当前位置:文档之家› 连铸板坯缺陷图谱及产生的原因分析

连铸板坯缺陷图谱及产生的原因分析

第二篇连铸板坯缺陷(AA)

第二篇连铸板坯缺陷(AA) (1)

2.1表面纵向裂纹(AA01) (4)

2.2表面横裂纹(AA02) (5)

2.3星状裂纹(AA03) (6)

2.4角部横裂纹(AA04) (7)

2.5角部纵裂纹(AA05) (9)

2.6气孔(AA06) (10)

2.7结疤(AA07) (11)

2.8表面夹渣(AA08) (12)

2.9划伤(AA09) (13)

2.10接痕(AA13) (14)

2.11鼓肚(AA11) (15)

2.12脱方(AA10) (16)

2.13弯曲(AA12) (17)

2.14凹陷(AA14) (18)

2.15镰刀弯(AA15) (19)

2.16锥形(AA16) (20)

2.17中心线裂纹(AA17) (21)

2.18中心疏松(AA18) (22)

2.19三角区裂纹(AA19) (24)

2.20中心偏析(AA20) (26)

2.21中间裂纹(AA21) (27)

2.1表面纵向裂纹(AA01)

图2-1-1

1、缺陷特征

表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。

2、产生原因及危害

产生原因:

①钢中碳含量处于裂纹敏感区内;

②结晶器钢水液面异常波动。当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;

③结晶器保护渣性能不良。保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;

④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。

危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。

3、预防及消除方法

①控制好钢中碳含量,使钢中碳含量不在裂纹敏感区;

②减少结晶器钢水液面异常波动,将结晶器钢水液面波动控制在±5mm以内;

③选择合适的结晶器保护渣;

④保证中间包浸入式水口与结晶器对中,防止钢水出浸入式水口侧孔后出现偏流。

4、检查判断

肉眼检查,必要时用钢卷尺测量裂纹长度及其分布位置;

表面纵向裂纹一般通过火焰清理可以消除,火焰清理不合格的表面纵向裂纹缺陷坯判废。

2.2表面横裂纹(AA02)

图2-2-1

1、缺陷特征

位于连铸板坯表面振痕波谷处的裂纹称为横裂纹。横裂纹一般产生于连铸板坯上表面,裂纹长度一般为20~100mm,裂纹深度为2~4mm。

2、产生原因及危害

产生原因:

①连铸板坯表面振痕过深;

②钢中Al、N含量增加,促使质点(AlN)在晶界沉淀,诱发横裂纹;

③二次冷却太强,连铸板坯在脆性温度范围内(700~900℃)矫直。

危害:严重的横裂纹导致连铸板坯报废,若进行轧制可能导致热轧板卷发生断带。

3、预防及消除方法

①采用高频率小振幅的振动方式,减小连铸板坯表面振痕深度;

②二冷区采用平稳的弱冷却,使矫直时铸坯表面温度大于900℃;

③采用流动性、铺展性好、粘度较低的结晶器保护渣。

4、检查判断

肉眼检查;

轻微横裂纹火焰清理可以消除,对严重的横裂纹缺陷坯进行切除或判废。

2.3星状裂纹(AA03)

图2-3-1

1、缺陷特征

连铸板坯表面呈细小的龟甲状的裂纹称为星状裂纹,裂纹深度一般为2~4mm。由于铸坯表面通常被氧化铁皮所覆盖,一般情况下很难看到,经酸洗后,这种裂纹十分清楚的暴露在铸坯表面。

2、产生原因及危害

产生原因:

①高温坯壳与结晶器铜壁摩擦时,吸收了结晶器的铜,铜变成液体后再沿奥氏体晶界渗透,从而降低了晶界的高温强度而产生星状裂纹;

②钢中Cu向晶界渗透,引起晶界脆性也会导致星状裂纹产生。

危害:由于星状裂纹一般都很细小,对轧制热轧板质量影响较小。

3、预防及消除方法

①改善结晶器铜板材质,结晶器表面镀Cr或Ni以增加结晶器硬度;

