当前位置:文档之家› 扩展有限元方法和裂纹扩展

扩展有限元方法和裂纹扩展

扩展有限元方法和裂纹扩展
扩展有限元方法和裂纹扩展

扩展有限元方法和裂纹扩展

1.1 扩展有限元方法(XFEM )基本理论

1999年,美国Northwestern University 的Belytschko 和Black 领导的研究小

组提出了扩展有限元方法,为解决裂纹这类强不连续问题带来了曙光。他们正式

应用扩展有限元法(XFEM )这一专业术语是在2000年,截止到目前,扩展有

限元法(XFEM )成为我们解决强不连续力学问题的最有效的数值计算方法,也

成为计算断裂力学的重要分支。XFEM 在有限元的框架下进行求解,无需对构件

内部的物理界面进行网格划分,具有常规有限元方法的所有优点。它最明显的特

点是用已知的特征函数作为形函数来使传统有限元的位移得到逼近,进而克服了

在裂纹尖端和变形集中处进行高密度网络划分产生的困难,方便地模拟裂纹的任

意路径,而且计算精度和效率得到了显著的提高[6]。

扩展有限元方法是将已知解析解的特征函数作为插值函数增强传统有限元

的位移逼近,来使得单元内的真实位移特性得以体现,裂纹尖端和物理或几何界

面独立于有限元网格。XFEM 主要包括以下三部分内容:首先是不考虑构件的任

何内部细节,按照构件的几何外形尺寸生成有限元网格;其次,采用水平集方法

跟踪裂纹的实际位置;根据已知解,改进影响区域的单元的形函数,来反映裂纹

的扩展。最后通过引入不连续位移模式来表示不连续几何界面的演化。因为改进

的插值函数在单元内部具有单元分解的特性,其刚度矩阵的特点与常规有限元法

的刚度矩阵特性保持一致。单元分解法(Partition Of Unity Method)和水平集法

(Level Set Method )、节点扩展函数构成了扩展有限元法的基本理论,其中,单

元分解法是通过引入加强函数计算平面裂纹扩展问题,保证了XFEM 的收敛性;

水平集法是跟踪裂纹的位置和模拟裂纹扩展的常用数值方法,任何内部几何界面

位置都可用它的零水平集函数来表示。

(1)单元分解法的基本思想是任意函数()x φ都可以用子域内一组局部函数

()()x x N I ?表示,满足如下等式:

()()()x x N x I

I ?φ∑= (1)

其中,它们满足单位分解条件:f I I

?x ()=1 ()x N I 是有限元法中的形函数,根

据上述理论,便可以根据需要对有限元的形函数进行改进。在XFEM 中,单元

分解的目的是进行数值积分,达到不引人额外的自由度的目的[7-8]。

(2)水平集法 使用水平集法来描述几何间断性。在一般情形下,多用来追踪

界面的位置。这里的界面可以是闭合曲线或者是计算域边界的曲线。在扩展有限

元方法中,由于网格划分并不需要符合裂纹的几何性质,简化裂纹跟踪位置的关

键是对裂纹的几何描述。而水平集法的强大优势是可以用于分析和计算界面运

动。正好符合扩展有限元方法的要求即对于任意方向的裂纹增长不需要网格重

划。

裂纹的水平集函数常取下列符号的距离函数即:

()()

γγγψx x t x t x -±=∈min , (2) 若x 位于裂纹上方,上式符号为正,反之为负[9-10]。

(3)扩展有限元法的位移模式(节点扩展函数简介):

扩展有限元法的基本内容就是在含有位移不连续性的影响区域内通过一些

附加的加强函数来多常规有限元法的位移模式进行改进,进而对不连续的位移进

行描述。为了实现断裂分析,裂纹尖端附近渐近函数用来模拟裂尖的应力奇异性,

间断函数则用来表示裂纹几何界面处的位移间断跳跃。所以改进的位移逼近可以

写为:

()()()??????++=∑∑==411ααααI I I N

I I b x F x H u x N u (3)

其中,()x N I 为有限元形函数,I u 为节点位移向量的连续部分,I α为与

Heaviside 函数相关的节点扩展自由度向量,()x H 是裂纹面的间断跳跃函数,α

I b 是与弹性渐进裂尖函数有关的节点扩展自由度向量,()x F α是裂尖应力渐进函数。

等式右边第一项可用于构件中的所有节点,右边第二项单元节点形函数被裂纹完

全贯穿的情况,第三项裂尖停留在单元内部的节点。

引入位移扩展函数使得扩展有限元法确保裂尖可以被模拟为精确地停留在

单元内部,同时允许在相对粗糙的二维有限元网格上获得比较好的精度[11]。

1.2扩展有限元方法研究现状

1.1.1 有限元法研究裂纹扩展

有限元方法是目前来说应用非常广泛的数值计算方法之一,对弹性体进行模

拟裂纹扩展时,有限元网格的划分对整个计算过程最为重要,它不仅仅影响着计

算的精度和速率,而且还决定着此计算过程能否顺利进行。模拟裂纹扩展问题的

关键是裂纹尖端处的应力场,所以裂纹尖端处的单元应当设计为奇异性单元,并

且在尖端领域内进行局部加密来提高计算精度,计算网格随着裂纹的扩展而不断

变化,用来保证奇异性单元和加密网格始终位于裂纹尖端[12] ,综上,网格的重新划分在有限元法模拟裂纹扩展过程中是非常关键的一个问题。很多文献关于有限元方法模拟裂纹扩展过程的裂纹尖端处的网格生成进行了研究,比如杨庆生的《断裂过程的有限元模拟》中研究了自身适应的模拟裂纹扩展的有限元网格生成技术。还有2003年陈永强和姚振汉在有限元技术的基础上,对表征非均匀材料且初始分布并不均匀的格子模型用重复多子域边界元法对非均匀材料在简单荷载作用下的破坏过程进行了相关研究和模拟。诸如对裂纹扩展过程模拟的研究还有很多,但是有限元法是基于网格的数值方法,由于裂纹尖端的奇异性和强不连续性,使得网格划分变得困难,还是没有完全解决此类问题。

