当前位置:文档之家› 紫外光谱分析法习题答案资料讲解

紫外光谱分析法习题答案资料讲解

紫外光谱分析法习题答案资料讲解
紫外光谱分析法习题答案资料讲解

紫外光谱分析法习题

答案

紫外光谱分析法习题

班级姓名分数

一、选择题

1. 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( 3 )

(1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂

2. 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( 4 ) (1) 可以扩大波长的应用范围; (2) 可以采用快速响应的检测系统

(3) 可以抵消吸收池所带来的误差; (4) 可以抵消因光源的变化而产生的误差3. 许多化合物的吸收曲线表明,它们的最大吸收常常位于 200─400nm 之间,对这一光谱区应选用的光源为 ( 1 )

(1) 氘灯或氢灯 (2) 能斯特灯 (3) 钨灯 (4) 空心阴极灯灯

4. 助色团对谱带的影响是使谱带 ( 1 )

(1)波长变长 (2)波长变短 (3)波长不变 (4)谱带蓝移

5. 指出下列哪种是紫外-可见分光光度计常用的光源? ( 4 ) (1) 硅碳棒 (2) 激光器 (3) 空心阴极灯 (4) 卤钨灯

6. 指出下列哪种不是紫外-可见分光光度计使用的检测器? ( 1 ) (1) 热电偶 (2) 光电倍增管 (3) 光电池 (4) 光电管

7. 紫外-可见吸收光谱主要决定于 ( 2 )

(1) 分子的振动、转动能级的跃迁; (2) 分子的电子结构

(3) 原子的电子结构; (4) 原子的外层电子能级间跃迁

8. 基于发射原理的分析方法是 ( 2 )

(1) 光电比色法 (2) 荧光光度法 (3) 紫外及可见分光光度法 (4) 红外光谱法9. 基于吸收原理的分析方法是 ( 4 )

(1) 原子荧光光谱法;(2) 分子荧光光度法; (3) 光电直读光谱法; (4) 紫外及可见分光光度法

10.在紫外-可见分光光度计中, 强度大且光谱区域广的光源是 ( 3 ) (1) 钨灯 (2) 氢灯 (3) 氙灯 (4) 汞灯

11. 物质的紫外-可见吸收光谱的产生是由于 ( 3 )

(1) 分子的振动 (2) 分子的转动 (3) 原子核外层电子的跃迁 (4) 原子核内层电子的跃迁

12. 阶跃线荧光的波长 ( 1 )

(1)大于所吸收的辐射的波长; (2)小于所吸收的辐射的波长

(3)等于所吸收的辐射的波长; (4)正比于所吸收的辐射的波长

13. 比较下列化合物的UV-VIS吸收波长的位置(λmax )

( 4 )

(1) a>b>c (2) c>b>a (3)b>a>c (4)c>a>b

14. 在紫外-可见光谱区有吸收的化合物是

( 4 )

(1) CH3-CH=CH-CH3 (2) CH3-CH2OH

(3) CH2=CH-CH2-CH=CH2 (4) CH2=CH-CH=CH-CH3

15. 双波长分光光度计和单波长分光光度计的主要区别是

( 2 )

(1)光源的个数; (2)单色器的个数; (3)吸收池的个数; (4)单色器和吸收池的个数 16. 下列哪种方法可用于测定合金中皮克数量级(10-12)的铋?

( 2 )

(1)分光光度法(2)中子活化(3)极谱法(4)电位滴定法

17. 在分光光度法中,运用朗伯-比尔定律进行定量分析采用的入射光为

( 2 )

(1)白光(2)单色光(3)可见光(4)紫外光

18. 分子运动包括有电子相对原子核的运动(E电子)、核间相对位移的振动(E振动)

和转动(E转动)这三种运动的能量大小顺序为

( 3 )

(1) E振动>E转动>E电子 (2) E转动>E电子>E振动 (3) E电子>E振动>E转动 (4) E电子>E转动>E振动

二、填空题

1. 在紫外-可见吸收光谱中, 一般电子能级跃迁类型为:

(1)______________跃迁, 对应________________光谱区

(2)______________跃迁, 对应________________光谱区

(3)______________跃迁, 对应________________光谱区

(4)______________跃迁, 对应________________光谱区

[答] 1. (─>(*, 真空紫外;

2. n─>(*, 远紫外;

3. (─>(*, 紫外;

4. n─>(*, 近紫外, 可见.

