当前位置:文档之家› 浅谈反证法在数学中的应用

浅谈反证法在数学中的应用

浅谈反证法在数学中的应用
浅谈反证法在数学中的应用

浅谈反证法在数学中的应用

摘要

反证法在数学中是一种极其重要的证明方法,被称为“数学家最精良的武器之一”。它与一般证明方法不同,反证法可分为归谬反证法和穷举反证法两种。只要抓住要领,反证法就能使一些不易直接证明的问题变得简单,易证,它在数学证题中确有独到之处。本文主要介绍了反证法的基本概念、步骤、依据及分类。对于反证法的应用需注意事项和解题步骤做一些论述。

关键词:反证法;归谬;矛盾;假设;结论

Abstract

Contradiction in mathematics is an extremely important method of proof, known as "mathematician one of the most sophisticated weapons." It is different with the general method of proof, proof by contradiction can be classified into two kinds of absurd contradiction and exhaustive reductio ad absurdum. Simply grab the essentials, reductio ad absurdum can make a number of difficult problems becomes simple direct proof, easy to prove, it is proof in mathematics problem in that there are unique. This paper describes the concept of reductio ad absurdum, steps, basis and classifications.The reductio ad absurdum of the application notes and problem-solving steps required to do some exposition.

Key word: Absurdity ,Contradiction ,Contradiction ,Supposition ,Conclusion

目录

1. 引言 (2)

2.反证法的定义及步骤 (3)

2.1反证法的定义 (3)

2.2 反证法的步骤 (3)

2.3反证法的逻辑依据及分类 (4)

2.3.1反证法的逻辑依据 (4)

2.3.2反证法的分类 (4)

2.4反证法如何正确的作出反设 (5)

2.5反证法如何正确的导出矛盾 (7)

2.6在数学中适于应用反证法证明的命题 (7)

2.6.1基本命题 (7)

2.6.⒉否定式命题 (8)

2.6.⒊限定式命题 (9)

2.6.⒋唯一性命题 (9)

3、运用反证法应注意的问题 (10)

4.结束语 (11)

参考文献 (12)

致谢 (12)

1、引言

有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却挂满了李子,所以说李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。

2、反证法的定义及步骤

2.1 反证法的定义

先提出与结论相反的假设,然后推导出和已证明的定理、公理、定义或题设相矛盾

的结果,这样就证明了与结论相反的假设不能成立,从而肯定了原来的结论成立,这种间接证明的方法叫反证法。

2.2 反证法的步骤

用反证法证明一个命题的步骤大体上可以分为三步:

(1)反设——假设待证结论不成立,亦即肯定待证结论的反面,并将其作为增加条件,添加到给定的题设中去。

(2)归谬——从题设和反设出发,通过推理和论证,最终推出矛盾。

(3)结论——说明待证命题结论的反面不能够成立,再根据排中律(否定反面,肯定正面),从而肯定欲证命题的结论[3]。

例1 求证大于1的任何整数一定有质因数。

证明: 反射:假设至少有一个大于1的整数n 没有质因数,即1≠n 且不是质数(因为质数本身是质因数),则n 必为合数。

归谬:n 必有一个不等于n 的真因数1n ,故11>

>n n ,这里1n 也必不是质数(否则,n 有质因数);同理,1n 也有一个质因数2n ,使121>

>n n ,2n 也必不是质数。依次类推,可得12

1>???>>>n n n 。这表明,在n 与1之间有无限多个不同的整数,这与一个确定的整数n 与1之间只能有有限个不同的整数有矛盾。

结论:“假定”是错误的,因此,大于1的任何整数一定有质因数。

例2已知:?

∈?????B a B A a ,,,,求证:直线AB 和a 是异面直线。

证明:【提出假设】假设直线AB和a在同一平面内,那么这个平面一定经过点B和直线。

【推出矛盾】因为a

B?,经过点B和直线a只能有一个平面?,所以直线AB与a应在平面?内,所以?

A矛盾。

?

A,这与已知?

2.3 反证法的逻辑依据及分类

2.3.1 反证法的逻辑依据

反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、公理、定理、法则或者已证证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”结论与“否定的结论”这一互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。

2.3.2 反证法的分类

按照反设所涉及到的情况的多少,反证法可以分为归谬反证法与穷举反证法。

(1)用反证法证题时,如果要证明的命题的情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”

例3 已知m为整数,且m2是偶数,求证:m为偶数。

分析:本题如果用直接法来证明的话,给人一种无从下手的感觉,题目给我们的已知条件是很简单的,我们只能从反面去考虑它,由已知条件,我们知道,m为整数,且m2是偶数,所以,我们只需证当m为奇数的时候m2不是偶数就可以了。

证明:假设m不是偶数,则m为奇数。设m=2k+1(k为整数),于是,m2为奇数,这与已知条件m2是偶数矛盾。故m为偶数。

(2)如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。

2.4 反证法如何正确的作出反设

运用反证法证明命题的第一步就是:假设命题的结论不成立,即假设结论的反面成立。在这一步骤中,必须注意正确地反设,这是正确运用反证法的基础、前提,正确作

出反设,是使用反证法的一大关键。否则,即使推理、论证再好也都会前功尽弃。要想正确的做出反设,必须注意以下几点:

(1)分清命题的条件与结论、结论与反设间的逻辑关系。 例4 试证适合xy+yz+zx=1的实数x 、y 、z 必不能满足x+y+z=xyz 。

分析:首先我们要弄清楚题目的意思,根据题目给我们的意思,我们很难正面对它进

行证明,所以我们考虑用反证法,同时我们要注意正确作出反设,由题目我们不难得知实数x 、y 、z 能满足方程xy+yz+zx=1,但不满足方程x+y+z=xyz,所以我们作出反设的时候要设实数x 、y 、z 既能满足xy+yz+zx=1,又能满足x+y+z=xyz 。我们知道实数x 、y 、z 就是方程xy+yz+zx=1和方程x+y+z=xyz 联立起来的方程组的一个实数根,我们可以根据这个特点去寻找矛盾。对于含有多个字母的给定式,在计算时,尽量设法减少字母的个数,这是一个原则。

(2)结论的反面常常不止一种情形,则需反设后,分别就各种情况归谬,做到无一遗

漏。

例5 已知: 2

33=+q p ,求证:2≤+q p 。 分析:此题的结论有两种情况,其否定只有一种情况q p +>2,因此用反证法证明

时,只要否定了这种情况,就能肯定2≤+q p 的这种情况了。

证明:假设q p +>2,则q >p -2

3q ∴>326128

p p p -+- 33q p +∴>26128p p +-=??? ??++-311262p p =()2162-+p =

由此可知:2

33≠+q p ,这与已知矛盾。 ∴2≤+q p

例6 已知:平面?∥平面β,直线A

l =? ,求证:l 与β也相交。

分析:此题结论的否定有两种情况:

1

β

?

l;2l∥β.用反证法证明时,

只有把这两种情况都否定了,才能肯定l与β相交。

总之,在否定命题的结论之前,首先要弄清命题的结论是什么,当命题结论的反面非常明显并且只有一种情形时是比较容易做出否定的,但命题的结论的反面是多种情形或者比较隐晦时,就不太容易做出否定。这时必须认真分析、仔细推敲,在提出“假设”后,再回过头来看看“假设”的对立面是否恰是命题的结论。

例如:1)结论:至少有一个S是P。

错误假设:至少有两个或两个以上S是P,

正确假设:没有一个S是P。

例如;2)结论:最多有一个S是P。

错误假设:最少有一个S是P。

正确假设:至少有两个S是P。

例如:3)结论:全部S都是P。

错误假设:全部的S都不是P。

正确假设:存在一个S不是P。

现将一些常用词的否定形式列表如下:

2.5 反证法如何正确的导出矛盾

归谬,是反证法的关键,也是困难的所在。初学者往往作出反设以后,就迈不开步子了,不知往哪里走才能找到矛盾。

导出矛盾的过程,没有固定的模式可以套用。要凭借解题者拥有的知识与具备的能力,要善于从反设与条件中,抓住蛛丝马迹,发现矛盾。

此外,有两点应该引起我们注意:

⑴导出矛盾,要从反设出发,否则,推导将成为无源之水,无本之木。

⑵推理必须严谨。有人以为反证法就可以不讲依据,那是诡辩,只能导致荒谬。

一般来说,归谬的情况大致有如下几种:

①推出与公理相矛盾的结论;

②推出与已知定理相矛盾的结论;

③推出与已知定义相矛盾的结论;

④推出两个相互矛盾的结论;

⑤推出与原命题题设条件相矛盾的结论;

⑥推出与逆否命题假设相矛盾的结论。

2.6 在数学中适于应用反证法证明的命题

2.6.1 基本命题,即学科中的起始性命题。此类命题由于已知条件及能应用的定理、公式、法则较少,或由题设条件所能推得的结论很少,因而直接证明入手较难,此时应用反证法容易奏效。如平面几何、立体几何等,在按照公理化方法来建立起它的科学体系时,最初只是提出少量的定义、公理。因此,在起始阶段的一些性质和定理很难直接推证,它们多数宜于用反证法来证明。

例7 求证:两条直线如果有公共点,最多只有一个。

证明:假设它们有两个公共点A ,B ,这两条直线分别是a ,b

那么A ,B 都属于a ,A ,B 也都属于b ,

因为两点决定一条直线,

所以a ,b 重合,命题不成立, 原命题正确,公共点最多只有一个。

2.6.2. 否定式命题,即结论中含有“不是”、“不可能”、“不存在”等词语的命题。此类命题的反面比较具体,适于应用反证法。

例8 CD

AB 、为圆两条相交弦,且不全为直径, 求证:CD

AB 、不能互相平分。 证明:假设弦CD

AB 、被P 点平分, 由于P 点一定不是圆心,连接OP ,

则有CD

OP AB OP ⊥⊥,, 即过一点P 有两条直线与OP 垂直,

这与垂线性质矛盾,所以弦CD

AB 、不能被P 平分。 例9 证明函数y = cos x 不是周期函数。

证明:假设函数 y=cos x 是周期函数,即存在 T ≠0,使cos T x += cos x

令 x=0,得 T=4k 2π2 (k ≠0, k ∈Z , 不妨设 k>0)。

令x=4π2,得 22244

ππk += 2m π (m ∈N) ∴21k +=m ∈N

但是当k>0时, k<21k +

故 函数y = cos x 不是周期函数。

例10 求证:形如4n+3的整数不能化为两整数的平方和。

证明:假设p 是4n+3型的整数,且p 能化成两个整数的平方和,即p=a +b , 则由p 是奇数得a 、b 必为一奇一偶。

不妨设a=2s+1,b=2t ,其中s 、t 为整数,

p=a+b=(2s+1)+(2t)=4(s+s+t)+1,这与p 是4n+3型的整数矛盾。

例11 证明:△ABC 内不存在这样的点P ,使得过P 点的任意一条直线把△ABC 的面积分成相等的两部分。

证明:假设在△ABC 内存在一点P ,使得过P

点的任一条直线把△ABC 的面积分成

相等的两部分。连接AP 、BP 、CP 并分

别延长交对边于D 、E 、F 。

由假设,S △ABD=S △ADC ,于是D 为BC

的中点,同 理E 、F 分别是AC 、AB 的

中点,从而P 是△ABC 的重心。

过P 作BC 的平行线分别交AB 、AC 于M 、N ,则 ,

这与假设过P 点的任一条直线把△ABC 的面积分成相等的两部分矛盾。

2.6.

