当前位置:文档之家› 主观概率与先验分布

主观概率与先验分布

主观概率与先验分布
主观概率与先验分布

第二章主观概率和先验分布

Subjective Probability and Prior Distribution

本章主要参考文献:60,52,上帝怎样掷骰子

§2-1 基本概念

一、概率(probability)

1. 频率

f n(A)==N a/N

P (A)==lim

f n(A)…古典概率的定义

n

2. Laplace在《概率的理论分析》(1812)中的定义

P(A)==k/N

式中,k为A所含基本事件数,

N为基本事件总数

适用条件 1.基本事件有限

2.每个基本事件等可能

3.公理化定义

E是随机试验,S是E的样本空间,对E的每一事件A,对应有确定实数P(A),若满足:

①非负性:0≤P(A)≤1

②规范性:P(S)=1

③可列可加性:对两两不相容事件A k (k=1,2…) (A i∩A j=φ)

P(∪A k)=∑P(A k)

则称P(A)为事件A发生的概率

二、主观概率(subjective probability, likelihood)

1. 为什么引入主观概率

。有的自然状态无法重复试验

如:明天是否下雨

新产品销路如何

明年国民经济增长率如何

能否考上博士生

。试验费用过于昂贵、代价过大

例:洲导弹命中率

战争中对敌方下一步行动的估计

2.主观概率定义:合理的信念的测度

某人对特定事件会发生的可能的度量。

即他相信(认为)事件将会发生的可能性大小的程度。

这种相信的程度是一种信念,是主观的,但又是根据经验、各方而后知识,对客观情况的了解进行分析、推理、综合判断而设定(Assignment)的,与主观臆测不同。

例:考博士生、掷硬币、抛图钉

三、概率的数学定义

对非空集Ω,元素ω,即Ω={ω},F是Ω的子集A所构成的σ-域(即Ω∈F;

若A∈F则A∈F;

若A i∈F i=1,2,…则∪A i∈F)

若P(A)是定在F上的实值集函数,它满足

①非负性P(A)≥0

②规范性P(Ω)=1

③可列可加性

则称P(A)为直的(主以或客观)概率测度,简称概率

ω为基本事件

A为事件

三元总体(Ω,F,P)称为概率空间

注意:主观概率和客观概率(objective probability)有相同的定义

四、主客观概率的比较

(一) 基本属性:

O:系统的固有的客观性质,在相同条件下重复试验时频经的极限

S:概率是观察者而非系统的性质,是观察者对对系统处于某状态的信任程度

(二)抛硬币:正面向上概率为1/2

O:只要硬币均匀,抛法类似,次数足够多,正面向上的概率就是1/2,这是简单的定义。

S:这确是定义,DMer认为硬币是均匀的,正、反面出现的可能性(似然率)相同,1/2是个主观的量。

(三)下次抛硬币出现正面的概率是1/2

O:这种说法不对,不重复试验就谈不上概率

S:对DMer来说,下次出现正、反是等可能的。但是他不是说硬币本身是公正的,它可能会有偏差,就他现有知识而言,没有理由预言一面出现的可能会大于另一面,但多次抛掷的观察结果可以改变他的信念。

O、S:下次抛硬币出现正面还是反面不能确定,但知道:

要么是正面,要么是反面。

§2-2 先验分布(Prior distribution)及其设定

在决策分析中,尚未通过试验收集状态信息时所具有的信息叫先验信息,由先验信息所确定的概率分布叫先验分布。

设定先验分布是Bayesean分析的需要.

一、设定先验分布时的几点假设

1.连通性(Connectivity),又称可比性

即事件A和B发生的似然性likelihood是可以比较的:

A >L B或A ~L B或

B >L A 必有一种也仅有一种成立.