2. 可见-紫外、原子吸收的定量分析吸收光谱法都可应用一个相同的

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

紫外可见吸收光谱习题集及答案42554

五、紫外可见分子吸收光谱法(277题) 一、选择题 ( 共85题) 1.2分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰( ) (1)消失(2) 精细结构更明显 (3)位移 (4)分裂 2。 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、 c、d、e滤光片可供选用,它们的透光曲线如图2所示,你认为应选的滤光片为 ( ) 3。 2 分 (1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是( ) (1) 比色法 (2) 示差分光光度法 (3) 光度滴定法 (4)分光光度法 4。2分 (1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为10%,如果更改参 比溶液,用一般分光光度法测得透射比为 20%的标准溶液作参比溶液,则试液的透 光率应等于( ) (1)8% (2) 40% (3) 50% (4)80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为 510 nm,如用光电比色计测定应选用哪一种 滤光片?( ) (1)红色(2) 黄色 (3)绿色 (4) 蓝色 6. 2 分(1074) 下列化合物中,同时有n→π*,π→π*,σ→σ*跃迁的化合物是( ) (1) 一氯甲烷 (2) 丙酮(3) 1,3-丁二烯(4) 甲醇 7. 2 分(1081) 双波长分光光度计的输出信号是 ( ) (1) 试样吸收与参比吸收之差 (2) 试样在λ1和λ2处吸收之差 (3) 试样在λ1和λ2处吸收之和 (4)试样在λ1的吸收与参比在λ2的吸收之差 8. 2分 (1082) 在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的( ) (1) 极大值 (2) 极小值 (3) 零(4) 极大或极小值 9。 2 分 (1101) 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( ) (1) 可以扩大波长的应用范围 (2) 可以采用快速响应的检测系统

紫外光谱分析法习题答案资料讲解

紫外光谱分析法习题 答案

紫外光谱分析法习题 班级姓名分数 一、选择题 1. 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( 3 ) (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( 4 ) (1) 可以扩大波长的应用范围; (2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差; (4) 可以抵消因光源的变化而产生的误差3. 许多化合物的吸收曲线表明,它们的最大吸收常常位于 200─400nm 之间,对这一光谱区应选用的光源为 ( 1 ) (1) 氘灯或氢灯 (2) 能斯特灯 (3) 钨灯 (4) 空心阴极灯灯 4. 助色团对谱带的影响是使谱带 ( 1 ) (1)波长变长 (2)波长变短 (3)波长不变 (4)谱带蓝移 5. 指出下列哪种是紫外-可见分光光度计常用的光源? ( 4 ) (1) 硅碳棒 (2) 激光器 (3) 空心阴极灯 (4) 卤钨灯 6. 指出下列哪种不是紫外-可见分光光度计使用的检测器? ( 1 ) (1) 热电偶 (2) 光电倍增管 (3) 光电池 (4) 光电管 7. 紫外-可见吸收光谱主要决定于 ( 2 ) (1) 分子的振动、转动能级的跃迁; (2) 分子的电子结构 (3) 原子的电子结构; (4) 原子的外层电子能级间跃迁 8. 基于发射原理的分析方法是 ( 2 )

(1) 光电比色法 (2) 荧光光度法 (3) 紫外及可见分光光度法 (4) 红外光谱法9. 基于吸收原理的分析方法是 ( 4 ) (1) 原子荧光光谱法;(2) 分子荧光光度法; (3) 光电直读光谱法; (4) 紫外及可见分光光度法 10.在紫外-可见分光光度计中, 强度大且光谱区域广的光源是 ( 3 ) (1) 钨灯 (2) 氢灯 (3) 氙灯 (4) 汞灯 11. 物质的紫外-可见吸收光谱的产生是由于 ( 3 ) (1) 分子的振动 (2) 分子的转动 (3) 原子核外层电子的跃迁 (4) 原子核内层电子的跃迁 12. 阶跃线荧光的波长 ( 1 ) (1)大于所吸收的辐射的波长; (2)小于所吸收的辐射的波长 (3)等于所吸收的辐射的波长; (4)正比于所吸收的辐射的波长 13. 比较下列化合物的UV-VIS吸收波长的位置(λmax ) ( 4 ) (1) a>b>c (2) c>b>a (3)b>a>c (4)c>a>b 14. 在紫外-可见光谱区有吸收的化合物是 ( 4 ) (1) CH3-CH=CH-CH3 (2) CH3-CH2OH (3) CH2=CH-CH2-CH=CH2 (4) CH2=CH-CH=CH-CH3 15. 双波长分光光度计和单波长分光光度计的主要区别是 ( 2 ) (1)光源的个数; (2)单色器的个数; (3)吸收池的个数; (4)单色器和吸收池的个数 16. 下列哪种方法可用于测定合金中皮克数量级(10-12)的铋? ( 2 )

紫外光谱分析法习题答案

紫外光谱分析法习题 班级姓名分数 一、选择题 1. 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( 3 ) (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( 4 ) (1) 可以扩大波长的应用范围; (2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差; (4) 可以抵消因光源的变化而产生的误差 3. 许多化合物的吸收曲线表明,它们的最大吸收常常位于 200─400nm 之间,对这一光谱区应选用的光源为 ( 1 ) (1) 氘灯或氢灯 (2) 能斯特灯 (3) 钨灯 (4) 空心阴极灯灯 4. 助色团对谱带的影响是使谱带 ( 1 ) (1)波长变长 (2)波长变短 (3)波长不变 (4)谱带蓝移 5. 指出下列哪种是紫外-可见分光光度计常用的光源? ( 4 ) (1) 硅碳棒 (2) 激光器 (3) 空心阴极灯 (4) 卤钨灯 6. 指出下列哪种不是紫外-可见分光光度计使用的检测器? ( 1 ) (1) 热电偶 (2) 光电倍增管 (3) 光电池 (4) 光电管 7. 紫外-可见吸收光谱主要决定于 ( 2 ) (1) 分子的振动、转动能级的跃迁; (2) 分子的电子结构 (3) 原子的电子结构; (4) 原子的外层电子能级间跃迁 8. 基于发射原理的分析方法是 ( 2 ) (1) 光电比色法 (2) 荧光光度法 (3) 紫外及可见分光光度法 (4) 红外光谱法 9. 基于吸收原理的分析方法是 ( 4 ) (1) 原子荧光光谱法;(2) 分子荧光光度法; (3) 光电直读光谱法; (4) 紫外及可见分光光度法 10.在紫外-可见分光光度计中, 强度大且光谱区域广的光源是