②适当的控制钢中残余元素,如Cu<0.20%;

③降低钢中S含量,控制钢中合适的Mn/S;

④合适的二次冷却水量。

4、检查判断

星状裂纹缺陷一般不易发现,连铸板坯经酸洗后可以观察到;

星状裂纹火焰清理后可以消除。

2.4角部横裂纹(AA04)

图2-4-1

1、缺陷特征

跨连铸板坯边角部的细小的横向裂纹称为角部横裂纹。该缺陷大多数发生在板坯内弧侧。裂纹缺陷严重时在板坯厚度方向上贯通。

2、产生原因及危害

产生原因:

①结晶器锥度过大;

②结晶器对中不准或足辊、扇形段对弧不良;

③连铸板坯二次冷却不良,铸坯边角部过冷,矫直时产生撕裂;

④钢中碳含量在裂纹敏感区内;

⑤结晶器保护渣性能不良。

危害:严重的角部横裂纹会造成漏钢,产生废品,若进行轧制易导致热轧产品产生边裂缺陷。

3、预防及消除方法

①调整合适的结晶器锥度;

②保证结晶器对中、足辊、二冷扇形段对弧良好;

③采用合理的二次冷却水制度,使铸坯矫直时角部温度不小于900℃;

④控制钢中碳含量,使钢中碳含量不在裂纹敏感区内;

⑤采用合适的结晶器保护渣。

4、检查判断

肉眼检查;

对角部横裂纹缺陷进行切除,无法切除挽救的角部横裂纹缺陷坯判废。

2.5角部纵裂纹(AA05)

图2-5-1

1、缺陷特征

铸坯宽面与窄面交界的棱边附近的纵向裂纹称为角部纵裂纹,一般产生在距棱边10~15mm处。

2、产生原因及危害

产生原因:

①结晶器锥度过大;

②结晶器窄面支撑不当造成连铸板坯窄面鼓肚所致;

③结晶器以及足辊窄面冷却水不足;

危害:角部纵裂纹严重时会造成漏钢,产生废品;热轧进行轧制时可能导致热轧产品出现边部碎裂、结疤等缺陷。

3、预防及消除方法

①采用合适的结晶器锥度;

②调整窄面足辊间隙,避免连铸板坯产生鼓肚;

③采用合适的结晶器冷却水量和二次冷却水量。

4、检查判断

肉眼检查;

轻微的角部纵裂纹可进行火焰清理,清理不合格的缺陷坯判废。

图2-6-1

1、缺陷特征

在连铸板坯断面上呈蜂窝状的微孔称为气孔。气孔缺陷沿铸坯周边密集分布,接近铸坯表面,有时与铸坯表面连通。

2、产生原因及危害

产生原因:

①冶炼过程或精炼过程中钢液脱氧不良;

②引锭杆头部潮湿、开浇时堵引锭用的小材料(铁屑或废钢片)有锈、有油或潮湿;

③中间包烘烤不良。

危害:导致连铸板坯判废。若进行轧制,可能导致热轧板卷产生边裂、气泡等缺陷。

3、预防及消除方法

①冶炼过程中,严格执行钢水脱氧制度,减少钢水深吹,保证出钢口时间,控制钢水带渣量;

②充分利用钢水精炼手段,进行钢水二次脱氧处理;

③引锭头与堵引锭所用的金属铁屑和废钢片要干燥、干净;

④中间包在解体时,规范打水方式,控制好打水量;

⑤保证中包烘烤时间和烘烤温度,使中包内衬干燥。

4、检查判断

肉眼检查;

有气泡缺陷的部位必须切除或判废。

图2-7-1

1、缺陷特征

铸坯表面上的不规则的重皮缺陷称为结疤,其面积大小不一,覆盖于宽面或窄面。

2、产生原因及危害

产生原因:

①结晶器锥度过小、窄面冷却不够致使铸坯内钢液渗出形成结疤;

②结晶器振动不良,造成连铸板坯坯壳破裂;

③保护渣化渣不良,造成坯壳破裂;

④拉速过快或坯壳粘结,钢水渗出坯壳。

危害:结疤缺陷必须进行清理,若不进行清理轧制可能导致热轧板卷产生结疤、凹坑、孔洞缺陷。

3、预防及消除方法

①保证合适的结晶器锥度;

②保证结晶器振动良好;

③使用合适的结晶器保护渣;

④精心开浇操作,减少结晶器内冷钢悬挂。

4、检查判断

肉眼检查;

结疤缺陷可用火焰清理,清理不合格的结疤缺陷坯判废。

2.8表面夹渣(AA08)

图2-8-1

1、缺陷特征

嵌于连铸板坯表面的非金属渣称为表面夹渣。表面夹渣无规则的分布在铸坯表面,其形状大小不一。表面夹渣多产生在换中间包后第一块铸坯上,其它铸坯表面夹渣较少见。

2、产生原因及危害

产生原因:

①中包钢水开浇时结晶器保护渣加入过早;

②浇铸过程中,结晶器内钢液异常波动,结晶器保护渣或熔损的耐火材料卷入钢液中;

危害:由于渣子本身导热性差,夹渣部位坯壳薄弱容易导致漏钢事故;连铸板坯表面夹渣在热轧、冷轧板卷表面形成夹杂缺陷。

3、预防及消除方法

①开浇时精心操作,防止保护渣卷入钢液中;

②保证结晶器钢水液面稳定,防止结晶器保护渣或熔损的耐火材料卷入钢液中;

4、检查判断

肉眼检查;

轻微的表面夹渣可用火焰清理,严重的进行切除或判废。

2.9划伤(AA09)

图2-9-1

1、缺陷特征

沿浇铸方向连续或断续出现的线状、沟状的表面缺陷称划伤。划伤缺陷通常是连续贯通的,轻微的划伤深度一般为1mm~2mm,严重的划伤深度一般为4mm~6mm。在板坯上下表面均可能出现。

2、产生原因及危害

产生原因:铸机流道内辊子不转或辊子上粘有异物。

危害:轻微的划伤一般对热轧板质量无影响,但划伤过深热轧无法消除,影响热轧板表面质量。

3、预防及消除方法

①浇钢前仔细检查流道内辊子是否转动;

②清理干净二冷段辊子上粘附的冷钢或结渣。

4、检查判断

肉眼检查,量具测量;

划伤缺陷可用火焰清理,根据缺陷深度和清理深度、宽度按相关标准判定。

图2-10-1

1、缺陷特征

沿连铸板坯长度方向某一截面上的重接痕迹称为接痕,有些接痕部位还呈现重皮缺陷。

2、产生原因及危害

产生原因:

①结晶器保护渣化渣不良,结晶器内冒坯壳;

②浇注过程中短暂停机产生停机接痕;

③浇注过程中降速过快产生降速接痕;

④更换中间包时上下炉的衔接部位。

危害:接痕缺陷必须进行切除,容易导致连铸板坯产生短尺,影响连铸板坯定尺合格率。

3、预防及消除方法

①选择性能良好的结晶器保护渣;

②浇注过程中,规范降速操作,杜绝降速过快;

③加强对连铸设备的维护,避免浇注过程中出现停机现象;

4、检查判断

肉眼检查;

对接痕部位进行切除处理。

图2-11-1

1、缺陷特征

铸坯的凝固壳由于受到内部钢水静压力的作用而鼓胀成凸面称为鼓肚。该缺陷表现为局部凸起,凸起部位凸出高度一般为10mm~20mm,最高可达40~60mm。

2、产生原因及危害

产生原因:

①结晶器锥度过小;

②扇形段框架未压下或未完全压下;

③由于浇注速度过快造成液芯部分的长度大于浇注设备的支撑长度;