3. 限定式命题,即结论中含有“至少”、“最多”等词语的命题。

例12 已知函数f(x)是单调函数,则方程f(x)=0 最多只有一个实数根。

证:假设方程至少有两个根x 1,x 2且x 1≠x 2,

则有 f(x 1)=f(x 2) (x 1≠x 2)

这与函数单调的定义显然矛盾,故命题成立。

例13 平面上有六个圆,每个圆圆心都在其余各圆外部,则平面上任一点不会同时在这六个圆上。

证:题意即这六个圆没有共同的交点。

如果这六个圆至少有一个共同的交点,则连接这交点与每个圆的圆心的线段中,总有两条线段所成的角不超过60°。

这时,这两条线段所连接的圆如果半径相等,那么两圆圆心在对方圆内; 否则,较小的圆圆心在较大的圆之内,这都与已知矛盾。

例14 若p >0,q >0,p 3+q 3=2。试用反证法证明:p +q ≤2。

证明:此题直接由条件推证p +q ≤2是较困难的,由此用反证法证之。

假设p +q >2,∵p >0,q >0,

∴(p +q )3=p 3+3p 2q +3pq 2+q 3>8

又∵p 3+q 3=2。代入上式得:3pq (p +q )>6。即pq (p +q )>2 ① 又由p 3+q 3=2得(p +q )(p 2-pq +q 2)=2

由①②得pq (p +q )>(p +q )(p 2-pq +q 2)

∵p +q >0。

∴pq >p 2-pq +q 2?p 2-2pq +q 2<0?(p -q )2<0与(p -q )2≥0相矛盾。 ∴假设p +q >2不成立。故p +q ≤2。

2.6.4. 唯一性命题,即结果指定唯一的命题。

例15 已知,0≠a 证明x 的方程b ax =有且只有一个根。

证明:由于,0≠a 因此方程至少有一个根a

b x =

如果方程不只一个根,不妨设21,x x 是它的两个不同的根 即b ax =1 b ax =2两式相减,得:)(21x x a -=0

因为21x x ≠,所以021≠

-x x ,所以应有0=a ,这与已知矛盾, 故假设错误。所以,当0≠a 时,方程b ax =有且只有一个根。

例16 求证:方程x = sinx 的解是唯一的。

证明:显然,x = 0是方程的一个解。以下用反证法证明方程的解是唯一的。 假设方程至少有两个解α、β(α≠β),则有sin α=α ,sin β=β 两式相减得: sin α-sin β=α-β

∴ 2cos

2βα+sin 2

βα-=α-β ∵ |sin 2βα-|<|2

βα-| ∴ |cos 2βα+|·|2βα-|>2

||βα- 得 |cos 2

βα+|>1, 显然矛盾。 故 方程 x = sinx 的解是唯一的。 例17 求证方程 22+x=6 仅有唯一实根 2。

证明:假设方程 22+x=6 有一个非 2 的实根α 。

则有 2a + α =6 ,与 22+2=6 相减,得 2a -22=2- α 。

∵α≠ 2 ,故α> 2 或α< 2。

当α> 2 时, 2a -22 > 0 ,而 2- α< 0 ,相矛盾 。

当α< 2 时, 2a -22 < 0 ,而 2- α> 0 ,也矛盾 。

∴假设方程有一个非 2 的实根是错误的 。

∴不存在非 2 的实根α,即方程仅有唯一实根 2。

3、 运用反证法应注意的问题

运用反证法证明命题的第一步是:假设命题的结论不成立,即假设结论的反面成立。在这一步骤中,必须注意正确的“否定结论”,这是正确运用反证法的前提,否则,即使推理、论证再好也都会前功尽弃。

在否定命题的结论之前,首先要弄清命题的结论是什么。当命题的结论的反面非常明显并且只有一种情形时是比较容易做出否定的,但命题的结论的反面是多种情形或者比较隐晦时,就不太容易做出否定。这时必须认真分析、仔细推敲,在提出“假设”后,再回过头来看看“假设”的对立面是否恰是命题的结论。

运用反证法证明命题的第二步是:从假设出发,经过推理论证,得出矛盾。在这

一步骤中,整个推理过程必须准确无误,这样导致的矛盾才是有效的。对于一个用反证法证明的命题,能够推出什么样的矛盾结果,事先一般很难估计到,也没有一个机械的标准,有时甚至是捉摸不定的。一般总是在命题的相关领域里考虑。例如,立体几何问题往往联系到相关的公理、定义、定理等。

对于“若p则q”型的数学命题,一般都能用反证法证明,但是难易程度会有所不同。因此,尽管反证法是一种重要的证明命题的方法,也不能把所有的命题都用反证法来证明。在证明命题时,要首先使用直接证法,若有困难时再使用反证法。

4.结束语:

英国近代数学家哈代曾经这样称赞它:“反证法是数学家最有力的一件武器,比起象棋开局时牺牲一子以取得优势的让棋法,它还要高明。象棋对弈者不外牺牲一卒或顶多一子,数学家索性把全局拱手让予对方!”

