋白编码基因的5'端, 36%的TFBS分布在蛋白编码基因的中部或3'端,并且这36%的TFBS常常和基因组中的非蛋白编码RNA分布在一起。这暗示,在人的基因组中,不仅包含蛋白编码基因,也包含数量相当的非编码基因(noncoding genes),他们都受常见的转录因子所调控。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的

转录因子包括什么主要的功能结构域

转录因子包括什么主要的功能结构域?其主要的结构特点与功能是什么? 作为蛋白质的转录因子从功能上分析其结构可包含有不同区域:①DNA结合域(DNA binding domain),多由60-100个氨基酸残基组成的几个亚区组成;②转录激活域(activating domain),常由30-100氨基酸残基组成,这结构域有富含酸性氨基酸、富含谷氨酰胺、富含脯氨酸等不同种类,一酸性结构域最多见; ③连接区,即连接上两个结构域的部分。不与DNA直接结合的转录因子没有DNA 结合域,但能通过转录激活域直接或间接作用与转录复合体而影响转录效率。 与DNA结合的转录因子大多以二聚体形式起作用,与DNA结合的功能域常见有以几种: ①螺旋-转角-螺旋(helix-turn-helix,HTH)及螺旋-环-螺旋(helix-loop-helix,HLH) 这类结构至少有两个α螺旋其间由短肽段形成的转角或环连接,两个这样的motif结构以二聚体形式相连,距离正好相当于DNA一个螺距(3.4nm),两个α螺旋刚好分别嵌入DNA的深沟。 ②锌指(zinc finger)其结构如图所示,每个重复的“指”状结构约含23个氨基酸残基,锌以4个配价键与4个半胱氨酸、或2个半胱氨酸和2个组氨酸相结合。整个蛋白质分子可有2-9个这样的锌指重复单位。每一个单位可以其指部伸入DNA双螺旋的深沟,接触5个核苷酸。例如与GC盒结合的转录因子SP1 中就有连续的3个锌指重复结构。 ③碱性-亮氨酸拉链(basic leucine zipper,bZIP)这结构的特点是蛋白质分子的肽链上每隔6个氨基酸就有一个亮氨酸残基,结果就导致这些亮氨酸残基都在α螺旋的同一个方向出现。两个相同的结构的两排亮氨酸残基就能以疏水键结合成二聚体,这二聚体的另一端的肽段富含碱性氨基酸残基,借其正电荷与DNA 双螺旋链上带负电荷的磷酸基团结合。若不形成二聚体则对DNA的亲和结合力明显降低。在肝脏、小肠上皮、脂肪细胞和某些脑细胞中有称为C/EBP家族的一大类蛋白质能够与CAAT盒和病毒增强子结合,其特征就是能形成bZIP二聚体结构。

转录分析的5种方法

转录分析的5种方法 信号通路,只有一个目的:将细胞的外部信号转换成细胞的内部变化。不管是胰岛素,还是异亮氨酸,抗原还是肾上腺素,它们的终极目的总是如出一则:对转录活性的改变。 这些对于转录活性的影响来自于转录因子与基因的调控区域:如启动子、增强子、沉默子等结合达到的。经典的凝胶迁移滞后试验(the electrophoretic mobility shift assay)已经成为证明某种蛋白能与特定的短基因序列结合的有力方法手段。但是凝胶迁移滞后试验具有速度慢,通量低,不定量和具有放射性的特点。即使完了你还不知道究竟是何种蛋白或者是蛋白的何种基团负责指导体内转录的变化。 为了弄清楚蛋白与基因序列结合的精确位点,需要利用基于抗体的实验。目前已经有了一些方便快捷的分析试剂,可以有力的帮助进行转录研究分析,其中有一些适用于发现型(筛选多种因子),有一些用于证实猜想的。当然这些总是从初期的工作,进入精细进一步的研究工作。 PROTEIN ARRAYS(蛋白芯片) What they are:固定的转录因子阵列,利用标记的基因序列或者蛋白质进行探索。 What to use them for:用于发现和证实转录因子的结合位点或者蛋白-蛋白相互作用。 Pros(优点):能提供一种在广泛的因子中检测与特定序列结合的因子。 Cons(缺点):可能会错失一些同源因子和一些转录后的变化。 Things to keep in mind:蛋白分析提供了一种在DNA片段中筛选潜在的结合位点的方法。但这种方法缺乏柔韧性,因此只局限于广泛的已研究的因子。 Available kits: Panomics的 TF Protein Array I for DNA-Protein Interactions (48 proteins, Catalog No. MA3505,