④浇注温度高、拉速过快。

危害:有鼓肚缺陷的连铸板坯容易产生中心线裂纹,严重的鼓肚缺陷导致连铸板坯报废。

3、预防及消除方法

①合适的结晶器锥度;

②减少连铸设备事故,浇钢前和浇注过程中对扇形段框架压下情况进行检查;

③防止二冷段辊子变形,保证流道辊子对弧准确,辊间距合理;

④浇注高温钢时避免拉速过快。

4、检查判断

肉眼检查;

按相关标准判定,鼓肚缺陷超标的连铸坯判废。

图2-12-1

1、缺陷特征

板坯端面相互垂直的两边出现钝角或锐角的缺陷称脱方缺陷。

2、产生原因及危害

产生原因:

①结晶器严重变形;

②连铸板坯进行二次冷却时,二冷冷却不均造成连铸板坯局部过冷;

危害:脱方缺陷导致连铸板坯报废,若进行轧制容易导致板材厚薄不均。

3、预防及消除方法

①浇注前检查结晶器状况,禁止使用变形的结晶器;

②保证连铸板坯二次冷却良好,减少铸坯局部过冷现象。

4、检查判断

肉眼检查,量具测量;

脱方超标的连铸坯判废。

L—连铸板坯长度T—连铸板坯厚度

图2-13-1

1、缺陷特征

连铸板坯纵向不平直现象(上下弯曲)称作弯曲。

2、产生原因及危害

产生原因:

①浇注过程中因故停机,连铸板坯在扇形段停留时间过长,造成铸坯温度低矫直困难;

②连铸板坯二次冷却不均,局部过冷;

③长定尺连铸板坯下线时,夹持时间过长或冷却场地地面不平整。

危害:连铸板坯弯曲严重时,热轧无法进行加热轧制,从而导致连铸板坯判废。

3、预防及消除方法

①避免连铸浇注过程中故障停机时间过长;

②连铸板坯二次冷却时,保证二次冷却均匀;

③连铸板坯堆垛时,堆垛场地应清理平整。长定尺连铸板坯下线堆垛时,在垛位最上面放一块冷坯进行压垛处理。

4、检查判断

肉眼检查;

对超标的弯曲缺陷坯进行二次切割或判废。

图2-14-1

1、缺陷特征

连铸板坯表面局部区域的不规则下陷称为凹陷,凹陷最深时可达50mm。

2、产生原因及危害

产生原因:

①结晶器锥度过大;

②连铸板坯局部冷却过强,造成该区域组织树枝晶严重“搭桥”,使后区因钢水补缩不良而形成凹陷;

③连铸板坯局部不均匀冷却产生鼓肚缺陷,临近区域产生凹陷;

危害:严重的凹陷连铸板坯进行判废处理。若轧制后,容易造成轧制厚度不均,板形难以控制。

3、预防及消除方法

①调整合适的结晶器锥度;

②二次冷却时,保证冷却均匀,避免局部冷却过强;

③保证二次冷却均匀,避免连铸板坯产生鼓肚缺陷。

4、检查判断

肉眼检查;

对超标的凹陷缺陷坯进行切除或判废。

2.15镰刀弯(AA15)

L—连铸板坯长度W—连铸板坯宽度

图2-15-1

1、缺陷特征

连铸板坯长度方向上侧面产生的形似镰刀的弯曲缺陷,称镰刀弯。

2、产生原因及危害

产生原因:镰刀弯产生的原因主要是连铸板坯二次冷却不均匀。

危害:输送和轧制过程中容易出现跑偏现象,同时影响热轧板形控制。

3、预防及消除方法

铸坯冷却时,采用合理的二冷水制度,保证铸坯均匀冷却。

4、检查判断

肉眼检查,用卷尺测量;

按相关标准判定,超标的缺陷坯判废。

2.16锥形(AA16)