** A >L B读作A 发生的似然性大于B 发生的似然性,

A ~L

B 读作A 发生的似然性与B 发生的似然性相当。

2.传递性(Transitivity)

若对事件A,B,C , A >L B,B >L C 则A >L C

3. 部分小于全体:若A B则B L A

例:设定明年国民经济增长率时:

①A:8~11% B:12~15% C:15~20%

若A >L B,B >L C ,则A >L C

②A:8~11% D:8~10% 必有D >L A

二、离散型随机变量先验分布的设定

1.对各事件加以比较确定相对似然率

例1. 考博士生E:考取E:考不取

若P(E)=2P(E) 则P(E)=2/3 P(E)=1/3

例2。某地气候状况:正常年景θ1,旱θ2,涝θ3

正常与灾年之比:3∶ 2 则P(θ1)=0.6

水旱灾之比1∶ 1 P(θ2)=P(θ3)=0.2

该法适用于状态数较少的场合

2.打赌法

设 事件E 发生时收入P ,(0 <P <1) 且 E \c =(1—P)

调整P ,使决策人感到两者无差异为止, 则:P(E)=P

三、连续型RV 的先验分布的设定

1.直方图法

·该法适用于θ取值是实轴的的某个区间的情况

·步骤:①,将区间划分子区间θi …离散化

②设定每个子区间的似然率π(θi)…赋值

③变换成概率密度曲线

例如:明年国民经济的增长率

0.05

0.1

0.15

0.2

2%3%4%5%6%7%8%9%10%11%12%13%14%

15%

·缺点:①子区间的划分没有标准

②赋值不易

③尾部误差过大

2.相对似然率法

·适用范围:同1

步骤:①离散化

②赋值:给出各区间似然的相对比值

③规范化:

例如:同1

A. 相对似然率R 似然率π(A)

子区间8~9% 10 10/ΣR

7~8 9 9/ΣR

9~10 7.5 7.5/ΣR

B. 决策者给出每二个状态似然率的比例关系

a ij = p i /p j (1)

应有

a ij = 1/a ji (2)

a ij =a ik .a kj (3)

在(3)式不满足时,可用最小二乘法估计决策人心目中真正的主观概率分布Pi i=1,…,n 即求规划问题

min{∑∑(a ij p j - p i )}

s.t. ∑p i = 1 , p i ≥0

*用拉格朗日乘数法,构造拉格朗日函数

L =()()a

p p ij j n i n i i i n ===∑∑∑-+-112121λ

上式对p i ,i=1,2…n 求偏导数,并令其为0,得:

()()a

p p a a p p il i n l i il lj j n j l ==∑∑---+=110λ

l=1,2,…,n.

与 p i ∑=1 联列,构成n+1阶齐次方程组,求得P i, i=1,…,n

3.区间对分法

·适用范围:可以是开区间

·步骤:①求中位

②确定上、下四分位点(quartile fractile)

③由于误差积累,最多确定八分位点(Eighth fractile)

例:产品销售量(预计明年)

·缺点:精度差

4.与给定形式的分布函数相匹配

这是最常用,且常常被滥用的方法

·步骤:①选择一个与先验信息匹配得最好的函数

如正态,泊松,β,e-Cauchy 分布等

例:a)在单位时间以恒常的平均比率入出现,则在T 单位长度时间内该事件出现的次数服从Poisson 分布

2-4

b)若影响某一随机变量的因素很多而每一因素的作用均不显著,则该变量服从正态分布。例如,测量误差,弹落点,人的生理特征的度量,农作物产量等均服从正态分布。

c)事件A 出现的概率为P ,n 次独立试验出现r 次A 的概率b(p,r,n)= C p p n r r n r ()1-- .

即服从二项分布。

②参数估计:

A.矩法:N(μ,σ) Be(α,β)

·缺点:尾部估计不准,但对矩的影响却很大

B.分位数:利用几个分位点和现成的概率密度

函数分位数表,估计参数并检验。

5. 概率盘法(dart)

用园盘中的扇形区表示抽奖事件, 透用于西方管理人员

·注意:状态的概率或概率分布不是也不应富由决策分析人员来设定,而应当由决策人和有关问题专家提供基本信息。

理由:

§2-3 无信息先验分布

一、为什么要研究无信息先验

·Bayesean法需要有先验分布,贝叶斯法的简明性使人在无信息时也想用它。

二、如何设定无信息先验分布

1.位置参数

随机变量X的概率密度函数形如f(x-θ)时θ∈称为位置参数

其无信息先验π(θ)必为一常数

2.标度参数

X的密度函数为1/σf(x/σ)σ>称为标度密度σ称为标度参数

其无信息先验π(σ)=1/σ

§2.4 利用过去的数据设定先验分布

一、有θ的统计数据

为能获得θ的观察值θi i=1,…,n的数据,则可:

①通过直方图勾划出先验分布

②选取可能的函数形式作为先验分布,再定参数

③求频率(离散RV)

二、状态θ不能直接观察时

若直接观察的只是与θi 有关的x i (通常都是如此)则要从x i 中获取θi 的先验信息很困难:x i 的分布是随边缘分布m(.)而定的:

m(x)=f x d (|)()θπθθΘ? 或m(x)=p x (|)()θπθΘ∑ X 、Θ的联合密度是h(x,θ)=f(x |θ)μ(θ) 由x i 估计m(x)不难,但即使f(x |θ)已知,由此估计μ(θ)就难得多。

常用的概率分布类型其特征

常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一

个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N

X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 几种常见的具有可加性的分布 (1) 1.1 二项分布 (2) 1.2 泊松分布(Possion分布) (3) 1.3 正态分布 (4) 1.4 伽玛分布 (6) 1.5 柯西分布 (7) 1.6 卡方分布 (7) 2 具有可加性的概率分布间的关系 (8) 2.1 二项分布的泊松近似 (8) 2.2 二项分布的正态近似 (9) 2.3 正态分布与泊松分布间的关系 (10) 2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3 小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 概率论中几种具有可加性的分布及其关系 摘要 概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数 Several Kinds of Probability Dstribution and its Relationship with Additive Abstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of https://www.doczj.com/doc/6917996013.html,bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on, has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function 引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1 几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示

第一章 先验分布与后验分布

第一章 先验分布与后验分布 1.1 解:令120.1,0.2θθ== 设A 为从产品中随机取出8个,有2个不合格,则 2 2618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有 1111122()() ()0.4582()()()() P A A P A P A θπθπθθπθθπθ==+ 2221122()() ()0.5418()()()() P A A P A P A θπθπθθπθθπθ= =+ 1.2 解:令121, 1.5λλ== 设X 为一卷磁带上的缺陷数,则()X P λ ∴3(3)3! e P X λ λλ-== 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有 111222(3)() (3)0.2457 (3)(3)() (3)0.7543 (3) P X X P X P X X P X λπλπλλπλπλ========== 1.3 解:设A 为从产品中随机取出8个,有3个不合格,则 33 58()(1)P A C θθθ=- (1) 由题意知 ()1,01πθθ=<< 从而有 351 ()() ()504(1),01()()P A A P A d θπθπθθθθθπθθ = =-<

1 (),102010πθθ= << 11.611.51()0.0110 m x d θ==? 从而有 ()()()10,11.511.6() P x x m x θπθπθθ==<< 1.6 证明:设随机变量()X P λ ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则 (),0 ! x e P x x λ λλλ-= > 1(),0 () e ααβλ βπλλλα--=>Γ 因此 11(1) ()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝?∝= 所以 (,1) x G a x λαβ++ 1.7 解:(1)由题意可知 ()1,01πθθ=<< 因此 1 2 2()12(1)x x m x d x θθ =?=-? 因此 2()()1(),1 ()1P x x x x m x x θπθπθθθ==<<- (2) 由题意可知 1 22 2()36x m x d x θθθ=?=? 因此 ()() ()1,01 () P x x m x θπθπθθ= =<< 1.8 解:设A 为100个产品中3个不合格,则 3 397100()(1)P A C θθθ=- 由题意可知 199(202) ()(1),01(200) πθθθθΓ= -≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝?∝--=- 由上可知 (5,297)A Be θ