1.1.2扩展有限元方法研究裂纹扩展

扩展有限元方法(the extended finite method—XFEM)可以减少裂纹面网格划分带来的劣势。该方法基于整体划分(单元分解)的概念,仍然属于传统有常规有限元方法的扩展。整体划分的概念使扩展函数方便地进入到有限元当中,不连续性也可以通过引入额外自由度的扩展函数来解决,即可以确定裂纹的实际位置,跟踪裂纹的生长[13]。当然,扩展有限元方法保留了传统有限元的框架,其刚度矩阵具有与常规有限单元一样的优点。具有以下特点:

(1)单元划分的常规有限元扩展

(2)引入特殊的位移函数,扩展自由度实现不连续性

(3)不需要重新划分网格描述几何间断性

(4)所划分网格与构件的几何或物理界面无关

(5)可用于模拟任意性、求解相关路径裂纹的裂纹初始和扩展过程

(6)同时允许几何和材料的非线性的存在

(7)裂纹的生成与扩展路径可以完全基于计算的结果

(8)简化模型网格细化后的裂纹研究

(9)在裂尖应变奇异性改进方法的基础上,使裂纹分析的收敛速度得到提高

1.3断裂力学中裂纹相关内容

断裂力学的任务是:获得不同材料的断裂强度;预测物体在给定外力作用下是否将发生断裂,即建立材料断裂准则;研究载荷作用过程里的裂纹扩展规律;研究在复杂环境和应力同时作用下物体的断裂问题。

裂纹扩展有三种基本形式:张开型、滑开型以及撕开型。在工程应用与实际

生产中,并非所有的断裂问题都可简化为上述三个基本模式之一,还有复合型断

裂是三种基本模式的组合,也是最常见的裂纹类型。在断裂力学中,有最为基本

的理论即:能量释放率理论、裂纹尖端弹性应力场理论、J 积分理论[14]。

(1)能量释放率(G )理论:

R G G C =≥ (4)

其中R 是裂纹扩展的阻力,C G 是G 达到R 时的临界值。该理论认为材料对

裂纹扩展的阻力等于弹性表面能与伴随裂纹产生的塑性应变功之和,成功的

解释了裂纹扩展现象,为线弹性断裂力学的发展奠定了基础。

(2)裂纹尖端应力场理论:

C K K = (5)

应力强度因子K 不仅仅适用于稳定的裂纹扩展,还适用于应力腐蚀和疲劳之

类的亚裂纹扩展。

(3)J 积分理论:

ds x

u T

wdy J ?Γ??-= (6) 是一个回路积分,由Rice 提出,J 积分是一个与积分路径无关的常数,J 积分和 应力强度因子K 一样反映裂纹尖端的力学特性的。

1.4 本章内容小结

本章内容详细介绍了扩展有限元方法(XFEM )的基本理论和内容,包括单位分

解法、水平集法、引入节点扩展函数表征扩展有限元方法描述裂纹的位移模式,

以及扩展有限元方法基本特点和它的发展,以及与有限元方法模拟裂纹的对比,

最后还简要的介绍了断裂力学中裂纹的相关基本理论。

ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现 1.1 扩展有限元方法(XFEM)在ABAQUS上的实现 ABAQUS中XFEM的实现,两个步骤最为关键: 1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element. 2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。 在ABAQUS中模拟裂纹扩展的操作中,需要注意的是: 1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数 2、在Interaction模块,主菜单Special中创建XFEM的enrichment element 对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。 由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]: 1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂 纹; 2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度; 3.自适应的网格是不被支持的; 4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。 1.2 数值算例

扩展有限元简介

扩展有限元 有限元是将一个物理实体模型离散成一组有限的相互连接的单元组合体, 该方法在考虑物体内部存在缺陷时间,单元边界与几何界面一致,会造成局部网格加密,其余区域稀疏的非均匀网格分布,在网格单元中最小的尺寸会增加计算成本,再者裂纹的扩展路径必须预先给定只能沿着单元边界发展。 1999年,美国西北大学Beleytachko 提出了扩展有限法,该方法是对传统有限元法进行了重大改进。扩展有限元法的核心思想是用扩充带有不连续性质的形函数来代表计算区域内的间断,在计算过程中,不连续场的描述完全独立于网格边界,在处理断裂问题有较好的优越性。利用扩展有限元,可以方便的模拟裂纹的任意路径,还可以模拟带有孔洞和夹杂的非均质材料。 扩展有限元是以标准有限元的理论为框架,保留传统有限元的优点,目前商业软件中如Abaqus 等都加入扩展有限元的分析模块。 扩展有限元以有限元为基本框架,主要针对不连续问题进行研究,相对于传统有限元方法,它克服了裂纹扩展问题的不足。其采用节点扩展函数,其中包括2个函数:裂纹尖端附近渐进函数表示裂纹尖端附近的应力奇异性;间断函数表示裂纹面处位移跳跃性。整体划分位移函数表示为 αααI =I I I =∑∑++=b x F a x H u x N x u N i )(])()[()('41 1 式中:)(x N I 为常用的节点位移函数;I u 为常规形状函数节点自由度,适用于模型中的所有节点;)(x H 为沿裂纹面间断跳跃函数;I a 为节点扩展自由度向量,这项只对形函数被裂纹切开的单元节点有效;)(x F α为裂纹尖端应力渐进函数;αI b 为节点扩展自由度向量,这项只对形函数被裂纹尖端切开的单元节点有效。 沿裂纹面间断跳跃函数)(x H 表达式为: otherwise n x x if x H 0)(11)(*≥-???-= 式中:x 为样本点;*x 距x 最近点;n 为单位外法线向量。 各向同性材料的裂纹尖端渐进函数)(x F α表达式为: ????? ?=2cos sin ,2sin sin ,2cos ,2sin )(θθθθθθαr r r r x F 裂纹尖端的渐进函数并不局限于各向同性弹性材料的裂纹建模。可用于弹塑性指数硬化材料,不同的裂纹尖端渐进函数的形式与裂纹位置、非线性材料变形程度有关。