图2-16-1

1、缺陷特征

板坯头尾宽度不一致的现象称锥形缺陷。锥形缺陷多见于包次最后一炉最后一块板坯。

2、产生原因及危害

产生原因:

①连铸浇注过程中拉速变化过大,钢水补缩不充分;

②换中间包时,尾坯钢水补缩不充分。

危害:对热轧板形控制有较大影响。

3、预防及消除方法

①浇注过程中,规范升降速操作,避免升降拉速过快;

②进行更换中间包操作时,严格按照规程要求进行降速操作。

4、检查判断

肉眼检查,用卷尺进行测量;

对超标缺陷进行切除。

板坯连铸机粘结漏钢的原因分析及预防 刘雷锋

板坯连铸机粘结漏钢的原因分析及预防刘雷锋 发表时间:2018-01-02T16:54:15.037Z 来源:《基层建设》2017年第28期作者:刘雷锋 [导读] 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。 宁波钢铁有限公司浙江宁波 315807 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。连铸技术迅速发展起来。本文对此进行了分析研究。 关键词:坯;连铸;连铸工艺 连铸漏钢是个常见现象。钢水在结晶器内形成坯壳,连铸坯出结晶器后,薄弱的坯壳抵抗不住钢水静压力,出现断裂而漏钢。对于薄板坯连铸来说更易发生漏钢事故。漏钢对连铸生产危害很大。即影响了连铸车间的产量,又影响了连铸坯的质量,更危及操作者的安全。因此,降低薄板坯连铸漏钢率是提高生产效率,提高产量,提高产品质量,降低成本的重要途径。现对某厂自2008~2013年薄板坯漏钢率进行统计。2008年漏钢率达0.56%;2009年漏钢率达0.19%;2010年漏钢率达0.19%;2011年漏钢率达0.19%;2012年漏钢率达0.15%;2013年漏钢率达0.07。 1 工艺流程 某厂第一钢轧厂工艺流程为:鱼雷罐供应铁水/混铁炉供应铁水→铁水预处理→转炉炼钢→氩站→精炼→薄板坯连铸 2 薄板坯漏钢类型 某厂薄板坯连铸漏钢主要有:粘结漏钢、裂纹漏钢、卷渣漏钢、开浇漏钢、鼓肚漏钢五个类型。 3 薄板坯漏钢特征、原因及预防措施 3.1 粘结漏钢 粘结漏钢是指钢水直接与结晶器铜板接触形成粘结点,粘结点处坯壳与结晶器壁之间发生粘结,此处在结晶器振动和拉坯的双重作用下被撕裂,并向下和两侧扩展,形成倒“V”形破裂线,钢水补充后又形成新的粘结点,这一过程反复进行,粘结点随坯壳运动不断下移,此处坯壳较薄,出结晶器后,坯壳不能承受上部钢水的静压力,便会发生漏钢事故。据统计,粘结漏钢发生率最高,高达50%以上。 (1)铸坯粘结漏钢后特征。粘结漏钢后铸坯特征。坯壳呈“V”字型或“倒三角”状,粘结点明显。 (2)粘结漏钢的原因: 1)保护渣性能不好。保护渣在结晶器铜板与凝固坯壳之间起润滑的效果。