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

一十种概率密度函数

一十种概率密度函数 function zhifangtu(x,m) %画数据的直方图,x表示要画的随机数,m表示所要画的条数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a=min(x); b=max(x); l=length(x); h=(b-a)/m; %量化x x=x/h; x=ceil(x); w=zeros(1,m); for i=1:l for j=1:m if (x(i)==j) %x(i)落在j的区间上,则w(j)加1 w(j)=w(j)+1; else continue end end end w=w/(h*l); z=a:h:(b-h); bar(z,w); title('直方图') function y=junyun(n) %0-1的均匀分布,n代表数据量,一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y=ones(1,n); x=ones(1,n); m=100000; x0=mod(ceil(m*rand(1,1)),m); x0=floor(x0/2); x0=2*x0+1; u=11; x(1)=x0; for i=1:n-1 x(i+1)=u*x(i)+0; x(i+1)=mod(x(i+1),m); x(i)=x(i)/m; end %x(n)单位化

x(n)=x(n)/m; y=x; function y=zhishu(m,n) %指数分布,m表示指数分布的参数,m不能为0.n表示数据量,n一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1;n if (x(i)==0) x(i)=0.0001; else continue; end end u=log(x); y=-(1/m)*u; function y=ruili(m,n) %瑞利分布,m是瑞利分布的参数,n代表数据量,n一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1:n if (x(i)==0) x(i)=0.0001; else continue; end end u=(-2)*log(x); y=m*sqrt(u); function y=weibuer(a,b,n) %韦布尔分布,a,b表示参数,b不能为0.n表示数据量,一般要大于1024 %a=1时,是指数分布 %a=2时,是瑞利分布%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1:n if (x(i)==0) x(i)=0.0001; else continue; end

伽马先验分布的草案

1先验分布服从伽马-逆伽马分布 1:取形状参数先验分布为伽马分布: )exp() (),(~)(1 bm m a b b a Ga m a a -= -Γπ, 其中a 为形状参数,b 为尺度参数。 2:尺度参数的先验分布为逆伽马分布: ??? ? ??- ??? ? ??=+ηη ηπv u v v u IGa u u exp 1 )(),(~)(1 Γ, 其中u 为形状参数,v 为尺度参数。 则两参数的联合验前分布为: ??? ? ??- ???? ??? -= ?=+-ηηηπv u v bm m a b v u IGa b a Ga m u u a a exp 1)()exp() (),(),(),(1 1 ΓΓ )(?Γ为伽马函数: dx e x a x a -∞+-? = 1 )(Γ 0>a 2 超参数确定方法 上面给出的先验分布中,除了两参数数都取无信息先验分布,其它先验分布都含有未知的超参数。超参数可以根据经验专家给出,但是更多的时候要利用先验数据确定。通常利用先验矩可以确定超参数。这时,首先要获得参数θ(对于Weibull 而言,就是m 和η)的样本,然后才能去估计参数的样本矩。然而,已知的先验数据与参数的样本并没有明显的对应关系。在工程应用中,常用自助法(Bootstrap )获得参数的样本。自助法的核心是利用自助样本(或称为再生样本)来估计未知概率测度的某种统计量的统计特性。设),,(21n t t t T ???=是得到的一组数控系统无故障工作时间样本。通过其运用自助法便可获得m 和η的样本。具体步骤如下: 1)对),,(21n t t t T ???=进行有放回抽样,可得到自助样本; 2)利用自助样本),,(* *2*1*n t t t T ???=进行最大似然估计,得到m ?,η?; 3)重复上述两个步骤N 次,得到估计参数样本)}?,?(,),?,?(),?,?{(2211N N m m m ηηη???; 4)利用得到的估计参数样本即可求未知参数m ,η的期望和方差。 通过得到的N 组参数样本,分别计算其期望与方差,可以得到验前分布的超参数。当假设先验分布为二元正态时: ∑ == N i i m m N 1 ?1μ,∑ ==N i i N 1 ?1ημη,∑=--= N i m i m m N 1 2 2 ?1 1)(μσ,