紫外可见吸收光谱习题集和答案

五、紫外可见分子吸收光谱法(277题) 一、选择题 ( 共85题 ) 1. 2 分 (1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( ) (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 2 分 (1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、 c、d、e滤光片可供选用,它们的透光曲线如图2所示,你认为应选的滤光片为 ( ) 3. 2 分 (1020) 欲测某有色物的吸收光谱.下列方法中可以采用的是 ( ) (1) 比色法 (2) 示差分光光度法 (3) 光度滴定法 (4) 分光光度法 4. 2 分 (1021) 按一般光度法用空白溶液作参比溶液.测得某试液的透射比为 10%.如果更改参 比溶液.用一般分光光度法测得透射比为 20% 的标准溶液作参比溶液.则试液的透 光率应等于 ( ) (1) 8% (2) 40% (3) 50% (4) 80% 5. 1 分 (1027) 邻二氮菲亚铁配合物.其最大吸收为 510 nm.如用光电比色计测定应选用哪一种 滤光片? ( ) (1) 红色 (2) 黄色 (3) 绿色 (4) 蓝色 6. 2 分 (1074) 下列化合物中.同时有 n→*.→*.→*跃迁的化合物是( ) (1) 一氯甲烷 (2) 丙酮 (3) 1,3-丁二烯 (4) 甲醇 7. 2 分 (1081) 双波长分光光度计的输出信号是 ( ) (1) 试样吸收与参比吸收之差 (2) 试样在1和2处吸收之差 (3) 试样在1和2处吸收之和 (4) 试样在1的吸收与参比在2的吸收之差8. 2 分 (1082) 在吸收光谱曲线中.吸光度的最大值是偶数阶导数光谱曲线的 ( ) (1) 极大值 (2) 极小值 (3) 零 (4) 极大或极小值 9. 2 分 (1101) 双光束分光光度计与单光束分光光度计相比.其突出优点是 ( ) (1) 可以扩大波长的应用范围 (2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差 (4) 可以抵消因光源的变化而产生的误差

紫外-可见光谱分析方法

紫外—可见光谱分析方法在环境监测中的应用 紫外—可见光谱分析水质监测技术是现代环境监测的一个重要发展方向, 与传统的化学分析、电化学分析和色谱分析等分析方法相比, 光谱分析技术更具有操作简便、消耗试剂量小、重复性好、测量精度高和检测快速的优点, 非常适合对环境水样的快速在线监测。目前该技术主要有原子吸收光谱法、分子吸收光谱法以及高光谱遥感法, 其中高光谱遥感法由于测量精度不高多数用于定性分析, 而原子吸收光谱法精度虽高, 但由于首先要把样品汽化, 因而耗能较高, 系统体积大, 不适合广泛使用, 比较而言, 分子吸收光谱法是目前应用较为广泛的水质分析技术, 其中紫外—可见光谱分析法可直接或间接地测定水中大多数金属离子、非金属离子和有机污染物的含量, 具有灵敏、快速、准确、简单等优点, 并可实现对多种水质参数的检测, 在对饮用水、地表水、工业废水等水体的在线监测中具有显著的技术优势, 是国内外科研机构与主要分析仪表厂商竞相研发的现代水质监测技术。 1、UV-VIS分光光度计的发展情况 紫外可见分光光度计的发展从历史上看,分光光度计按其光路可分为两类。第一类是单光束仪器,这类仪器的优点是光效率高,结构简单和价格便宜,缺点是稳定性差,漂移较大。第二类是双光束仪器,这类仪器具有稳定性高、漂移小的优点,但结构复杂、价格较贵、效率较低。后来开发的一种分光束系统吸取了单光束仪器光效率高的优点,它使初始光束的小部分直接导向光强检测器,大部分经过样品,从而可使仪器信噪比高、反应快。 随着计算机技术在分析仪器领域的广泛应用,单光束、双光束UV-VIS分光光度计均得到了极大的发展。如利用计算机技术在单光束型分光光度计上可实现波长自动扫描的功能。在微机控制下,这种仪器(如国内的721型)还可实现光门开闭、调零、透过率与吸光度测定的自动化及部分校正仪器漂移的功能。在实验室常规分析、在线分析及流动注射分析中均有应用。双光束型仪器在计算机控制下,可以任意选择单光束、双光束或双、单光束模式进行扫描。如有些仪器可进行固定波长分析、全波长扫描和时间动力学测定等,在固定波长方式下,最多可同时测定12个波长,同时读取相应波长下的吸光度或透过率,并可同时乘以相应的计算因子在波长扫描方式下,可以在全波长范围内任意选择所需要的扫描波段,并可计算拾取的峰、谷、点、一至多阶导数、对数光密度、散射光校正、光谱的相加、减、相乘和净吸收值,可完成多次重复的扫描并将光谱图显示在同一屏幕上,根据需要对图形进行电子图形放大、自动标尺处理、峰形平滑处理,时间动力学测定方式适用于测定不同反应时间样品光密度或透过率的动态变化。双光束型仪器可