保护渣的性能好坏直接影响凝固坯壳的质量,保护渣的粘度是一个重要指标,它决定渣膜的薄厚,保护渣粘度高,不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。2)钢水纯净度低。钢水中[O]含量高,使得钢水中A12O3含量升高,进而结晶器保护渣中A12O3含量高,保护渣性能发生变化,渣粘度增大、不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。3)结晶器振动参数不合适。合适的振动形式和振动参数可以降低结晶器铜板与凝固坯壳之间的摩擦力和减小振痕深度,改善铸坯表面的质量。若结晶器振动参数不合适,负滑脱时间过长造成凝固坯壳上的振痕过深,使坯壳容易在应力的作用下断裂产生粘结。4)浸入式水口烘烤不符合标准。如果浸入式水口烘烤温度不够,连铸开浇时水口与结晶器内外弧间的保护渣产生搭桥现象,保护渣不易熔化,进而流入到坯壳和结晶器之间的保护渣减少,渣膜变薄,润滑效果变差,容易粘结漏钢。5)钢水温度过低。钢水温度过低,保护渣粘度大,润滑效果不好,易粘结漏钢。 3.2 卷渣漏钢 定義:由于结晶器液面波动会将渣卷入初生坯壳,这些渣子附着在坯壳表面,由于其导热性差,卷渣处的坯壳较薄,铸坯出结晶器后,渣子在钢水静压力作用下脱落产生漏钢。 在结晶器内的固态或半熔融的夹渣物随着浇注钢流的运动,被推向结晶器壁;或在更换中间包长水口时,中间包内钢液面下降后,中间包内钢渣易随钢流进入结晶器,最后被初生坯壳捕捉; (1)卷渣漏钢后特征。卷渣漏钢主要特征表现为:漏钢部位有“孔洞或结渣”,漏钢部位一般发生在结晶器出口位置。 (2)卷渣漏钢原因: 1)残留在钢中的大型夹杂物较多造成卷渣现象;2)较大的结晶器液面波动造成卷渣现象;3)捞渣不及时或捞不净造成的卷渣现象。 3.3开浇漏钢 开浇漏钢是指铸机开浇或者换中间包时,由于连接不好而造成的漏钢。 (1)开浇漏钢后铸坯特征。开浇漏钢铸坯特征为:漏钢一般发生在开浇起步期间,引锭头刚拉出结晶器就发生漏钢。(2)开浇漏钢原因:引锭头未扎好,包括石棉绳没扎紧;开浇起步过快,凝固时间不够开拉,坯头强度不够,将引锭头处拉裂漏钢。 4 薄板坯漏钢的预防措施 4.1 优化结晶器保护渣性能 通过优化保护渣碱度、熔点、熔速、粘度等指标,有效地减少了粘结、卷渣、裂纹漏钢等生产事故。 4.2 恒温恒拉速浇注 恒温恒拉速浇注是降低薄板坯漏钢率的主要因素。 4.3 优化连铸工艺参数 对不同钢种、不同断面的连铸相关参数(结晶器水流量、结晶器初始锥度、二冷水各段分配比例及比水量、扇形段压下终点位置等)进行优化调整,并固化使用。 4.4 连铸耐材优化与管理 (1)加强水口的烘烤操作。(2)优化中间包结构。中间包控流装置由“单挡渣坝”式改为“一挡墙+两挡坝”组合结构,将钢包下渣完全挡在冲击区内,产生的流场有利于钢液中夹杂物的充分上浮,有利于钢液成分、温度的均匀,提高了钢水质量,降低了漏钢事故。(3)加