主观概率与先验分布

第二章主观概率和先验分布 Subjective Probability and Prior Distribution 本章主要参考文献:60,52,上帝怎样掷骰子 §2-1 基本概念 一、概率(probability) 1. 频率 f n(A)==N a/N P (A)==lim f n(A)…古典概率的定义 n 2. Laplace在《概率的理论分析》(1812)中的定义 P(A)==k/N 式中,k为A所含基本事件数, N为基本事件总数 适用条件 1.基本事件有限 2.每个基本事件等可能 3.公理化定义 E是随机试验,S是E的样本空间,对E的每一事件A,对应有确定实数P(A),若满足: ①非负性:0≤P(A)≤1 ②规范性:P(S)=1 ③可列可加性:对两两不相容事件A k (k=1,2…) (A i∩A j=φ) P(∪A k)=∑P(A k) 则称P(A)为事件A发生的概率

二、主观概率(subjective probability, likelihood) 1. 为什么引入主观概率 。有的自然状态无法重复试验 如:明天是否下雨 新产品销路如何 明年国民经济增长率如何 能否考上博士生 。试验费用过于昂贵、代价过大 例:洲导弹命中率 战争中对敌方下一步行动的估计 2.主观概率定义:合理的信念的测度 某人对特定事件会发生的可能的度量。 即他相信(认为)事件将会发生的可能性大小的程度。 这种相信的程度是一种信念,是主观的,但又是根据经验、各方而后知识,对客观情况的了解进行分析、推理、综合判断而设定(Assignment)的,与主观臆测不同。 例:考博士生、掷硬币、抛图钉 三、概率的数学定义 对非空集Ω,元素ω,即Ω={ω},F是Ω的子集A所构成的σ-域(即Ω∈F; 若A∈F则A∈F; 若A i∈F i=1,2,…则∪A i∈F) 若P(A)是定在F上的实值集函数,它满足 ①非负性P(A)≥0 ②规范性P(Ω)=1

考试练习题常用概率分布教学提纲

考试练习题常用概率 分布

第四章 选择题: 1.二项分布的概率分布图在 条件下为对称图形。 A .n > 50 B .π=0.5 C .n π=1 D .π=1 E .n π> 5 2.满足 时,二项分布B (n,π)近似正态分布。 A .n π和n (1-π)均大于等于5 B .n π或n (1-π)大于等于5 C .n π足够大 D .n > 50 E .π足够大 3. 的均数等于方差。 A .正态分布 B .二项分布 C .对称分布 D .Poisson 分布 E .以上均不对 4.标准正态典线下,中间95%的面积所对应的横轴范围是 。 A .-∞到+1.96 B .-1.96到+1.96 C .-∞到+2.58 D .-2.58到+2.58 E .-1.64到+1.64 5.服从二项分布的随机变量的总体均数为 。 A .n (1-π) B .(n -1)π C .n π(1-π) D .n π 6.服从二项分布的随机变量的总体标准差为 。 A . B . (1-π)(1-π)( -)π1 C . D . π(1-π)(π 7.设X 1,X 2分别服从以λ1,λ2为均数的Poisson 分布,且X 1与X 2独立,则X 1+X 2服从以 为方差的Poisson 分布。 A . B .λ2λ12+2λ 2λ1+ C . D . 2λ2λ1+() 2λ2λ1+() E .λ2λ12+2 8.满足 时,Poisson 分布Ⅱ(λ)近似正态分布。

A.λ无限大 B.λ>20 C.λ=1 D.λ=0 E.λ=0.5 9.满足时,二项分布B(n,π)近似Poisson分布。 A.n很大且π接近0 B.n→∞ C.nπ或n(1-π)大于等于5 D.n很大且π接近0.5 E.π接近0.5 10.关于泊松分布,错误的是。 A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布 B.泊松分布均数λ唯一确定 C.泊松分布的均数越大,越接近正态分布 D.泊松分布的均数与标准差相等 E.如果X1和X2分别服从均数为λ1和λ2的泊松分布,且相互独立。则 X1+X2服从均数为λ1+λ2的泊松分布。 11.以下分布中,均数等于方差的分布是。 A.正态分布 B.标准正态分布 C.二项分布 D.Poisson分布 E.t 分布 12.随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ 2),X与Y独立,则X-Y服从。 2 A.N(μ1+μ2,σ12-σ22) B.N(μ1-μ2,σ12-σ22) C.N(μ1-μ2,σ12+σ22) D.N(0,σ12+σ22) E.以上均不对 13.下列叙述中,错误的是。 A.二项分布中两个可能结果出现的概率之和为1 B.泊松分布只有1个参数λ C.正态曲线下的面积之和为1