第9章-紫外可见吸收光谱法

第九章紫外可见吸收光谱法 §9-1 概述 利用紫外可见分光光度计测量物质对紫外可见光的吸收程度(吸光度)和紫外可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法,称为紫外可见吸收光谱法或紫外可见分光光度法(ultraviolet and visible spectrophotometry,UV-VIS)。它具有如下特点: (1)灵敏度高适于微量组分的测定,一般可测定10-6g级的物质,其摩尔吸收系数可以达到104~105数量级。 (2) 准确度较高其相对误差一般在1% ~ 5%之内。 (3) 方法简便操作容易、分析速度快。 (4) 应用广泛不仅用于无机化合物的分析,更重要的是用于有机化合物的鉴定及结构分析(鉴定有机化合物中的官能团)。可对同分异构体进行鉴别。此外,还可用于配合物的组成和稳定常数的测定。 紫外可见吸收光谱法也有一定的局限性,有些有机化合物在紫外可见光区没有吸收谱带,有的仅有较简单而宽阔的吸收光谱,更有个别的紫外可见吸收光谱大体相似。例如,甲苯和乙苯的紫外吸收光谱基本相同。因此,单根据紫外可见吸收光谱不能完全决定这些物质的分子结构,只有与红外吸收光谱、核磁共振波谱和质谱等方法配合起来,得出的结论才会更可靠。 §9-2 紫外可见吸收光谱法的基本原理 当一束紫外可见光(波长范围200~760nm)通过一透明的物质时,具有某种能量的光子被吸收,而另一些能量的光子则不被吸收,光子是否被物质所吸收既决定于物质的内部结构,也决定于光子的能量。当光子的能量等于电子能级的能= h f),则此能量的光子被吸收,并使电子由基态跃迁到激发量差时(即ΔE 电 态。物质对光的吸收特征,可用吸收曲线来描述。以波长λ为横坐标,吸光度A 为纵坐标作图,得到的A-λ曲线即为紫外可见吸收光谱(或紫外可见吸收曲线)。它能更清楚地描述物质对光的吸收情况(图9-1)。 从图9-1中可以看出:物质在某一波长处对光的吸收最强,称为最大吸收峰,对应的波长称为最大吸收波长(λmax);低于高吸收峰的峰称为次峰;吸收峰旁

分享五大波谱解析步骤简述一紫外光谱解析UV应用时顾及吸收带

分享:五大波谱解析步骤简述 (一) 紫外光谱 解析UV应用时顾及吸收带的位置,强度和形状三个方面。从吸收带(K 带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。可粗略归纳为以下几点: ①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环 烃或它们的简单衍生物。 ②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸 收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。 ③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常 显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。 ④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。 ⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度 吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。 (二)红外光谱 1. 解析红外光谱的三要素(位置、强度和峰形) 在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的 存在 2 .确定官能团的方法 对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。 只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲 振动。 例2. 亚甲基(CH2):2920cm-1和2850cm-1为其伸缩振动,1470cm-1和

紫外光谱法与红外光谱法..

部分一紫外光谱法与红外光谱法 摘要:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法,紫外光谱法(UV),红外光谱法(IR)都是属于光谱法。 一、原理不同 1、紫外光谱(UV) 分子中价电子经紫外光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱。紫外光谱是由于分子中价电子的跃迁而产生的。 紫外吸收光谱的波长范围是100-400nm(纳米), 其中100-200nm 为远紫外区,200-400nm为近紫外区, 一般的紫外光谱是指近紫外区。 2、红外光谱法(IR) 分子与红外辐射的作用,使分子产生振动和转动能级的跃迁所得到得吸收光谱,属于分子光谱与振转光谱范畴。利用样品的红外吸收光谱进行定性、定量分析及测定分子结构的方法称之红外光谱法。 红外光区的波长范围是0.76—500 μm,近红外0.76—2.5μm中红外 2.5—25μm远红外波长25—500μm 。 二、仪器对比

三、分析目的 1、紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。因此,紫外吸收光谱属电子光谱。光谱简单。 2、中红外吸收光谱由振—转能级跃迁引起,红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。 3、紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究 4、红外光谱的特征性比紫外光谱强。因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。因此,多数紫外光谱比较简单,特征性差。 UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是鉴定许多化合物,尤其是有机化合物的重要定性工具之一。红外光谱主要用于化合物鉴定及分子结构表征,亦可用于定量分析。

紫外可见吸收光谱法

紫外可见吸收光谱法 开放分类:化学科学 收藏分享到顶[1]编辑词条 目录 ? 1 概述 ? 2 基本原理 ? 3 特点 ? 4 仪器组成 ? 5 应用 ? 6 影响因素 ?展开全部 摘要 紫外可见吸收光谱法是利用某些物质的分子吸收10~800nm光谱区的辐射来进行分析测定的方法,这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于有机和无机物质的定性和定量测定。该方法具有灵敏度高、准确度好、选择性优操作简便、分析速度好等特点。 紫外可见吸收光谱法-概述 图4.3