植物bHLH转录因子研究进展_刘文文

生物技术进展 2013年第3卷第1期7 11 Current Biotechnology ISSN 2095-櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅殯 殯 殯 殯 2341 进展评述 Reviews 收稿日期:2012-12-12;接受日期:2012-12-31基金项目:国家自然科学基因项目(30970221)资助。 作者简介:刘文文,硕士研究生,研究方向为玉米氮利用效率生理学及拟南芥抗逆作用机制。*通讯作者:李文学,研究员,博士,主要 从事小RNA 功能及植物抗逆机制研究。E- mail :liwenxue@caas.cn 植物bHLH 转录因子研究进展 刘文文,李文学 * 中国农业科学院作物科学研究所,北京100081摘 要:bHLH (basic helix-loop-helix protein )是真核生物中存在最广泛的一大类转录因子,其通过特定的氨基酸残基与 靶基因相互作用,进而调节相关基因的表达。系统发育分析表明植物的bHLH 转录因子为单源进化。bHLH 转录因子不仅对于植物的正常生长和发育必不可缺,同时参与植物适应多种逆境胁迫的反应过程。然而,由于植物bHLH 家族成员众多、 参与的生物过程复杂,对于其了解还不是十分清楚。本文针对植物bHLH 的进化、结构特点、生物功能,尤其是在适应逆境胁迫中作用等的最新研究结果进行综述,以期为进一步深入了解植物bHLH 转录因子的功能提供理论参考。关键词:bHLH ;结构特点;生物学功能DOI :10.3969/j.issn.2095-2341.2013.01.02 Progress of Plant bHLH Transcription Factor LIU Wen-wen ,LI Wen-xue * Institute of Crop Science ,Chinese Academy of Agricultural Sciences ,Beijing 100081,China Abstract :Basic helix-loop-helix proteins (bHLHs )are found throughout the eukaryotic kingdom ,and constitute one of the largest families of plant transcription factors.They can regulate gene expression through interaction with specific motif in target genes.Phylogenetic analysis indicates that plant bHLHs are monophyletic.bHLHs are necessary for plant normal growth and development ,and play important roles in abiotic-stress responses.However ,we know little about their origins ,structures ,and functions due to the large quantities and complexity of plant bHLH family.This paper reviews on the evolution ,structure characteristics ,biological function of plant bHLHs ,especially their functions in adapting to abiotic-stress tolerance ,so as to provide a theoretical reference for further research on the function of plant bHLH transcription factors.Key words :bHLHs ;structural features ;biological function bHLH 转录因子广泛存在于真核生物。自 bHLH 发现以来,越来越多的研究表明该转录因子对于真核生物的正常生长及发育必不可缺。在酵母等单细胞真核生物中,bHLH 参与染色体的分离、新陈代谢调节等过程[1] ;在动物中,bHLH 主要与感知外界环境、调节细胞周期、组织分化等 相关 [2 4] 。植物中bHLH 家族成员数量众多,仅 次于MYB 类转录因子,譬如在拟南芥中有超过140个bHLH 转录因子,水稻中则超过160个。家族的庞大不可避免的造成功能冗余,使研究单个bHLH 转录因子的功能相对困难。本文拟对有限的植物bHLH 家族研究结果,尤其是参与植物 适应逆境胁迫过程中的作用进行综述,以期为进 一步深入了解植物bHLH 转录因子的功能的提供理论参考。 1 植物bHLH 的结构特点、家族分类及 进化 1.1 bHLH 的基本结构 bHLH 转录因子因含有bHLH 结构域而得名。bHLH 结构域由50 60个氨基酸组成,可分为长度为10 15个氨基酸的碱性氨基酸区和40个氨基酸左右的α-螺旋-环-α-螺旋区(HLH 区)。