裂纹扩展分析XFEM在断裂问题中的应用

目录 1 引言 (1) 1.1 研究的背景 (1) 1.2 研究的内容和途径 (1) 1.2.1 研究的内容 (1) 1.2.2 研究的途径 (1) 1.3 研究的意义 (2) 2 扩展有限元法的基本理论 (3) 2.1 单位分解法 (3) 2.2 水平集法 (4) 2.2.1 水平集法对裂纹的描述 (4) 2.2.2 水平集法对孔洞描述 (5) 2.3 扩展有限元法 (6) 2.3.1 扩展有限元法的位移模式 (6) 2.3.2 扩展有限元离散方程的建立 (6) 2.3.3 扩展有限元的单元积分 (7) 3 断裂力学的基本理论 (9) 3.1 裂纹的基本类型 (9) 3.2 几种常见的断裂判断依据 (10) 3.2.1 应力强度因子 (10) 3.2.2 J积分 (10) 3.2.3 COD判据 (11) 3.3 线弹性断裂力学 (11) 3.3.1 线弹性断裂力学适用范围 (12) 3.3.2 应力强度因子准则 (12) 3.4 弹塑性断裂力学 (13) 3.4.1 J积分 (13) 3.4.2 COD理论 (15) 4 算例分析 (16) 4.1 算例1 (16) 4.1.1 建立裂纹体的几何模型 (16) 4.1.2 裂纹体的有限元模型 (16) 4.1.3 裂纹体的材料性能 (17)

4.1.4 裂纹体的条件设置 (17) 4.1.5 结果分析 (18) 4.2 算例2 (22) 4.2.1 椭圆孔对裂纹扩展的影响 (22) 4.2.2 圆形孔对裂纹扩展的影响 (29) 4.2.3 方形孔对裂纹扩展的影响 (32) 4.2.4 三角形孔对裂纹扩展的影响 (35) 4.2.5 孔形对裂纹扩展的影响 (38) 本章小结 (41) 结论 (44) 参考文献 (45) 致谢 (47)

基于ANSYS有限元软件裂纹扩展模拟

万方数据

万方数据

56基于ANSYS有限元软件裂纹扩展模拟 【鬈I2子模型有限几删韬幽 (plane82),如图1所示。模型中裂纹长度为10mm,几何尺寸如图2所示。材料的弹性模量在2.017×105MPa上下变化,泊松比为o.3。顶端从侧端的一端起在长度为20mm的线上承受一200N/mm的压力。侧端从距裂纹处10mm开始在长度为20nlm的线上承受looN/mm的压力。这只是其中某一种状态,可以根据构件的实际受力状况,改变子模型的边界条件和受 匝墨巫巫匦圃 I得到应变能仞始值【,o ’ 图3ANsYs二次tH:发模拟流程力状况。 3ANSYS二次开发程序基本思路和模拟结果用上述的八NsYS二次开发的源程序对图1所示的子模型结构的疲劳裂纹扩展进行模拟,模拟流程见图3。由于模拟构件疲劳裂纹扩展从开始到失稳,裂纹扩展长度大,因而程序运行时间长。为此笔者只模拟了五步,模拟的结果见表1和图4。图4中的粗黑线为裂纹扩展路径。 表1疲劳裂纹扩展模拟所得的路径参数 (a)模拟一步裂纹扩展路径 (b)模拟二步裂纹扩展路径 (c)模拟三步裂纹扩展路径 万方数据