分子的紫外可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。如(图4.3),胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构是产生紫外吸收的关键基团。 紫外-可见以及近红外光谱区域的详细划分如图4.4所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。[1] (图)图4.4 紫外可见吸收光谱法-基本原理 紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有: (1)σ→σ* 跃迁指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道 (2)n→σ* 跃迁指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁 (3)π→π* 跃迁指不饱和键中的π电子吸收光波能量后跃迁到π*反键轨道。 (4)n→π* 跃迁指分子中处于非键轨道上的n电子吸收能量后向π*反键轨道的跃迁。

紫外光谱分析仪基础知识

紫外光谱分析仪基础知识 紫外,可见光谱法及相关仪器 UV-VIS Spectrometry & Instrument 紫外,可见光谱法及相关仪器 一(紫外,可见吸收光谱概述 二(紫外,可见分光光度计2 1(紫外,可见分光光度计的主要部件 2(紫外,可见分光光度计的分类 3(紫外,可见分光光度计的各项指标含义 4(紫外,可见分光光度计的校正 三(紫外,可见分光光度计的应用 四(紫外,可见分光光度计的进展 一(紫外,可见吸收光谱概述 利用紫外,可见吸收光谱来进行定量分析由来已久,可追溯到古代,公元60年古希腊已经知道利用五味子浸液来估计醋中铁的含量,这一古老的方法由于最初是运用人眼来进行检测,所以又称比色法。到了16、17世纪,相关分析理论开始蓬勃发展,1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的朗伯,比尔定律。 1(紫外,可见吸收光谱的形成 吸光光度法也称做分光光度法,但是分光光度法的概念有些含糊,分光光度是指仪器的功能,即仪器进行分光并用光度法测定,这类仪器包括了分光光度计与原

子吸收光谱仪(AAS)。吸光光度法的本质是光的吸收,因此称吸光光度法比较合理,当然,称分子吸光光度法是最确切的。 紫外,可见吸收光谱是物质中分子吸收200-800nm光谱区内的光而产生的。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级跃迁(原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因(如受光、热、电的激发)而从一个能级转到另一个能级,称为跃迁。)当这些电子吸收了外来辐射的能量就从一个能量较低的能级跃迁到一个能量较高的能级。因此,每一跃迁都对应着吸收一定的能量辐射。具有不同分子结构的各种物质,有对电磁辐射显示选择吸收的特性。吸光光度法就是基于这种物质对电磁辐射的选择性吸收的特性而建立起来的,它属于分子吸收光谱。跃迁所吸收的能量符合波尔条件: hvEE,,2121 二(紫外,可见分光光度计 1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外,可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,仪器的灵敏度和准确度也不断提高,其应用范围也不断扩大。 1(紫外,可见分光光度计的主要部件 全世界的紫外,可见分光光度计生产厂家有上百家,产品型号成千上万,但就基本结构来说,都是由五个部分组成,即光源、单色器(单色仪)、吸收池、检测器和信号指示系统。如下图所示: 信号指光源单色器吸收池检测器示系统光源

紫外可见光谱分析技术

紫外可见光谱分析技术及其发展和应用 医学院宋宗辉2016201632 紫外-可见吸收光谱法概述 分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。紫外-可见以及近红外光谱区域的详细划分如下图所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。 紫外可见区域 1.1分子结构与吸收光谱 1.1电子能级和跃迁 从化学键性质考虑,与有机物分子紫外-可见吸收光谱有关的电子是:形成单键的σ电子,形成双键的π电子以及未共享的或称为非键的n电子。有机物分子内各种电子的能级高低次序下图所示,σ*>π*>n>π>σ。标有*者为反键电子。

电子能级及电子跃迁示意图 可见,σ→σ*跃迁所需能量最大,λmax<170 nm,位于远紫外区或真空紫外区。一般紫外-可见分光光度计不能用来研究远紫外吸收光谱。如甲烷,λmax =125 nm。饱和有机化合物的电子跃迁在远紫外区。 1.2生色团 π→π*所需能量较少,并且随双键共轭程度增加,所需能量降低。若两个以上的双键被单键隔开,则所呈现的吸收是所有双键吸收的叠加;若双键共轭,则吸收大大增强,波长红移,λmax和εmax均增加。如单个双键,一般λmax为150-200nm,乙烯的λmax = 185nm;而共轭双键如丁二烯λmax = 217nm,己三烯λmax = 258nm。 n→π*所需能量最低,在近紫外区,有时在可见区。但π→π*跃迁几率大,是强吸收带;而n→π*跃迁几率小,是弱吸收带,一般εmax<500。许多化合物既有π电子又有n 电子,在外来辐射作用下,既有π→π*又有n→π*跃迁。如-COOR基团,π→π*跃迁λmax=165 nm,εmax=4000;而n→π*跃迁λmax=205nm,εmax=50。π→π*和n→π*跃迁都要求有机化合物分子中含有不饱和基团,以提供π轨道。含有π键的不饱和基团引入饱和化合物中,使饱和化合物的最大吸收波长移入紫外-可见区。这类能产生紫外-可见吸收的官能团,如一个或几个不饱和键,C=C,C=O,N=N,N=O等称为生色团(chromophore)。某些生色团的吸收特性见下表。 某些生色团及相应化合物的吸收特性