转录因子

转录因子 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。而顺式作用因子则指的是基因上与反式作用因子结合的对基因表达起调控作用的基因序列。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的成分。这些因子可能是所有启动子起始转录所必须的。但亦可能仅是譬如说转录终止所必须的。但是,在这一类因子中,要严格区分开哪些是R NA聚合酶的亚基,哪些仅是辅助因子,是很困难的。 (3)某些转录因子仅与其靶启动子中的特异顺序结合。如果这些顺序存在于启动子中,则这些顺序因子是一般转录机构的一部分。如果这些顺序仅存在于某些种类的启动子中,则识别这些顺序的因子也只是在这些特异启动子上起始转录必须的。 黑腹果蝇的RNA聚合酶需要至少两个转录因子方能在体外起始转录。其中一个是B因子,它与含TATA盒的部位结合。人的因子TFⅡD亦和类似的部位结合。同样,CTF(CAAT结合因子)则与腺病毒的主要晚期启动子中与CAAT盒同源的部位相结合。结合在上游区的另一个转录因子是USF(亦称MLTF),则可以识别腺病毒晚期启动子中靠近-55的顺序。转录因子Sp1则能和GC盒相结合。在SC40启动子中有多个GC盒,位于-70到-110之间。它们均能和Sp1相结合。然而含有GC盒的不同的DNA顺序与Sp1的亲和力却各不相同。可见GC盒两侧的顺序对Sp1-GC盒的结合究竟如何能影响转录。有时候需要几个转录因子才能起始转录。例如胞苷激酶的启动子需要S p1与GC盒结合和CTF与CAAT盒结合;腺病毒晚期启动子需要TFⅡD与TATA盒结合和USF与其邻近部位相结合。以上所述的因子是一般转录都需要的,似乎并没有什么调节功能。另一些转录因子则可以调控一组特殊基因的转录。热休克基因就是一个很好的例子。真核生物的热休克基因在转录起始点的上游15bp处有一个共同顺序。H STF因子仅在热休克细胞中有活性。它与包括热休克共同顺序在内的一段DNA相结合,所以这个因子的激活可以引起约包括20个基因的一组基因起始转录。在这里,转录因子和RNA聚合酶Ⅱ之间关系很类似细菌的σ因子与核心酶之间的关系。 转录因子是一种具有特殊结构、行使调控基因表达功能的蛋白质分子,也称为反式作用因子。植物中的转录因子分为二种,一种是非特异性转录因子,它们非选择性地调控基因的转录表达,如大麦(Hordeum vulgare) 中的HvCBF2 (C-repeat/DRE binding factor 2) (Xue et al., 2003)。还有一种称为特异型转录因子,它们能够选择性调控某种或某些基因的转录表达。典型的转录因子含有DNA结合区(DNA-binding domain)、转录调控区(acti vation domain)、寡聚化位点(oligomerization site) 以及核定位信号(nuclear localization signal) 等功能区域。这些功能区域决定转录因子的功能和特性(Liu et al., 1999)。DNA结合区带共性的结构主要有:1)HTH 和HL H 结构:由两段α-螺旋夹一段β-折叠构成,α-螺旋与β-折叠之间通过β-转角或成环连接,即螺旋-转角-螺旋结构和螺旋-环-螺旋结构。2)锌指结构:多见于TFIII A 和类固醇激素受体中,由一段富含半胱氨酸的多肽链构成。每四个半光氨酸残基或组氨酸残基螯合一分子Zn2+ ,其余约12-13 个残基则呈指样突出,刚好能嵌入DNA 双螺旋的大沟中而与之相结合。3)亮氨酸拉链结构:多见于真核生物DNA 结合蛋白的 C 端,与癌基因表达调控有关。由两段α - 螺旋平行排列构成,其α - 螺旋中存在每隔7 个残基规律性排列的亮氨酸残基,亮氨酸侧链交替排列而呈拉链状,两条肽链呈钳状与DNA 相结合。