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

经典高考概率分布类型题归纳

经典高考概率分布类型 题归纳 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

经典高考概率分布类型题归纳 高考真题 一、超几何分布类型 二、二项分布类型 三、超几何分布与二项分布的对比 四、古典概型算法 五、独立事件概率分布之非二项分布(主要在于如何分类) 六、综合算法 高考真题 2010年 22、(本小题满分10分)(相互独立事件) 某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。 (1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布 列; (2)求生产4件甲产品所获得的利润不少于10万元的概率。 【解析】本题主要考查概率的有关知识,考查运算求解能力。满分10分。 (1)由题设知,X 的可能取值为10,5,2,-3,且 P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18, P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02。 由此得X 的分布列为: (2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件。 由题设知4(4)10n n --≥,解得14 5 n ≥, 又n N ∈,得3n =,或4n =。 所求概率为3 344 0.80.20.80.8192P C =??+= 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。

概率分布函数各种类型

Diagram of distribution relationships Probability distributions have a surprising number inter-connections. A dashed line in the chart below indicates an approximate (limit) relationship between two distribution families. A solid line indicates an exact relationship: special case, sum, or transformation. Click on a distribution for the parameterization of that distribution. Click on an arrow for details on the relationship represented by the arrow. Other diagrams on this site:

The chart above is adapted from the chart originally published by Lawrence Leemis in 1986 (Relationships Among Common Univariate Distributions, American Statistician 40:143-146.) Leemis published a larger chart in 2008 which is available online.

贝叶斯统计_先验分布的确定

第三章先验分布的确定 3.1 主观概率 3.1.1概率的公理化定义 定义:设Ω为一个样本空间,F 为Ω的某些子集组成的一个事件域,如果对任一事件A ∈F ,定义在F 上一个实值函数P(A)满足下列条件: (1)非负性公理:对于每一事件A ,有P(A)≥0; (2)正则性(规范性)公理:P(Ω)=1; (3)可列可加性(完全可加性)公理:设A 1,A 2,…是互不相容的事件,即对于i≠j ,A i A j =?,i ,j=1,2,…,则有 11()()i i i i P A P A ∞∞ ===∑U 则称P (A )为事件A 的概率(Probability),称三元素(Ω,F ,P)为概率空间(Probability space)。 概率是定义在σ-域F 上的一个非负的、正则的、可列可加的集函数。 3.1.2主观概率 在经典统计中,概率是用三条公理定义的:1)非负性;2)正则性;3)可加性。概率确定方法有两种:1)古典方法;2)频率方法。 实际中大量使用的是频率方法,所以经典统计的研究对象是能大量重复的随机现象,不是这类随机现象就不能用频率的方法去确定其有关事件的概率。这无疑把统计学的应用和研究领域缩小了[1]。在经典统计中有一种习惯,对所得到的概率都要给出频率解释,这在有些场所是难于做出的。譬如,天气预报:“明天下雨的概率是0.8”。 贝叶斯统计中要使用先验信息,而先验信息主要是指经验和历史资料。因此如何用人们的经验和过去的历史资料确定概率和先验分布是贝叶斯学派要研究