紫外光谱分析实验

紫外光谱分析实验 二、【实验目的要求】 通过实验了解苯的B吸收带精细结构及其在不同溶剂中精细结构的变化;利用紫外光谱法对分析纯环已烷、正已烷进行纯度检验;测量样品中苯的浓度。 要求同学掌握紫外光谱仪的仪器基本构造及分析原理;利用所学过的紫外光谱知识,解释苯在不同形态下的B吸收带精细结构变化;对分析纯环已烷、正已烷的纯度的检验,及可能含有的杂质是什么;设计出合理的方法测出样品中苯的浓度。 三、【实验原理】 紫外吸收光谱法是有机分析中一种常用的方法,具有仪器设备简单、操作方便、灵敏度高的特点,已广泛应用于有机化合物的定性、定量和结构鉴定。 由于紫外吸收光谱的吸收峰通常很宽,峰的数目也很少,因此在结构分析方面不具有十分专一性。通常是根据最大吸收峰的位置及强度判断其共轭体系的类型及在结构相似的情况下,区分共轭方式不同的异构体。1.化合物中微量杂质检查 利用紫外光谱法可以方便地检查出某些化合物中的微量杂质。例如,在环己烷中含有微量杂质苯,由于苯有一B吸收带,吸收波长在220~270nm范围,而环己烷在此处无明显吸收峰。因此,根据在220~270 nm 处有苯的粗细结构吸收带,即可判断环己烷中是否有微量杂质苯存在。 2.未知样品的鉴定 用紫外光谱法鉴定未知样品时,若有标准样品,则把试样和标准样品用相同的溶剂,配制成相同浓度的溶液,分别测量吸收光谱,如果两者为同一化合物,则吸收光谱应完全一致。若无标准样品,可与文献上的标准谱图进行比较。 在实际测定中,我们还常常利用紫外吸收峰的波长和强度进行定性分析。例如,烟碱(尼古丁)在0.1N硫酸中最大吸收峰波长λmax为260纳米,百分吸光系数=343。如果某化合物在相同条下测得的λmax和与烟碱的数据一致,则该化合物结构与烟碱结构就基本相同。 3.定量分析 应用紫外光谱法进行定量分析的方法很多,如:a. 标准曲线法、b. 对照法、c. 吸光系数法、d. 混和物的定量、e. 双波长分光光度法。但最常用最简单的方法就是"标准曲线法"。根据光的吸收定率: A=εbc ε-吸光系数;b-吸收池液层厚度;c-溶液浓度 如果液层厚度保持不变,即b一定,入射光波长和其他条件也保持不变,则在一定浓度范围内,所测得的吸光度与待测物质的浓度成正比。配制一系列浓度的标准溶液,在λmax处分别测定吸光度。以标准溶液的浓度为横座标,相应的吸光度A为纵座标,绘出标准曲线,如图所示。

紫外光谱分析方法

第四章紫外光谱、紫外-可见光分光光度法 §4-1紫外-可见吸收光谱的产生 一.原因:分子中价电子跃迁产生的光谱吸收 二.电子跃迁类型 与有机化合物有关的价电子有σ、π和n电子,主要跃迁有:1.N-V跃迁:由基态跃迁至反键轨道:σ-σ*、π-π* 2.N-Q跃迁:非键电子跃迁到反键轨道:n-σ*、n-π* 3.N-R跃迁:σ电子激发到更高能级或电离 吸收波谱: 此外,与分光光度法有关的跃迁还有: 4.电荷转移跃迁,常见过渡金属与有机配位体(显色剂)之间电子转移跃迁,大多在可见光区,吸收强度大,往往用于定量分析。5.配位场跃迁,d-d或f-f轨道在配位场作用下简并,轨道分裂,产生d-d(Ⅳ、V周期)、f-f(La系、Ar系)跃迁。此吸收能量少,吸收强度较小,多在可见光区。 三.辐射吸收的基本定律—朗伯-比尔定律 当一束平行光通过均匀的液体介质时,光的一部分被吸收,一部分透过溶液,还有一部分被容器表面散射。 即I0=It(吸收光)+Ia(透射光)+Ir 若散射光Ir→0 则I0=It+Ia

1.透光率T=Ia/I0 T↑,吸收↓ 2.吸光度A=lg1/T=lgI0/Ia A↑,吸收↑ 3.朗伯-比尔定律 当入射光波长一定时(单色光),溶液吸光度A只与溶液中有色物质浓度和比色皿厚度有关,成正比,即 A∝LC => A=kLC 式中:k-比例常数-系吸系数 L-比色皿厚度 C-溶液浓度 当C为摩尔浓度,令k=ε,称为摩尔吸光系数。 4.吸光度的加和性,若溶液中有m种成分,其在某一波长下吸光系数分别为ε1、ε2…εm,浓度分别为C1、C2…Cm 则 对于同一种物质,波长不同时ε(或K)不相同。 四、无机化合物的紫外-可见光谱 §4-2有机化合物的紫外-可见光谱 一.吸收光谱表示方法(光谱图) 用A~λ或T%~λ作图称光谱图。 二.常用术谱 1.生色基团:含有π键的不饱和基团(为C=C、C=O、N=N、