有时候,人们用正向思维解答不了的问题,用逆向思维往往可以轻而易举地把问题解决。数学证明也有相同的情形,靠一般方法难以奏效时,反证法会助人一臂之力。在现代数学中,反证法已成为最常用和最有效的解决问题的方法之一。

然而反证法的作用不止于数学应用和解题研究,它在生活中,在别的领域中也有十分广泛的应用,例如“抽屉原理”,“鸽笼原理”,某些物理,化学研究等等,这就需要我们进一步去研究考察。

参考文献

[1] 王桥.威力无比的反证法[DB/OL]

[2] 姚莉.注重反证法的逻辑性培养学生创造性思维.现代教育教学杂志探索.2011(2)

[3] 高珑珑.反证法例说[J].中学数学月刊. 1997(4):33-35.

[4] 颜长安.反证法初探[J].数学通讯. 2001(13):22-24.

[5]叶永艺.正难则反,从反面考虑问题[DB/OL]

[6] 李云涛.浅谈反证法[DB/OL]

[3]邓传斌.反证法漫谈.中学数学杂志[M] .1996年第2期.

[4]王玉文、鲍曼.数学逻辑基础[M] .黑龙江教育出版社.2003年.

中学数学教学中的反证法-精选教育文档

中学数学教学中的反证法 在生活中,我们都有这样的常识,去掉大米中的砂粒,有两种方法.一种是直接从大米中把砂粒一粒一粒地拣出来;一种是用间接的方法――淘洗法,把砂粒残留下来.这两种方法虽然形式不同,但结果却是一样的,都能达到去掉砂粒的目的.有时用直接方法很困难,而用间接方法却容易得多.牛顿曾说:“反证法是数学家最精当的武器之一.”当一些命题不易从正面直接证明时,就可考虑用反证法. 一、反证法的基本概念 1.反证法的定义 法国数学家阿达玛对反证法的实质做了如下概括:“若肯定定理的假设而否定其结论,就会导致矛盾.”这是对反证法的极好概括.其实反证法也称作归谬法。反证法适合一些正面证明比较困难,但是否定则比较简单的题目,在高中数学中的应用较为广泛,在解决一些较难问题的时候,反证法能体现其优越性. 2.反证法的基本思想 反证法的基本思想就是否定之否定,这种基本思想可以用下面的公式表示: “否定→推理→矛盾→肯定”,即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定. 3.反证法的逻辑依据 通过以上三个步骤,为什么能肯定原命题正确呢?其逻辑根据就在于形成逻辑的两个基本规律:“排中律”和“矛盾律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于

反证法在数学解题中的应用

反证法在数学解题中的应用 我们在解决数学问题时,一般是从正面入手,这就是所谓的正向思维,但往往也会遇到从正面入手困难,或出现一些逻辑上的困境的情形,这时就要从辩证思维的观点出发,运用逆向思维克服思维定势的消极面,从习惯思路的反方向去分析问题,运用反证法解决问题。 一、反证法的逻辑基础 证明命题“A B”时如果用这种方法:假设A∧B为真,在A且B的条件下,合乎逻辑地推出一个矛盾的结果(不论是与A矛盾还是与其他已知正确的结论矛盾或自相矛盾),从而B成立(即A B成立),这种方法就是反证法。 二、反证法的解题步骤 第一步审题,弄清命题的前提和结论; 第二步否定原命题,由假设条件及原命题构成推理的基础; 第三步由假设出发,根据公理、定义、定理、公式及命题的条件,正确逻辑推理,导出逻辑矛盾; 第四步肯定原命题的正确性。 三、什么情况下考虑应用反证法 1待证命题的结论是唯一存在性命题 例1设方程x=p sin x+a有实根(0<p<1,a是实数),求证实根唯一。 证明:假设方程存在两个不同实根x1,x2,则有 x1=p sin x1+a,x2=p sin x2+a x1-x2=p sin x1-sin x2=2p cos x1+x22sin x1-x22 由于cos x1+x22│≤1,从而有│x1-x2│≤2p│sin x1-x22│又sin x1-x22≤x1-x22,故x1-x2≤p x1-x2,但x1≠x2,于是p≥1,与0<p<1矛盾。所以方程若有实根,则根唯一。 2采取直接证法,无适宜的定理作为根据,甚至无法证明。 例2已知A、B、C、D是空间的四点,ABGN CD是导向直线,求证AC和BD、AD和BC也都是异面直线。 分析:证AC和BD是异面直线,即证明AC和BD不在同一平面内,考虑反证法。 证明:假定AC和BD不是异面直线,那么AC和BD在同一平面内,因此A、B、C、D不是异面直线,这与已知条件矛盾。所以AC和BD是异面直线。 3待证命理的结论是以“至少存在”的形式出现的,“至少存在”的反面是“必定不存在”,所以只要证明“必定不存在”不成立即可。 例3设p1p2=2(q1+q2)求证方程x2+p1x+q1=ox2+p2x+q2=0中至少有一个方程有实根。 证明:假设两方程都无实根,则 p12-4q1<0,p22-4q2<0,两式相加,有p21+p22<4(q1+q2)(1) 而p1p2=2(q1+q2)代入(1)得p21+p22<2p1p2,这与p21+p22≥2p1p2矛盾。 故假设不成立,原命题正确。 4待正命题含有涉及各种“无限形式”的结论,由于中学没有直接证明“无限”的手段。而结论的反面却是“有限”,故常常借助于反证法。 例4证明实数lg3是无理数。 证明:假设lg3是有理数。则它可以表示成lg3=mn(m,n是互质的正整数,由对数的定义,得10=3″)。但10是偶数,而3″是奇数,矛盾。因此实数lg3是无理数。