《化工装备技术》第27卷第1期2006年57 (d)模拟四步裂纹扩展路径 【e)模拟止步裂纹扩展路径剧4订限厄模拟的裂纹扩展路径 (a)一步裂纹扩展竖A疗向的应力云图(b,二步裂纹扩腱竖A方f川的臆力西矧(c)三步裂纹扩展悭直方向的应力云图 (d)四步裂纹扩展竖^力‘向的应JJ云图 (e)五步裂纹扩展竖直方向的应力云图 图5模拟裂纹扩展过程巾竖直方向的应力云图 4结束语 ANSYS软件是一个功能非常强大的有限元计算软件,其本身又是一个开放型软件,可以进行二次开发。利用最大能量释放率作为判 断方向基准,笔者对ANSYS进行二次开发,能动态地描述2D构件在复合加载状况下疲劳裂纹的扩展路径。对ANsYs软件进行二次开发来模拟疲劳裂纹的扩展迄今未见报道。本文通过对2D构件疲劳裂纹扩展路径的模拟,为下一步3D构件的模拟打下了好的基础。 参考文献 1W01fgangBrocks.Num时icaIinves“gatlonsonthesignifi~ canceofJforlargestablecrad‘growth.E“gineeri“gFrac~tureMech.1989,32:459~468 2杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报, 1997,14(4):407412 3HellenT.0nthemethodofvirtualcrackextensions.Int JNumMethEngn,1975(9):187—207 4傅祥炯,周岳泉.何字廷.疲劳裂纹扩展全寿命模型.第八届全国断裂学术会议论文集,1996:155~252 5011the ene。gy releaserateandtheJ—int。gralfor3一Dcrackconfiguratiolls.IntJournofFracture.1982,l9:183~1936ClaydonPW.MaximumenergvreleaseratedistributionfromageneraIized3Dvirtualcrackextensionmethod.En~ginee““gFractureMechanics,1992,42(6):96l~9697TimbrellC.eta1.Simulationofcrackpropagationinrub~ber.ThirdEuroDeanConferenceonConstitutiveModelsforRubber.1517SeDtember2003London,UK. (收稿日期:2005一07—28) 万方数据

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟 化工过程机械622080706010 李建 1 引言 1.1 ABAQUS 断裂力学问题模拟方法 在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。 断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。 损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 1.2 ABAQUS 裂纹扩展数值模拟方法 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。 debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。 cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。 此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。被誉为最具有前途的裂纹数值模拟方法。本文将利用abaqus6.9版本中的扩展有限元法功能模拟常见的Ⅰ型裂纹的扩展。 2 Ⅰ型裂纹的扩展有限元分析 本文针对断裂力学中的平面Ⅰ型裂纹扩展问题用abaqus中的扩展有限元方法进行数值模拟,获得了裂纹扩展的整个过程,裂尖单元的应力变化曲线,以及裂纹尖端塑性区的形状。在此基础上绘制裂纹扩展的能量历史曲线变化趋势图。

ABAQUS中扩展有限元(XFEM)功能简介

ABAQUS中扩展有限元(XFEM)功能简介 扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。 ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。 1. XFEM理论 在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。 从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。直到Belytschko提出采用水平集函数作为手段,其基本形式为 和 上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。与之对应的形函数便是

基于ABAQUS平台的扩展有限元方法

基于ABAQUS平台的扩展有限元方法 断裂是一种失效模式。在工程领域中,经常发生起源于断裂或终结于裂纹扩展的灾难性破坏事故,如压力管道的裂纹失稳扩展,机械构件的断裂,地震引起的地面开裂和房屋倒塌等,这些事故对我们的生命和生活造成了很大的影响。由于产生裂纹的原因难以量化,因此裂纹出现后是否会继续扩展或发生止裂的断裂力学具有很重要的意义。 传统的断裂力学在剖分单元网格的时候必须考虑物体内部的缺陷,如裂纹,界面等,使单元边界与几何界面一致,这也就会形成局部网格加密,而其余区域稀疏的非均匀网格分布。ABAQUS中单元的最小尺寸决定了显示计算时间增量的临界步长,过小的最小尺寸无疑会增加计算的成本;再有就是需要预先给定裂纹的扩展路径,裂纹只能沿单元边界扩展,难以形成任意裂纹路径。 扩展有限元方法(XFEM,extended finite element method,以下简称XFEM)的核心思想是用扩充的带有不连续性质的形函数基来代表计算域内的间断,因此在计算过程中,不连续场的描述完全独立于网格边界,这使其在处理断裂问题上具有很大的优势。XFEM可以充分利用已知解析解答构造形函数基,在较粗网格上即能得到较精确的解答。利用XFEM,还可以方便地模拟裂纹沿任意路径扩展。ABAQUS中的XFEM可以用来研究裂纹的产生及模拟沿任意路径的裂纹扩展,而无需对模型进行网格重构。XFEM可以用于三维实体模型、二维平面模型,不能用于三维的壳模型。 ABAQUS在Interaction模中定义XFEM裂纹,可以指定裂纹的初始位置,也可以不指定,让ABAQUS在分析过程中根据计算断裂区域的最大初始应力或应变确定裂纹的位置。在ABAQUS中执行XFEM断裂分析,必须指定:断裂区域,裂纹生长(可选),裂纹初始位置(可选),富集半径,接触交互属性,损伤起始准则和分析类型,如静态分析,或隐式动态分析。下面以一个例子演示ABAQUS中使用XFEM方法对平板中的边缘裂纹进行动态裂纹扩展预测。 1.几何和模型 本文研究的是一个带边缘裂纹的平板,如下图所示,其中L=0.003m,W=0.0015m,初始裂纹长度a=0.0015m,板的下部受到一个沿水平方向的脉冲载荷,载荷作用的速度为: 其中=25m/s,s。右图为装配完成的模型。

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真

————————————————————————————————作者: ————————————————————————————————日期: ?