的问题。 贝叶斯学派是完全同意概率的公理化定义,但认为概率也是可以用经验确定。这是与人们的实践活动一致。这就可以使不能重复或不能大量重复的随机现象也可谈及概率。同时也使人们积累的丰富经验得以概括和应用。 贝叶斯学派认为:一个事件的概率是人们根据经验对该事件发生可能性所给出个人信念。这样给出的概率称为主观概率。下面举几个例子:一个企业家认为“一项新产品在未来市场上畅销”的概率是0.8,这里的0.8是根据他自己多年的经验和当时一些市场信息综合而成的个人信念。 一位医生要对一位病人动手术,他认为成功的概率是0.9,这是他根据手术的难易程度和自己的手术经验而对“手术成功”所给出的把握程度。 这样的例子在我们生活,生产和经济活动中也是常遇见的,他们观察的主观概率绝不是随意的,而是要求当事人对所考察的事件有较透彻的了解和丰富的经验,甚至是这一行的专家。并能对周围信息和历史信息进行仔细分析,在这个基础上确定的主观概率就能符合实际。所以应把主观概率与主观臆造,瞎说一通区别开来。 主观概率要受到实践检验,要符合概率的三条公理,通过实践检验和公理验证,人们会接受其精华,去其糟粕。 主观概率是频率方法和经典方法的一种补充,有了主观概率至少使人们在频率观点不适用时也能谈论概率,使用概率和统计方法。 主观概率并不反对用频率方法确定概率,但也要看到它的局限性。 3.1.3 确定主观概率的方法 (1)用对立事件的比较来确定主观概率(最简单的方法) 例3.1 一位出版商要知道一本新书畅销(事件A)的概率是多少,以决定是否与作者签订出版合同。他在了解这本新书的内容后,根据他自己多年出书的经验认为该书畅销的可能性较大,畅销(A)比畅销(A)的可能性要高出一倍,即 P A=,即 +=,可以推得()2/3 P A P A P A P A ()2() =,由此根据概率的性质()()1

高考概率分布类型题归纳

高考概率分布类型题归 纳 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

经典高考概率分布类型题归纳 高考真题 一、超几何分布类型 二、二项分布类型 三、超几何分布与二项分布的对比 四、古典概型算法 五、独立事件概率分布之非二项分布(主要在于如何分类) 六、综合算法 高考真题 2010年 22、(本小题满分10分)(相互独立事件) 某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。 (1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率。 【解析】本题主要考查概率的有关知识,考查运算求解能力。满分10分。 (1)由题设知,X 的可能取值为10,5,2,-3,且 P (X=10)=×=, P (X=5)=×=, P (X=2)=×=, P (X=-3)=×=。 由此得X 的分布列为: (2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件。 由题设知4(4)10n n --≥,解得14 5 n ≥, 又n N ∈,得3n =,或4n =。 所求概率为3 344 0.80.20.80.8192P C =??+= 答:生产4件甲产品所获得的利润不少于10万元的概率为。 (2012年)22.(本小题满分10分)(古典概型) 设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时, 0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=.

数据分析-分布类别

各种分布 泊松分布 Poisson分布,是一种统计与概率学里常见到的离散概率分布。 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积、单位体积)内随机事件的平均发生率。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为 特征函数为: 泊松分布与二项分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的。 泊松分布可作为二项分布的极限而得到。一般的说,若 ,其中n很大,p很小,因而不太大时,X的分布接近于泊松分布。这个事实有时可将较难计算的二项分布转化为泊松分布去计算。 应用示例

泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,某放射性物质发射出的粒子,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 卡方分布 卡方分布( 分布)是概率论与统计学中常用的一种概率分布。n 个独立的标准正态分布变量的平方和服从自由度为n 的卡方分布。卡方分布常用于假设检验和置信区间的计算。 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution),即分布(chi-square distribution),其中参数n称为自由度。正如正态分布中均值或方差不同就是另一个正态分布一样,自由度不同就是另一个分布。记为或者。 卡方分布与正态分布 卡方分布是由正态分布构造而成的一个新的分布,当自由度n很大时,分布近似为正态分布。对于任意正整数x,自由度为 k的卡方分布是一个随机变量X 的机率分布。 期望和方差