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

浅谈反证法

浅谈反证法 聂震 1310300235 摘要:反证法是数学中一种应用广泛的证明方法,在许多方面都有着不可替代的作用。从最基本的性质定理,到某些难度很大的世界难题都是用反证法来证明的。反证法不仅可以单独使用,也可以结合其他方法一同使用,还可以在论证同一命题时多次使用。本文主要从什么是反证法、反证法的依据、为什么使用反证法、反证法解题步骤、适用题型及举例、如何做出正确反设六个方面浅谈反证法。 关键词:反证法归谬法矛盾假设 引言:有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。 反证法是一种应用广泛的数学证明方法,它的应用与发展历史悠久,早在古希腊,数学家就应用它证明了许多重要的数学命题,欧几里德的《几何原本》已经开始运用反证法。牛顿曾说过,反证法是“数学家最精当的武器之一”,它在许多方面都有着不可替代的作用。在现代数学中,反证法已经成为最常用最有效的解决问题的方法之一。 一.定义: 反证法(又称背理法)是一种论证方式,他首先假设某命题不成立(即在原命题的题设下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。反证法与归谬法相似,但归谬法不仅包括推理出矛盾结果,也包括推理出不符事实的结果或显然荒谬不可信的结果。 二.反证法的依据: 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。 在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是

浅谈中学数学中的反证法

本科生毕业论文 浅谈中学数学中的反证法 院系:数学与计算机科学学院 专业:数学与应用数学 班级: 2008级数学与应用数学(2)班 学号: 200807110211 姓名:黎康乐 指导教师:陈志恩 完成时间: 2012年5月26日

浅谈中学数学中的反证法 摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性,哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果. 关键词:反证法假设矛盾结论

Abstract:The mathematical proof points directly proofs proposition and indirect proof two. In indirect proof, the most common is required. Although peacetime we contact with the related knowledge, but is scattered, of the concept, application procedures, the scope of use of not understanding of the system, and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects, through all the questions put to the above system induce, this will help the students to learn the required system, improve the students use to problem solving skills required to achieve the expected effect. Key words:Counter-evidence method hypothesis contradiction conclusion

高中数学方法解之反证法

反证法 从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明的证明方法叫反证法。它是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证

明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。 例1.[05.北京]设()f x 是定义在[0,1]上的函数,若存在'(0,1),x ∈使得()f x 在[0,']x 上单调递增,在[',1]x 上单调递减,则称()f x 为[0,1]上的单峰函数,'x 为峰点,包含峰点的区间为含峰区间。 对任意的[0,1]上单峰函数()f x ,下面研究缩短其含峰区间长度的方法。求证:对任意的1212,(0,1),,x x x x ∈<若12()()f x f x ≥,则2(0,)x 为含

反证法在证明题中的应用-高考数学解题模板

【高考地位】 反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现。它是数学学习中一种很重要的证题方法. 反证法证题的步骤大致分为三步:(1)反设:作出与求证的结论相反的假设;(2)归谬:由反设出发,导出矛盾结果;(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等. 【方法点评】 类型一 证明“至多”或“至少”问题 使用情景:证明“至多”或“至少”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例1. 若,x y ∈{正整数},且2x y +>。求证:12x y +<或12y x +<中至少有一个成立。 【变式演练1】若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2 +2ax -2a =0至少有一个方程有实根。则实数a 的取值范围为________。 类型二 证明“不可能”问题 使用情景:证明“不可能”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论.

例2.给定实数0a a ≠,,且1a ≠,设函数11()1x y x x ax a -= ∈≠-R ,且,求证:经过这个函数图象上任意两个不同的点的直线不平行于x 轴. 【变式演练2】如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。求证:AC 与平面SOB 不垂直。 类型三 证明“存在性”或“唯一性”问题 使用情景:证明“存在性”或“唯一性”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例3.求证:方程512x =的解是唯一的. 【变式演练3】用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为() A .自然数c b a ,,都是奇数 B .自然数c b a ,,都是偶数 C .自然数c b a ,,中至少有两个偶数 D .自然数c b a ,,中至少有两个偶数或都是奇数