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真 齿轮传动是机械传动中最重要、应用最广泛的一种传动。齿轮传动的主要优点有:传动效率高,工作可靠,寿命长,传动比准确,结构紧凑。齿轮传动的失效一般发生在轮齿上,通常有齿面损伤和齿轮折断两种形式。齿轮折断一般发生在齿根部位,包括疲劳折断和过载折断。 为了提高齿轮的可靠性和使用寿命,有必要对齿轮根部的断裂现象进行研究。本文将从断裂力学角度出发,采用有限元的计算方法,研究齿根的断裂。 1 轮齿断裂分析 应力强度因子是描述裂纹尖端的一个参数,它与载荷大小以及几何有关,共有3种断裂模型(图1),在任何应力下的裂尖应力场为 ?图1 断裂模型 式中:r为距裂尖的距离;θ=arctan(x2/x1);KI为Ⅰ型(张开)裂纹应力强度因子;KⅡ为Ⅱ型(张开)应力强度因子。KⅢ为Ⅲ型(撕开)应力强度因子。 对于二维裂纹,假定KⅡ为0。

裂纹扩展方向根据条件аσθθ/аθ=0或者γγθ=0,得到 为了计算二维情况下的积分,ABAQUS定义了围线围绕着裂尖由单元组成的环形域(图2)。 图2 裂纹尖端环形域 计算J积分时,围线外的节点处值为0,围线内的所有节点(裂纹 扩展方向)的值为l,但外层单元的中间点除外,这些节点根据在单元中的位置被置于0和1之间。 裂纹扩展角度口可以参考裂纹平面计算,当裂纹扩展方向沿着初始裂纹方向时,θ=0;当K1>0时,θ<0;当K1<0时,θ>0。裂纹扩展角度从q到n(图3)。

有限元地MATLAB解法

有限元的MATLAB解法 1.打开MATLAB。 2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。 3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标) 用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。 4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。 5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点

击“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。 6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。 7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。 8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。 9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。选中Color,Height(3-D plot)和Show mesh三项,然后单击“Plot”按钮,显示三维图形解。 10.如果要画等值线图和矢量场图,单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。选中Contour和Arrows两项,然后单击Plot按钮,可显示解的等值线图和矢量场图。 11.将计算结果条件和边界导入MATLAB中:点击“Export Solution”,再点击“Mesh”中“Export Mesh”。

ANSYS LS-DYNA中裂纹模拟的几种办法

Ls-dyna中裂纹模拟的几种办法 1、*CONSTRAINED_TIED_NODES_FAILURE 首先必须把单元间共节点的节点离散,可以采用ls-prepost或femp实现。然后在通过matlab 或者其他语言编写小程序,对位于同一个位置的节点建立节点集,添加*CONSTRAINED_TIED_NODES_FAILURE关键字。采用此方法来实现裂纹模拟的缺点是前处理太麻烦。应用实例可参考白金泽《lsdyna3d基础理论与实例分析》。 2、mat_add_eroson 关于这个关键字本版内有很多讨论,可以搜索一下。需要注意的是,在lsdyna 971R4之前的版本中,这个材料模型所带的失效模式均只适用于单点积分的二维和三维实体单元。但是在R4之后的版本中,这个关键字有了很大的改进: 1、去除了单点积分的限制,同时还支持3维壳单元和厚壳单元中的type1和type2。 2、可以定义初始损伤值,增加了几种损伤模型,具体可以参考lsdyna 971R5版的关键字。 3、带有失效的材料模型 有些材料模型本身就带有失效的,可以定义单元的失效来模拟裂纹的拓展。如*MAT_PLASTIC_KINEMA TIC等。如果某些材料模型不带失效模式,可以采用方法2,或者通过自定义材料本构来实现裂纹的模拟。 4、带有失效模型的接触或者用弹簧单元来模拟裂纹 这个方法个人觉得有些牵强,但是在有些文献中也见过。在定义裂纹前必须已知可能出现裂纹的区域,通过带有失效模式的面对面的绑定接触CONTACT_TIED_SURFACE_TO_SURFACE_FAILURE或者用弹簧单元来模拟裂纹面。" j. y: ~6 S3 S5 z$ E3 U! ] 5、采用特殊的材料模型 某些材料模型如*MAT_120(*MAT_GURSON),*MAT_120_JC(*MAT_GURSON_JC),*MAT_120_RCDC(*MAT_GURSON_RCDC),还有一些damage模型,如*MAT_96(*MAT_BRITTLE_DAMAGE)等,用损伤值来代替裂纹,通过观察损伤云图来判断裂纹的扩展。 6、EFG 和XFEM Cohesive 这两种方法是目前lsdyna重点发展的用来模拟裂纹扩展的方法。其中EFG方法适用于4节点积分的实体单元,XFEM只适用于2维平面应变单元和壳单元。这两种方法具体使用参考LS 971 R4 EFG User’sManual和XFEM User’s Manual。

采用ANSYS仿真模拟软件建立三维混凝土试件实体裂纹扩展的模拟

采用ANSYS仿真模拟软件建立三维混凝土试件实体裂纹扩展的模拟1.进入ANSYS软件,输入命令流 finish /clear,start !(1)工作环境设置 /FILENAME,COLUMN !工作名称 /TITLE,FRACTURE OF COLUMN !图形显示标题 !(2)进入前处理器 /PREP7 !进入前处理器 !(3)定义单元类型 ET,1,SOLID45 !定义三维单元 !(4)定义材料参数 MP,EX,1,1.668E10 !弹性模量 MP,PRXY,1,0.3 !泊松比 !(5)建立剖面几何模型 BLOCK,-0.015,0.015,-0.025,0.025,-0.0005,0.0005, !建立一个长方体WPSTYLE,,,,,,,,1 wpro,,90.000000, !旋转工作平面 CSWPLA,100,1,1,1, !在工作平面位置建立局部坐标100,类型为柱坐标 FLST,3,1,6,ORDE,1 FITEM,3,1 VGEN, ,P51X, , , ,45, , , ,1 !旋转长方体 wpro,,-90.000000, !旋转回原工作平面 CYLIND,0.0015,0,-0.05,0.01,0,360 !建立小圆柱体 VSBA,2,1 VDELE,4,,,1 FLST,2,2,6,ORDE,2 FITEM,2,1 FITEM,2,3 VADD,P51X CYLIND,0.025,0,-0.05,0.05,0,360 !建立大圆柱体 VSBV,1,2 MSHAPE,1,3D MSHKEY,0 !* CM,_Y,VOLU VSEL, , , , 3 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y !* VMESH,_Y1