各种概率分布介绍

一、引言 Bayes统计起源于英国学者托马斯.贝叶斯(Thomas Bayes,1702~1761)死后发表的一篇论文“论有关机遇问题的求解”。在此论文中他提出了著名的贝叶斯公式和一些归纳推理方法,随后拉普拉斯(Laplace,P.C.1749~1827)不仅重新发现了贝叶斯定理,阐述的远比贝叶斯更为清晰,而且还用它来解决天体力学、医学统计以及法学问题。之后虽有一些研究和应用但由于其理论尚不完整,应用中出现一些问题,致使贝叶斯方法长期未被接受。直到二战后,瓦尔德(Wald,A.1902~1950)提出统计决策函数论后又引起很多人对贝叶斯研究方法的兴趣。因为在这个理论中,贝叶斯解被认为是一种最优决策函数。在Savage,L.J.(1954)、Jeffreys,H.(1961)、Good,I.J(1950)、Lindley,D.V(1961)、Box,G.E.P.&Tiao,G.C.(1973)、Berger,J.O.(1985)等贝叶斯学者的努力下,对贝叶斯方法在观点、方法和理论上不断的完善。另外在这段时期贝叶斯方法在工业、经济、管理等领域内获得一批无可非议的成功应用。贝叶斯统计的研究论文与著作愈来愈多,贝叶斯统计的国际会议经常举行。如今贝叶斯统计已趋成熟,贝叶斯学派已发展成为一个有影响的学派,开始打破了经典统计学一统天下的局面。 贝叶斯统计是在与经典统计的争论中发展起来的,现已成为统计学中不可缺少的一部分.贝叶斯统计与经典统计的主要区别就是是否利用先验信息。贝叶斯统计重视已出现的样本观测值,对尚未发生的样本观测值不予考虑。近几年来对贝叶斯统计的广泛应用,使得贝叶斯统计在可靠性问题中起到越来越重要的作用。尤其是对产品的失效率以及产品寿命的检验中,更是离不开贝叶斯统计。本文主要是探索串联系统和并联系统的可靠性,以及可靠性增长模型的Bayes估计,这些都表现出了Bayes统计在可靠性中的广泛应用。 二、绪论 (一)统计学及其发展历程 人类的统计活动源远流长,自从有了数的概念,有了计数活动,就有了统计。但作为一门学科的统计学,它的出现却晚得多。英国学者配第(W.Petty)《政治算术》一书的问世,标志着统计学的开端。 概率论是统计学的重要起源之一。14世纪时,在工商业比较繁荣的意大利以及地中海岸其他地区,由于赌博游戏盛行和保险活动的萌起。人们

常用的概率分布类型及其特征

常用的概率分布类型及其特征3. 1二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格; 可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取服从的分布称两点分布。 其概率分布为: 其中Pk=P(X=Xk,表示X取Xk值的概率: 0< P< 1。 X的期望E (X) =P X 的方差 D (X) =P (1 —P) 2、均匀分布产品或者 0和1。它

如果连续随机变量X的概率密度函数f (x)在有限的区间[a , b]上等于个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E (X) = (a+b) 12 X的方差 D (X) = (b-a) 2/12 3.2抽样检验中应用的分布 3. 2. 1超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0, 1,……

X 的期望 E (X)二nd/N

X 的方差 D (X) = ( (nd/N) ( (N-d) /N ) ( (N-n) /N ) ) (1/2 ) 3. 2. 2二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算 起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: P(X=x) =厂门1川0

随机变量及其分布列.几类典型的随机分布

随机变量及其分布列.几类典型的随机分布 1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =列表表示: X X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. 两点分布又称01-以这种分布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤, 这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参

数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为 ()C (1)k k n k n n P k p p -=-(0,1,2,,)k n =. 2.二项分布 若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立 重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q -==,其中0,1,2,,k n =.于是得到X 的分布列 由式 00111 0()C C C C n n n k k n k n n n n n n q p p q p q p q p q --+=++++ 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . 二项分布的均值与方差: 若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D x npq =(1)q p =-. ⑷正态分布 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为 X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从 正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为 22 ()2()x f x μσ--= ,x ∈R ,其中μ,σ是参数,且0σ>, μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.

相关主题
文本预览
相关文档 最新文档