紫外光谱分析方法

第四章 紫外光谱、紫外-可见光分光光度法 §4-1紫外-可见吸收光谱的产生 一. 原因:分子中价电子跃迁产生的光谱吸收 二.电子跃迁类型 与有机化合物有关的价电子有σ、π和n 电子,主要跃迁有: 1.N -V 跃迁:由基态跃迁至反键轨道:σ-σ*、π-π* 2.N -Q 跃迁:非键电子跃迁到反键轨道:n-σ*、n-π* 3.N -R 跃迁:σ电子激发到更高能级或电离 吸收波谱: σσ σππ π ---->>远紫外 紫外 可见光 配位场跃迁电荷转移跃迁 ****、频率 此外,与分光光度法有关的跃迁还有: 4.电荷转移跃迁,常见过渡金属与有机配位体(显色剂)之间电子转移跃迁,大多在可见光区,吸收强度大,往往用于定量分析。 5.配位场跃迁,d-d 或f-f 轨道在配位场作用下简并,轨道分裂,产生d-d (Ⅳ、V 周期)、f-f (La 系、Ar 系)跃迁。此吸收能量少,吸收强度较小,多在可见光区。 三.辐射吸收的基本定律—朗伯-比尔定律 当一束平行光通过均匀的液体介质时,光的一部分被吸收,一部分透过溶液,还有一部分被容器表面散射。

即I0=It(吸收光)+Ia(透射光)+Ir 若散射光Ir→0 则I0=It+Ia 1.透光率T=Ia/I0 T↑,吸收↓ 2.吸光度A=lg1/T=lgI0/Ia A↑,吸收↑ 3.朗伯-比尔定律 当入射光波长一定时(单色光),溶液吸光度A只与溶液中有色物质浓度和比色皿厚度有关,成正比,即 A∝LC => A=kLC 式中:k-比例常数-系吸系数 L-比色皿厚度 C-溶液浓度 当C为摩尔浓度,令k=ε,称为摩尔吸光系数。 4.吸光度的加和性,若溶液中有m种成分,其在某一波长下吸光系数分别为ε1、ε2…εm,浓度分别为C1、C2…Cm 则 ∑ ε C 入 入 总 A= 对于同一种物质,波长不同时ε(或K)不相同。 四、无机化合物的紫外-可见光谱 §4-2有机化合物的紫外-可见光谱一.吸收光谱表示方法(光谱图) 用A~λ或T%~λ作图称光谱图。 A T% λ() 或

紫外-可见吸收光谱法.

分析化学教研室 第十二章 紫外-可见吸收光谱法 【知识目标】 1.掌握:紫外-可见吸收光谱的产生及其特性,影响紫外-可见吸收光谱的因素。 2.熟悉:紫外-可见吸收光谱与分子结构的关系,电子跃迁类型和吸收带;定性分析方法,混合组分定量方法。 3.了解:电磁辐射和电磁波谱;光谱分析法的分类。 【能力目标】 1.识记:电磁辐射和电磁波谱,光谱分析法的分类;溶剂极性对紫外-可见吸收光谱的影响;仪器的类型;定性分析和纯度检查方法。 2.理解:紫外-可见吸收光谱的产生,电子跃迁类型和吸收带;仪器测量误差。 3.应用:测量条件的选择;定性分析方法和纯度检查,混合组分定量测定方法。 研究物质在紫外-可见光区(200 nm ~760 nm )分子吸收光谱的分析方法,称为紫外-可见吸收光谱法(ultraviolet -visible absorption spectroscopy ,UV -vis )。它广泛用于无机和有机物质的定性和定量分析,在药物、食品中应用也较多。 第一节 光谱分析法概述 一、电磁辐射和电磁波谱 表12-1 电磁波谱范围表

分析化学教研室 电磁辐射又称电磁波,是以巨大速度通过空间、不需要以任何物质作为传播媒介的一种能量。电磁辐射具有波粒二象性,即波动性和粒子性。 将电磁辐射按波长的长短顺序排列起来,称为电磁波谱。表12-1列出了各电磁波谱区的名称、波长范围、相应的能级跃迁类型及对应的光谱类型。 二、光谱分析法的分类 光学分析法分为非光谱法与光谱法。 非光谱法是指不以光波长为特征讯号,仅利用物质与电磁辐射的相互作用,测量电磁辐射的反射、折射、干涉、衍射和偏振等性质变化的分析方法。主要分析方法包括折射法、旋光法、比浊法、X射线衍射法等。 光谱法是基于电磁辐射能量与物质作用时,测定由物质内部发生量子化的能级之间跃迁而产生吸收、发射或散射的波长和强度,进行定性、定量和结构分析的方法。光谱法可分为吸收光谱法、发射光谱法等。 由气态原子或离子的外层电子在不同能级间跃迁而产生的光谱,称为原子光谱(atomic spectrum)。由分子外层电子跃迁或分子内部振动转动能级跃迁而产生的光谱,称为分子光谱(molecular spectrum)。 (一)吸收光谱法 利用物质的特征吸收光谱进行分析的方法,称为吸收光谱法(absorption spectroscopy)。根据吸收光谱所在光谱区不同,吸收光谱法可分为X射线吸收光谱法、原子吸收光谱法、紫外 可见吸收光谱法、红外吸收光谱法和核磁共振波谱法等。本章主要讨论紫外-可见吸收光谱法。 (二)发射光谱法 通过测量物质的特征发射光谱进行分析的方法,称为发射光谱法(emission spectroscopy)。根据发射光谱所在光谱区和激发方式不同,发射光谱法可分为γ射线光谱法、X射线荧光光谱法、原子发射光谱法、原子荧光光谱法、分子荧光光谱法和分子磷光光谱法等。 第二节紫外-可见吸收光谱与分子结构的关系 紫外-可见吸收光谱法是基于分子外层价电子跃迁产生的吸收光谱进行分析的方法。它属于分子吸收光谱。分子在紫外-可见区的吸收与其电子结构相关。 一、紫外-可见吸收光谱的产生和电子跃迁 (一)紫外-可见吸收光谱的产生 分子具有电子能级、振动能级和转动能级,这些能级都是量子化。在每一电子能级上有许多间距较小的振动能级,在每一振动能级上又有许多更小的转动能级。若用ΔE电子、