有限元求解步骤方法

步骤方法 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 为保证问题求解的收敛性,单元推导有许多原则要遵循。对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。 简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。

喷气式发动机的压气转子叶片包含一个疲劳裂纹时的可靠性分析外文文献翻译、中英文翻译

附录1外文翻译 喷气式发动机的压气转子叶片包含一个疲劳裂纹时的可靠性分析 喷气式发动机转子叶片包含一个疲劳裂纹的可靠性是被评估通过实际转子叶片和螺栓孔样品含有已知长度的裂纹时的涡流探伤响应(ECI)。这种探测阀以及检测的概率曲线已经被确定。使用动态贝叶斯网络模型去量化不确定性。由于该模型包括一个涡流探伤的响应模型,它能够考虑到所有的与之相关的检测数据类型,裂纹长度的最大变因素已经由灵敏度分析测得,并通过91%可信度的9.93 贝叶斯因子。基于可靠性指数bctrl ?3 的控制水平,以及从校准模型中计算得到的可性赖指数。从第一次检查到裂纹开始出现的时间间隔为1600 小时,小于目前的3200 小时。 1 引言: 有很多关于J85 发动机的第一级压缩机转子叶片失效面导致的飞行中熄火事件。李在[1]中故障分析中指出:疲劳裂纹是由中心增长到临界的长度,根据应力分析,中心受到了最大的负载,并且最有可能引发裂纹。负载主要是由于离心力,当叶以100%的转速转动计算出的最大应力是538MP。 事故发生后,每一个第一级叶片都采用涡流探伤检查,进行检查,共有53 个裂缝被发现,并且进行了ECI,由于压缩机转子叶片不单独跟踪,所以仅能得到压缩机转子组件的累积在冀时间和大修后的工作时间。为了得到POD 曲线和检测值,对已知裂纹长度的被马尔可夫蒙特卡洛链模拟。 在这篇论文中,对一个J85 发动机压缩转子含疲劳裂纹时的可靠性进行了评估,帕斯卡定律被用作裂纹扩展的定律,三维裂纹的压力强度因子已经使用neartip 区域的子模型技术的有限元法来计算。因为这项工作需要的计算应力强度因素,元模型已经建成以加快模拟。 为了捕捉到疲劳裂纹的随机性,多种不确定定性的来源被用来研究。使用灵敏度分析与预测裂纹长度分布因素已被确定并校准。这种可预测裂纹长度的不确定性,通过贝恩斯网络来测定(量化),并且这种贝恩斯模型参数已经校准和检测数据得到验证。有一种类似的方法用于预测疲劳裂纹长度。在参数[4]中,并且可以预测在结构中包含一个应力腐蚀裂纹的可靠性,这种可靠性被本文的作者在[6]中提出。目前的这种模式比之前

ABAQUS中Cohesive单元建模方法讲解

复合材料模型建模与分析 1. Cohesive单元建模方法 1.1 几何模型 使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。建立cohesive层的方法主要有: 方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。 方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。 (a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定 图1.建模方法 上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。 1.2 材料属性 应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation 描述;另一种是基于连续体描述。其中基于traction-separation描述的方法应用更加广泛。 而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。曲线下的面积即为材料断裂时的能量释放率。因此在定义cohesive的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。常用的定义方法是给定上述参数中的前三项,也就确定了cohesive的本构模型。Cohesive单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。Cohesive单元只考虑面外的力,包括法向的正应力以及XZ,YZ两个方向的剪应力。 下文对cohesive单元的参数进行阐述,并介绍参数的选择方法。

扩展有限元方法和裂纹扩展

扩展有限元方法和裂纹扩展 1.1 扩展有限元方法(XFEM )基本理论 1999年,美国Northwestern University 的Belytschko 和Black 领导的研究小 组提出了扩展有限元方法,为解决裂纹这类强不连续问题带来了曙光。他们正式 应用扩展有限元法(XFEM )这一专业术语是在2000年,截止到目前,扩展有 限元法(XFEM )成为我们解决强不连续力学问题的最有效的数值计算方法,也 成为计算断裂力学的重要分支。XFEM 在有限元的框架下进行求解,无需对构件 内部的物理界面进行网格划分,具有常规有限元方法的所有优点。它最明显的特 点是用已知的特征函数作为形函数来使传统有限元的位移得到逼近,进而克服了 在裂纹尖端和变形集中处进行高密度网络划分产生的困难,方便地模拟裂纹的任 意路径,而且计算精度和效率得到了显著的提高[6]。 扩展有限元方法是将已知解析解的特征函数作为插值函数增强传统有限元 的位移逼近,来使得单元内的真实位移特性得以体现,裂纹尖端和物理或几何界 面独立于有限元网格。XFEM 主要包括以下三部分内容:首先是不考虑构件的任 何内部细节,按照构件的几何外形尺寸生成有限元网格;其次,采用水平集方法 跟踪裂纹的实际位置;根据已知解,改进影响区域的单元的形函数,来反映裂纹 的扩展。最后通过引入不连续位移模式来表示不连续几何界面的演化。因为改进 的插值函数在单元内部具有单元分解的特性,其刚度矩阵的特点与常规有限元法 的刚度矩阵特性保持一致。单元分解法(Partition Of Unity Method)和水平集法 (Level Set Method )、节点扩展函数构成了扩展有限元法的基本理论,其中,单 元分解法是通过引入加强函数计算平面裂纹扩展问题,保证了XFEM 的收敛性; 水平集法是跟踪裂纹的位置和模拟裂纹扩展的常用数值方法,任何内部几何界面 位置都可用它的零水平集函数来表示。 (1)单元分解法的基本思想是任意函数()x φ都可以用子域内一组局部函数 ()()x x N I ?表示,满足如下等式: ()()()x x N x I I ?φ∑= (1) 其中,它们满足单位分解条件:f I I ?x ()=1 ()x N I 是有限元法中的形函数,根 据上述理论,便可以根据需要对有限元的形函数进行改进。在XFEM 中,单元 分解的目的是进行数值积分,达到不引人额外的自由度的目的[7-8]。 (2)水平集法 使用水平集法来描述几何间断性。在一般情形下,多用来追踪