浅谈中学数学中的反证法

浅谈中学数学中的反证法 摘要:反证法在数学中是一种非常重要的间接证明方法,它被称为“数学家最精良的武器之一”,又称为归谬法、背理法。反证法不仅是一种论证方法,还是一种思维方式,对培养和提高学生的逻辑思维能力和创造性思维能力也有极其重要的作用,还能拓展学生的解题思路,从而使学生形成良好的数学思维。反证法在中学数学中有着广泛的应用,如今学生在运用反证法解题中,基础一般的学生会受到思维能力的限制,如果能恰当的使用反证法,在一些有难度的题目上也许能够得到解决。所以本文首先会叙述反证法的产生,具体阐述反证法的定义,即反证法的概念、分类、科学性,介绍反证法在中学数学中的应用并举例分析以及说明应用反证法要注意的问题。 关键词:反证法;中学数学;应用; On the Proof by Contradiction in Middle School Mathematics Abstract:Proof by contradiction is a very important indirect proof method in mathematics, it is called "one of the most sophisticated weapons of mathematicians", also known as reduction to absurdity, unreasonable method. Proof by contradiction is not only an argumentation method, but also a way of thinking. It plays an extremely important role in cultivating and improving students' logical thinking ability and creative thinking ability. It can also expand students' thinking of solving problems, so that students can form good mathematical thinking. Anyway, the method has been widely used in middle school mathematics. Nowadays, when students solve problems with the method of proof by contradiction, the students with general foundation are limited by their thinking ability. If the method of proof by contradiction can be used properly, they may be able to solve some difficult problems. Therefore, this paper will first describe the source of proof by contradiction, specifically elaborate the definition of proof by contradiction, that is, the concept, classification and logical basis of proof by contradiction, introduce the application of proof by contradiction in middle school mathematics and explain the problems to be noticed in the application of proof by contradiction. Keywords:proof by contradiction; Middle school mathematics; Application;

初中几何反证法专题(编辑)

初中几何反证法专题 学习要求 了解反证法的意义,懂得什么是反证法。 理解反证法的基本思路,并掌握反证法的一般证题步骤。 知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 1.反证法的概念: 不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 2.反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 3.反证法的一般步骤: (1)假设命题的结论不成立;

(2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正 确 简而言之就是“反设-归谬-结论”三步曲。 例题: 例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。证明: 假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。 ∵OA=OB,M是AB中点 (1) ∴OM⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得: OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM 这与已知的定理相矛盾。 故AB与CD不能互相平分。 例2.已知:在四边形ABCD中,M、N分别是AB、DC的 中点,且MN=(AD+BC)。 求证:AD∥BC

例谈反证法在数学证明中的应用

例谈反证法在数学证明中的应用 【摘要】反证法是解决数学问题时常用的数学方法之一,它在数学解题中广泛使用,特别是有些问题,用反证法更简捷明了。文章阐明反证法的定义、逻辑依据、证明的一般步骤,重点论述了反证法在中学数学证明中的应用。 【关键词】反证法证明假设矛盾结论 有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。 一、对“反证法”的概述 (一)反证法的概念及其逻辑依据 1.反证法的概念 假设命题判断的反面成立,在已知条件和“否定命题判断”这个新条件下,通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论或自相矛盾,从而断定命题判断的反面不成立,即证明了命题的结论一定是正确的,当命题由已知不易直接证明时,改证它的逆命题的证明方法叫反证法。 2.反证法的逻辑依据 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。

矛盾律: 在同一论证过程中, 对同一对象的两个互相矛盾(对立)的判断, 其中至少 有一个是伪的。 排中律: 在同一论证过程中, 对同一对象的两个互相矛盾的判断, 不能为伪, 其中 必有一个是真的。 (二)反证法的证明步骤 设待证的命题为“若A 则B ”,其中A 是题设,B 是结论,A 、B 本身也都是数学判断,那 么用反证法证明命题一般有三个步骤: 1. 反设:假设所要证明的结论不成立,而设结论的反面成立; 2. 归谬:由“反设”出发,以通过正确的推理,导出矛盾——与已知条件﹑已知的公理 定理﹑定义﹑反设及明显的事实矛盾或自相矛盾; 3. 结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立, 从而肯定了结论成立。 二、反证法在数学证明中的应用 反证法在数学证明中的应用非常广泛,反证法虽然是在平面几何教材中出现的,但对数 学的其它各部分内容,如代数、三角、立体几何、解析几何中都可应用。那么,究竟什么样 的命题可以用反证法来证呢?当然没有绝对的标准,但证题的实践告诉我们:下面几种命题 一般用反证法来证比较方便。 1.否定性命题 结论以“没有……”“不是……”“不能……”等形式出现的命题,直接证法一般不易入 手,而用反证法就容易多了。 例1 求证:当 n 为自然数时 ,2(2 n + 1) 形式的数不能表示为两个整数的平方差。 证明:假设有整数 a , b ,使)(1n 22b a 22+=-, 即 (a + b)(a - b)=2(2n + 1) ① 当 a ,b 同奇、 同偶时 , a + b 、 a - b 皆为偶数 , (a + b)(a - b) 应是4的倍数 ,但2(2n+ 1) 除以4余2 ,矛盾。 ② 当a ,b 一奇一偶时 ,a + b 、a - b 皆为奇数 , (a + b)(a - b) 应是奇数 ,但2(2n + 1)为偶数 ,矛盾。 所以假设错误 ,即2(2n + 1) 形式的数不能表示为两个整数的平方差。

浙教版八年级数学下册反证法作业练习

4.6 反证法 ◆基础练习 1.“ab C.a=b D.a=b或a>b 2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设() A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等” 时,应假设___________. 4.用反证法证明“若│a│<2,则a<4”时,应假设__________. 5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5. 6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________. 7.完成下列证明. 如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是______或______. 当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角.