UV紫外可见吸收光谱-结构分析

课程名称: 实验名称:紫外可见吸收光谱法—结构分析 学院部门: 报告人: 同组人员: 实验时间: 提交时间: α( 阿而法) β( 贝塔) γ(伽马) δ(德尔塔) ε(艾普西龙) ζ(截塔) η(艾塔) θ(西塔) ι约塔) κ(卡帕) λ(兰姆达) μ(米尤) ν(纽) ξ(可系) ο(奥密克戎) π (派) ρ (若) σ (西格马)τ (套)υ (英文或拉丁字母)φ(斐)χ(喜)ψ(普西)ω(欧米伽)

一、实验目的 1、学习并掌握紫外可见分光光度计的使用方法; 2、了解并掌握不同的助色团对苯的紫外吸收光谱的影响; 3、了解并掌握溶剂极性对丁酮、三氯乙烯的紫外吸收光谱的影响; 4、了解并掌握pH对苯酚的紫外吸收光谱的影响。 二、实验原理 2.1 紫外吸收光谱产生的基本原理及相关概念 紫外吸收光谱是由于分子中价电子的跃迁而产生的。因此,这种吸收光谱决定于分子中价电子的分布和结合情况。按分子轨道理论,在有机化合物分子中有几种不同性质的价电子:形成单键的电子称为σ键电子;形成双键的电子称为π键电子;氧、氮、硫、卤素等含有未成键的孤对电子,称为n电子。 当饱和单键碳氢化合物中的氢被氧、氮、硫、卤素等杂原子取代时,由于这类原子中有n 电子,n电子较σ电子易于激发,使电子跃迁所需能量降低,吸收峰向长波长方向移动,这种现象称为红移,此时产生n→σ* 跃迁。这种能使吸收峰波长向长波方向移动的杂原子基团称为助色团。 芳香族化合物π→π*跃迁在近紫外区产生3个特征吸收带。苯的特征吸收带为184nm(E1),204nm(E2),254nm(B)。E1带、E2带和B带式苯环上三个共轭体系中的π→π*跃迁产生的,E1带和E2带属强吸收峰带,在230—270nm范围内的B带属弱吸收带,其吸收峰常随苯环上取代基的不同而发生位移。当苯环上有助色基团如—OH、—Cl等取代基时,由于n—π共轭,使E2吸收带向长波长方向移动,但一般在210nm左右。同时,n—π共轭还能引起苯吸收的精细结构消失。 生色基团为一类含有π键的不饱和基团,在饱和碳氢化合物或苯环上引入这些基团后其最大吸收波长将移至紫外及可见区范围内,产生红移效应。 2.2 影响化合物紫外吸收的因素 2.2.1 溶剂极性 溶剂极性对紫外光谱的影响较复杂,主要可分为两类:①对吸收强度和精细结构的影响。在非极性溶剂中,尚能观察到振动跃迁的精细结构。但若改为极性溶剂后,由于溶剂和溶质的分子作用力增强,使谱带的精细结构变得模糊,以致完全消失成为平滑的吸收谱带。②对最大吸收波长(λmax)的影响。n→σ*和n→π*跃迁的分子都含有非键的n电子,基态极性比激发态大,因此基态能够与溶剂之间产生较强的氢键,能量下降较大,而激发态能量下降较小,故跃迁能量增加,吸收波长相短波方向移动,即发生蓝移。而在π→π*跃迁的情况下激发态的极性比基态强,溶剂使激发态的能级降低的比基态多,使π→π*跃迁所需能量减小发生红移。 2.2.2 pH值 在碱性条件下苯及某些其衍生物易形成盐离子,盐离子带负电荷对应的杂原子上孤对电子增加则n电子较原化合物增多。n电子较易激发,因此所需跃迁能量降低,其对应的3个吸收峰将发生红移。反之,在酸性条件下,化合物形成正离子,杂原子上孤对电子与氢结合,n 电子云密度降低,使跃迁所需能量增加,波长向短波方向移动。 2.2.3 紫外可见分光光度计工作原理 紫外可见分光光度法是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外可见分光光度法。紫外可见吸收光谱除主要可用于物质的定量分析外,还可以用于物质的定性分析、纯度鉴定、结构分析。

相关主题
文本预览
相关文档 最新文档