WRKY转录因子表达谱的研究进展

基因组学与应用生物学,2009年,第28卷,第4期,第803-808页Genomics and Applied Biology,2009,Vol.28,No.4,803-808 专题介绍Review WRKY 转录因子表达谱的研究进展 张颖蒋卫杰* 凌键 余宏军 王明 中国农科院蔬菜花卉研究所,北京,100081*通讯作者,jiangwj@https://www.doczj.com/doc/6915274507.html, 摘 要环境胁迫对植物的生长发育造成重大影响,因此,提高植物的抗逆性是农业面临的重要问题。自然 界中存在多种抗逆基因,如抗盐基因、 抗旱基因、抗寒基因等。利用植物基因工程和分子生物学技术提高植物对逆境的适应性及其抗逆分子机制的研究已成为当今热点。WRKY 转录因子是一类参与多种胁迫反应的诱导型转录因子,本文综述了WRKY 转录因子家族的结构特点、WRKY 转录因子在非生物胁迫(高温、低温、 干旱、盐)、外源物质(激素及O 3)处理及生物胁迫下的表达模式。各种胁迫下的表达谱均呈现不同特点,这些差异表达可能与它们所行使的不同生物学功能有关。 关键词 WRKY 转录因子,表达谱,非生物胁迫,RT-PCR Advance on Expression Profile of Transcription Factor WRKY Zhang Ying Jiang Weijie * Ling Jian Yu Hongjun Wang Ming Institue of Vegetable and Flower,Chinese Academy of Agricultural Sciences,Beijing,100081*Corresponding author,jiangwj@https://www.doczj.com/doc/6915274507.html, DOI:10.3969/gab.028.000803 Abstract Environmental stress has an adverse effect on the growth of plants and the productivity of crops,so it is very important for agriculture to improve plant resistance to stress.Expression of a variety of genes is induced by these stresses in various plants,such as salt-resistant,drought-resistant,chilling-resistant genes and so on.It has become a hotspot to enhance plant adaptability to stress and study its molecular mechanism by plant genetic engi-neering and molecular biological technology.WRKY transcription factor is an inducible transcription factor which is involved in a variety of stress responses.In this paper,the structural characteristics of WRKY transcription factor family,and the expression profile of WRKY transcription factors in abiotic stresses (heat,cold,drought and salt),in exogenous substances (hormones and O 3)and in biotic stresses are reviewed.The expression profile in different stressshowed different characteristics,which may be related to the different biological functions of WRKY tran-scription factors. Keywords WRKY transcription factor,Expression profile,Abiotic stress,RT-PCR https://www.doczj.com/doc/6915274507.html,/doi/10.3969/gab.028.000803 基金项目:本研究由国家973计划项目(2009CB119001)资助 植物对胁迫的响应是一种积极主动的应激过程。植物接受胁迫信号后,通过一系列的信号传递途径,最终诱导相关基因的表达。转录因子在基因表达的调控过程中起着重要作用,它们与靶基因上游的各种特定DNA 元件结合,激活或抑制靶基因的转录活性,以调控其时空特异性表达。WRKY 类转录因子是一类研究较多的转录因子,它广泛的参与生物、非生物胁迫应答反应、信号分子传递、植物衰老和器官 发育等一系列生理活动(刘戈宇等,2006)。WRKY 转 录因子最早是在甜薯中发现(Ishiguro and Nakamura,1994),随后在多种植物中陆续发现了大量的WRKY 转录因子。WRKY 基因家族通常具有一个或者两个WRKY 域,WRKY 域能特异的与靶基因启动子区的W-box 结合,从而调控靶基因的表达(Rushton et al.,1995)。近年来,基于传统的分子生物学方法研究WRKY 基因功能的基础上,利用各种物种基因组数

相关主题
文本预览
相关文档 最新文档