任意三维裂纹扩展分析-0319

任意三维疲劳裂纹扩展分析 1.前言 在工程实际中,真实的结构总是存在众多缺陷或裂纹,对于一个含裂纹或缺陷的构件,多在其服役荷载远低于容许强度的情况下就发生了破坏。实际工程结构在经受长时间多因素综合作用下,产生变形、裂纹等缺陷,从而导致整个结构的失效。结构的失效主要由疲劳引起,其最终失效形式即为断裂,有大约80%以上的工程结构的断裂与疲劳有关,由疲劳引起的巨大经济损失及灾难性的后果不胜枚举。 我们通常不能仅仅因为某个构件出现了裂纹就简单的认为该构件不安全或不可靠,尤其是对于大型设备的重要构件,因为这将使企业耗费高昂的成本。对于出现的裂纹,以往多采用以下几种处理办法:一是对出现裂纹的构件进行更换,这对于含裂纹但仍能工作的构件是一个巨大的浪费。二是强行停止使用进行维修,这样会带来巨大的经济损失;三是冒险继续使用,但这样会带来巨大风险,甚至会造成人员伤亡。所以,人们更想知道,出现的裂纹是否会在既定载荷(包括疲劳载荷在内的任意载荷)下扩展成不安全或失效的临界尺寸,因此,出现了疲劳裂纹扩展分析。疲劳裂纹扩展分析是采用断裂力学的理论和方法对含裂纹等缺陷构件的失效过程进行分析,以评估产品的安全性和可靠性,可以进行损伤容限评估和剩余寿命预测等,已经在化工机械、飞行器、核工业等各个工程领域得到了广泛应用,并得到了世界各国政府及学术机构的重视。 2.疲劳裂纹扩展分析软件 在工程实践中,疲劳裂纹扩展分析已成为评估产品性能、改良产品设计和提高服役寿命的一个重要工具。目前,疲劳裂纹扩展分析主要有解析法和数值法这样两种方法,下面分别介绍这两种方法。 1)解析法 解析法主要依据相应的规范和经验公式,将复杂的三维问题简化为二维问题,并对复杂的裂纹形状和荷载状态进行简化,然后用经验的方法对裂纹安全性进行评估。但对于大量结构复杂的工程实际问题却无能为力,况且其简化后的分析准确度及是否真实逼近服役情况也值得探讨。 目前,工程上有几款基于解析法而开发的裂纹扩展分析软件,它们主要应用于航空标准结构的裂纹扩展分析,包括DARWIN、NASGRO、AFGROW等。这些软件内嵌了航空结构多种形式的标准裂纹库,通过修改相应的模型尺寸、边界条件、载荷、裂纹位置和尺寸等参数即可根据内含的公式或内插表快速得出断裂力学结果,用来计算或查找标准航空结构中给定裂纹尺寸、载荷和形状的应力强度因子,仅能计算裂纹库里已有的裂纹模型的应力强度因子,并且适用于相对简单的几何和载荷,往往忽略真实的条件,如温度、非平面裂纹、复杂形状的裂纹、几何形状复杂的部件、部件之间的接触、残余应力和局部应力集中等。如要获得较为准确的结果,需要利用实验数据或其它方法对计算结果进行修正,但修正系数的取值往往很难确定,要靠经验来判断,并不具备求解复杂结构中三维裂纹扩展的能力。 2)数值法 近年来,随着有限元软件的发展,基于数值法的裂纹扩展分析软件已成功应用于解决工