8.如图,已知AB∥CD,求证:∠B+∠D+∠E=360°. 9.请举一个在日常生活中应用反证法的实际例子. ◆综合提高 10.用反证法证明“三角形中至少有一个内角不小于60°”,?应先假设这个三角形中( ) A .有一个内角小于60° B.每一个内角都小于60° C .有一个内角大于60° D.每一个内角都大于60° 11.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________. 12.用反证法证明:两直线平行,同旁内角互补. 132是一个无理数.(说明:任何一个有理数均可表示成 b a 的形式,且a ,b 互质) 14、试写出下列命题的反面: (1)a 大于2 _____________;(2)a⊥b _______________. 15、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________. 16、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角. 证明:假设结论不成立的,则∠B 是__________或_________. ①当∠B 是_______时,则__________,这与____________________矛盾; ②当∠B 是_______时,则__________,这与____________________矛盾.

浅谈反证法在数学中的应用

浅谈反证法在数学中的应用 摘要 反证法在数学中是一种极其重要的证明方法,被称为“数学家最精良的武器之一”。它与一般证明方法不同,反证法可分为归谬反证法和穷举反证法两种。只要抓住要领,反证法就能使一些不易直接证明的问题变得简单,易证,它在数学证题中确有独到之处。本文主要介绍了反证法的基本概念、步骤、依据及分类。对于反证法的应用需注意事项和解题步骤做一些论述。 关键词:反证法;归谬;矛盾;假设;结论 Abstract Contradiction in mathematics is an extremely important method of proof, known as "mathematician one of the most sophisticated weapons." It is different with the general method of proof, proof by contradiction can be classified into two kinds of absurd contradiction and exhaustive reductio ad absurdum. Simply grab the essentials, reductio ad absurdum can make a number of difficult problems becomes simple direct proof, easy to prove, it is proof in mathematics problem in that there are unique. This paper describes the concept of reductio ad absurdum, steps, basis and classifications.The reductio ad absurdum of the application notes and problem-solving steps required to do some exposition.

中考数学解题方法反证法专题

中考数学解题方法反证法专题 在初中数学题目的求解过程中,当直接证明一个命题比较复杂麻烦,甚至不能证明时,我们可以采用反证法.反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬 反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种). 用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大于/不大于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个. 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水.推理必须严谨.导出的矛盾有如下几种类型:与已知

条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾. 至于什么问题宜用反证法?这是很难确切回答的问题.下面我们就结合实例归纳几种常使用反证法的 情况. 一、基本定理或初始命题的证明 在数学中,许多基本定理是使用反证法来证明的,例如“过直线外一点只有该直线的一条平行线”,“过平面外一点只有平面的一条垂线”.因为在证明这种基本定理时,由于除已经学过的公理及其推论外,在此之前所导出的定理不多或者与此命题相关的定理不多. 例1在同一平面内,两条直线a,b都和直线c垂直.求证:a与b平行. 证明假设命题的结论不成立,即“直线a与b相交”. 不妨设直线a,b的交点为M,a,b与c的交点分别为P,Q,如图1所示,则∠PMQ>0°. 这样,△MPQ的内角和=∠PMQ+∠MPQ+∠PQM=∠PMQ+90°+90°>180°. 这与定理“三角形的内角和等于180°”相矛盾.说明假设不成立.

浅谈中学数学中的反证法

浅谈中学数学中的反证法 数学与计算机科学学院数学与应用数学 105012011138 黄义瑜 【摘要】反证法一种间接的数学证明方法,也是一种重要的数学思想.他首先假设某命题不成立,然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证.证明的一般步骤为反设、归谬、结论.虽然在中学数学的课本中所占篇目较少,但应用广泛,能锻炼学生的逆向思维.论文中将阐述反证法的概念、证明步骤、思维方式以及适用题型.深刻理解反证法的实质,切实掌握它的解题要领,能提高逻辑思维能力和解决实际问题的能力. 【关键词】反证法命题中学数学高考高等数学 有个著名的“道旁苦李”的故事:传说,王戎从小就非常聪明.有一天,他和小伙伴们出去游玩,发现路边有几株李树,树上结满了李子,而且看上去一个个都熟透了.小伙伴们一哄而上,摘了尝了之后才发现李子是苦的.只有王戎没动,王戎说:“如果李子不苦的话,早就被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这个故事中王戎从反面论述了李子为什么不甜,不好吃.这种间接的证法就是我们下面所要讨论的反证法. 1 反证法的由来 反证法是数学中的一种证明方法,它是与直接证法相对的间接证法的一种.法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了最准确、最简明扼要的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”.反证法作为一种最重要的数学证明方法,在数学命题的证明中被广泛应用.欧几里得证明“素数有无穷多”的结论,欧多克斯证明“两个正多边形的面积比等于其对应线段比的平方”的结论,“最优化原理”的证明,伽利略推翻“不同重量的物体从高空下落的速度与其重量成正比”的断言,“上帝并非全能”的证明,都用了反证法. 2 反证法的概念 反证法是一种反面的角度思考问题的证明方法,是数学中常用的间接证明方法之一,属于“间接证明”的一类.即肯定题设而否定结论,从而导出矛盾,推理而得. 法国数学家阿达玛对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”.具体来说就是,假设命题的结论不成立,在已知条件和“否定命题结论”的新条件下,通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论矛盾或自相矛盾,从而断定命题结论的反面不成立,即证明了命题的结论一定是正确的,当命题由已知不易直接证明时,改证它的逆命题的证明方法叫反证法.