abaqus裂纹模拟心得

abaqus裂纹模拟心得 baqus裂纹模拟心得(Contour Integral不是XFEM) 最近由于项目需要,做了一些裂纹相关的模拟,在此把一些心得体会贴到论坛上与大家分享,如有不当之处,欢迎大家指正! 本帖主要侧重于介绍裂纹定义过程中各个选项的意义,具体的操作过程论坛里已经有高手做了很好的教程,至于断裂力学理论推荐大家看一下沈成康写的《断裂力学》一书。裂纹的定义和输出需要用到interaction模块和step模块: 一、Interaction模块 1.1 预制裂纹(步骤:菜单/special/crack/assign seam) 注意:并不是作裂纹分析都要定义seam,如果你的裂纹不是一条缝,而是一个缺口,则不需要assign seam,直接走下一步(定义裂纹)就行。 1.2 创建裂纹(步骤:菜单/special/crack/create,type:contour integral) —crack front:crack front是用来定义第一围线积分的区域,2D下我们可以选择包围裂尖点的面,3D则选择包围裂尖线的面;另外还有一种定义crack front的方法,就是直接选择裂尖点(2D)或裂尖线3D),用这个方法定义crack front不需要再定义下一步的crack tip/line,比较简便,两种方法算出的结果没有明显的差别,其实只是影响积分路线的问题,但是J积分值是路径无关的,看个人喜好吧 —crack tip/line:这个比较好理解就是裂尖点(2D)或线(3D),如果我们在上一步中用方法二定义crack front,这一步就直接跳过了 —crack extension direction(定义裂纹扩展方向):这里定义的其实是一个虚拟的裂纹扩展方向,定义了这个参考方向后,我们才能通过输出的角度判断裂纹扩展方向,可以通过两种方法: o q vector:输入一个方向,用来作为计算裂纹的扩展方向的参考方向; o normal to crack plane:crack plane表示裂纹的对称面(当裂纹在一个平面内时,可能需要分开定义多个裂纹),这种方法下我们只需定义裂纹面的法线方向,通过(t表示裂纹尖端的切线), 会在每个节点得出一个q方向(如下图); o 注意:q的方向对输出的应力强度因子,J积分等都会有影响,一般情况下,q最好在裂纹平面内,且垂直于裂尖线的切线,否则算出的应力强度因子,J积分值等等在不同围线积分中会差别较大。 二、step模块 定义好了裂纹相关参数后,我们需要返回step模块定义输出变量: 步骤:菜单/output/history output requests/create,domain:crack,可以输出的值包括:J-integral,Ct-integral,stress intensity factor,T-stress —J-integral :用于应变率无关材料的准静态分析过程,包括线弹性,非线性弹性,弹塑性材料(单调加载工况)的静态分析。J-integral的优点是和积分路径无关,从而可以避开尖端塑性区的

abaqus有限元分析报告开裂梁要点

Abaqus梁的开裂模拟计算报告 1.问题描述 利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。参考文献Brena et al.(2003)得到梁的基本数据: 图1.1 Brena et al.(2003)中梁C尺寸 几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁 由文献Chen et al. 2011得材料特性: 1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t= 2.721MPa,泊松比ν=0.2,弹性模量 E c=28020MPa; 2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa 3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.2 2.建模过程 1)Part 打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;Modeling Space:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。点击Continue 进入Sketch二维绘图区。由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。 使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提 示区的Done,完成草图。 图2.1 beam 部件二维几何模型

相同的方法建立混凝土垫块: 图2.2 plate 部件二维几何模型 所选用的点有(0,0),(40,0),(40,10),(0,10) 受压区钢筋: 在选择钢筋的base feature的时候选择wire,即线模型。 图2.3 compression bar 部件二维几何模型 选取的点(0,0),(1575,0) 受拉区钢筋: 图2.4 tension bar 部件二维几何模型 选取的点(0,0),(1575,0) 箍筋: 图2.5 stirrup 部件二维几何模型 选取的点为(0,0),(0,330) 另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。

基于MSC MARC的表面裂纹扩展特性的仿真

基于MSC MARC的表面裂纹扩展特性的仿真 作者:刘青峰谢基龙 摘要:基于MSC Marc软件,本文通过编程实现了参数化、模块化建模与自动化分析;采用模块化有限元建模技术和接触技术仿真半椭圆表面裂纹(前缘),采用在裂纹前缘形成辐射状奇异单元网格的建模方法和接触技术来施加边界条件的方法,实现裂纹前缘奇异应力场和裂纹模型远场应力的模拟。在此基础上,运用裂纹虚拟扩展技术,计算裂纹前缘的J积分, 通过线弹性有限元理论,换算出裂纹前缘的K因子分布,对裂纹前缘离散节点实行正交扩展,通过拟合裂纹前缘,实现了裂纹连续扩展仿真。仿真结果与试验结果基本吻合,说明本文所采用的方法具有很好的实用性。 关键词:接触技术;奇异单元;裂纹前缘;半椭圆表面裂纹;MSC Marc 国内外对于裂纹的研究,多数集中在理论推导和试验上[1],只能通过理论或经验公式指导工程结构的可靠性设计。许多研究者[2-6]介绍了表面裂纹的应力强度因子的各种理论计算方法和分布特征来表征裂纹的扩展。随着计算机技术和有限元技术的快速发展,使裂纹及其扩展仿真成为可能,为含裂纹结构可靠性研究创造了条件[7-11]。 裂纹虚拟扩展技术和J 积分能量定义是有限元法计算裂纹前缘应力强度因子分布的理论基础;而有限元法计算裂纹前缘K 因子分布规律是实现裂纹连续扩展的前提条件,从计算裂纹前缘的J 积分(能量释放率)分布着手,在线弹性情况下可以换算裂纹前缘的应力强度因子分布。本文通过软件实现裂纹前缘的不同步扩展。事先不给出裂纹前缘曲线的形状假设,而将裂纹前缘离散成系列点,计算裂纹前缘应力强度因子的分布,即局部(各个离散点)应力强度因子,并对裂纹前缘的各个离散点单独实行正交扩展,拟合得到的代表新裂纹前缘的系列离散点,来获得裂纹前缘曲线的形状表达,实现裂纹前缘的不同步扩展(裂纹前缘各部分扩展速度不同)。这样可获得更加精确的典型裂纹的扩展特性和寿命。 1 裂纹连续扩展模型的建立 为了真实地仿真裂纹尖端应力场,本文采用MSC MARC 仿真裂纹、施加载荷与边界条件,采用参数化、模块化建模技术建立裂纹连续扩展模型。图1 是含有半椭圆表面裂纹体。

相关主题
文本预览
相关文档 最新文档