论反证法在中学数学中的应用

昆明学院2016届毕业论文(设计) 设计(论文)题目论反证法在中学数学中的应用 子课题题目 姓名郑粒红 学号 201215010158 所属系数学系 专业年级数学与应用数学2012级数学1班 指导教师雷晓强 2016 年 3 月

摘要 本文主要从五大板块对反证法在中学数学中的应用进行论述,第一板块通过对反证法的由来、定义、逻辑依据、种类、模式的说明对反证法进行概解。第二板块例举反证法的适用范围,并通过大量实例阐明在各个命题中反证法的证明的步骤。第三板块分析应用反证法应注意的问题。第四板块浅析反证法的教学价值及建议。最后第五板块进行分析总结。 关键词:反证法;证明;矛盾

Abstract This article mainly from the five plate on the reduction to absurdity in the middle school mathematics application is discussed, and the first plate by means of reduction to absurdity and types of the origin, definition and logical basis, the model of generalized solution of reduction to absurdity. Second plate presented the applicable scope of reduction to absurdity, and through a lot of examples to elucidate the reduction to absurdity in the proposition proof steps. Some problems that should be paid attention to the third sector analysis application of reduction to absurdity. The fourth section teaching value of reduction to absurdity is analysed and the suggestion. Finally the fifth plate were analyzed. Keywords:Reduction to absurdity; prove ;contradiction

中学数学中的反证法

浅谈中学数学中的反证法 摘要小结在解题过程中怎样由假设出发寻找矛盾,哪些类型的问题适用于反证法,以及在学习反证法的过程中应注意的两方面。 关键词反证法命题反设归谬结论 0引言 反证法是数学的一种极其重要的方法,特别是遇到的一些直接证明难于入手,甚至无法入手的问题,反证法可使证明变得轻而易举。它和分析法、综合法一样,有着悠久的历史,应用也相当广泛。 在中学数学中,反证法是一个难点。在学习反证法之前,学生在学习平行线、相交线、三角形等各章中,证题用的都是直接证法,突然学习反证法,与已有的证题习惯不同,所以学生初学反证法,会有排斥的心理。加之,现在课本要求不高,例题很少,学生与老师不重视,知识不巩固,使学生无法深刻理解反证法的作用。但是,中学生好奇心强,对新鲜事物兴趣浓,抓住这一特点,从浅显的、学生熟知的事实入手说明“反证法”,再引导其抽象概括,就能收到很好的教学效果。论文中通过几个例子表现反证法的思维方式,说明反证法在解题中的重要作用,并总结哪些类型的问题适用于反证法。深刻理解反证法的实质,切实掌握它的解题要领,能提高逻辑思维能力和解决实际问题的能力。 1反证法的由来 反证法是数学中的一种证明方法,它是与直接证法相对的间接证法的一种。法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了最准确、最简明扼要的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”。反证法作为一种最重要的数学证明方法,在数学命题的证明中被广

泛应用。欧几里得证明“素数有无穷多”的结论,欧多克斯证明“两个正多边形的面积比等于其对应线段比的平方”的结论,“最优化原理”的证明,伽利略推翻“不同重量的物体从高空下落的速度与其重量成正比”的断言,“上帝并非全能”的证明,都用了反证法。 2什么是反证法 反证法是从原命题结论的反面出发,通过正确的逻辑推理过程,导致矛盾的结果,从而肯定原命题结论正确的证明方法。它是反设后通过归谬使命题得到证明的方法,所以,反证法又称“归谬法”。英国数学家哈代对于这种证法给过一个很有意思的评论,在棋类比赛中,经常采用一种策略,叫“弃子取势”,即牺牲一些棋子以换取优势。哈代指出,归谬法是远比任何棋术更为高超的一种策略,棋手可以牺牲的是几个棋子,而数学家可以牺牲整盘棋。反证法就是作为一种可以想象的最了不起的策略而产生的。 3反证法的一般步骤 应用反证法证题,首先应分清命题的条件和结论,再按“反设→归谬→结论”三步进行: 3.1反设 作出与原命题结论相反的假设。反设是应用反证法的第一步,也是关键的一步。反设的结论将是下一步归谬的一个已知条件。反设是否正确、全面,直接影响下一步的证明。作为反设其含义是:假设所要证明的命题的结论不成立,而讨论的反面成立故应准确找到命题的结论,抓住关键的字句进行分析、引导、示范、训练,体会怎样对命题的结论进行正确、全面的否定。在训练时,主要做以下工作:(1)正确分清题设和结论。(2)对结论实施正确否定。一般而言,一种情形是直接在结论前加“不”或去掉“不”。例如:是→不是,有→没有,能→不

高中数学反证法综合测试题(含答案)

高中数学反证法综合测试题(含答案) 选修2-2 2.2.2 反证法 一、选择题 1.否定结论“至多有两个解”的说法中,正确的是() A.有一个解 B.有两个解 C.至少有三个解 D.至少有两个解 [答案] C [解析] 在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C. 2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为() A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数 C.a、b、c都是偶数 D.a、b、c中至少有两个偶数 [答案] B [解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;

④三个偶数.因为要否定②,所以假设应为“全是奇数页 1 第 或至少有两个偶数”.故应选B. 3.用反证法证明命题“三角形的内角中至少有一个不大于60”时,反设正确的是() A.假设三内角都不大于60 B.假设三内角都大于60 C.假设三内角至多有一个大于60 D.假设三内角至多有两个大于60 [答案] B [解析] “至少有一个不大于”的否定是“都大于60”.故应选B. 4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c =0(a0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是() A.假设a,b,c都是偶数 B.假设a、b,c都不是偶数 C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数 [答案] B [解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.

相关主题
文本预览
相关文档 最新文档