连铸板坯缺陷特征和缺陷图谱

连铸板坯缺陷特征和 缺陷图谱 首钢京唐板坯质检编制 2010年8月8日

一.连铸坯质量特征综述 1.1连铸坯质量定义和特征 所谓连铸坯质量是指的到合格产品所允许的铸坯缺陷的严重程度。对铸坯质量要求而言,主要有四项指标,即连铸坯几何形状、表面质量、内部组织致密性和钢的洁净性;而这些质量要求与连铸机本身设计,采取的工艺以及凝固特点密切相关。 1.2铸坯的检查和清理的意义 提高钢的质量,降低成本,加强产品市场的竞争力是企业追求的目标,生产无缺陷连铸坯以保证高附加值产品优良的性能是永恒的主题,连铸坯的裂纹和夹杂物所产生的缺陷可以说是影响产品质量的两大障碍,生产无缺陷或缺陷不足以影响产品质量的连铸坯,这是要努力达到的目标,而连铸坯裂纹和夹杂物所产生的缺陷是受设备、工艺、管理等多种因素制约的。因此设备、工艺和管理的现代化加上人的质量意识是提高产品质量的关键。,但是在连铸生产中,铸坯的各种缺陷总是无法避免的,铸坯清理对钢厂保障铸坯质量、降低废品比例具有重要意义。 (1)火焰铸坯清理的注意事项 1)一般对表面质量要求较高的钢种,铸坯清理的目的以检查铸坯表面和皮下质量为主,包括夹杂物、气泡、裂纹等分布情况,在清理检查的基础上提供铸坯的进一步处理(清除缺陷、决定铸坯表面质量级别、是否送机器去皮、决定钢种是否达到热送条件等)的意见。 2)微合金钢如Nb、V微合金钢和包晶钢等容易产生角部横裂纹,往往位于铸坯振痕谷底,也需要用火焰清理才能发现。这方面也应引起足够重视。 3)对于包晶钢、中碳钢等钢种,则以人工清理肉眼可见缺陷为主,包括铸坯常见的表面缺陷,如纵裂、角横裂、重接、凹陷、夹渣、毛刺等,以便尽量降低铸坯判废损失。 (2)不良的火焰清理的危害 虽然火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。但是,这项操作的确需要掌握一定的技巧,一旦能够正确地操作可确保最终产品不产生额外的表面缺陷。连铸坯表面上的深槽、凸脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。如果采取了正确的操作,轧制表面通常不会产生与清理操作有关的缺陷。一个确保光滑过渡的良好操作是清理工作宽度要6倍于清理深度,如果没有采用正确的清理操作,那么缺陷会折叠,轧制后看起来像一条连续的划伤。 二连铸板坯内部缺陷 1.1中心疏松和缩孔 【定义与特征】在板坯断面上就可以发现中心附近有许多细小的空隙,中心疏松严重时会形成中心缩孔。 【鉴别与判定】用肉眼观察,铸坯轧制压缩比达3~5mm时,中心疏松可焊合,所以小的中心疏松和缩孔可以放过。但是严重的中心疏松会对产品质量危害甚大,所以必须进行切尺处理。 【图谱】

连铸机漏钢的原因及防范措施

漏钢 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 漏钢的影响因素影响漏钢发生的因素有: 温度和拉速不一致——钢水过热度越高,坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳 /结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。 结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。

方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。 保护渣加入方式不正确——由于现场工人操作习惯,一次性加入过多,且主要集中在内弧,呈斜坡状,会造成液渣不均匀填充,影响结晶器与坯壳间的润滑与均匀传热。在正常浇注情况下,小渣条没必要捞出,且应禁止用捞渣棒试探结晶器内是否形成渣条,会破坏弯月面初始坯壳的均匀形成。 结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温)的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。 结晶器几何形状不当——为增加钢水一结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严重妨碍所需厚度的坯壳形成,最终导致漏钢。磨损和变形造成的结晶器锥度损耗会导致角部纵裂显著增加,这是由于角部再加热的结果。就结晶器变形而言,产生原因是结晶器铜板

板坯缺陷原因

板坯缺陷之二—《中厚板质量工程师手稿》—陈定乾 (2011-06-07 19:45:19) 转载 分类:中厚板质量工程师手稿 标签: 杂谈 板坯缺陷 2、板坯裂纹 据现场经验,铸坯表面存在深1㎜、长10㎜的裂纹,会在后面的轧制工序中引起质量问题。YB/T2012-2004《连续铸钢板坯》的表面质量规定为:1、连铸板坯表面不得有目视可见的重接、重叠、翻皮、结疤、夹杂、深度或高度大于3㎜的划痕、压痕、擦伤、气孔、冷溅、皱纹、凸坑、凹坑和深度大于2㎜的裂纹,不得有高度大于5㎜的火焰切割瘤。2、连铸板坯横截面不得有影响使用的缩孔、皮下气泡、裂纹。3、连铸板坯表面如存在上述缺陷,应沿轧制方向清除,清除处应圆滑无棱角。清除宽度不得小于深度的6倍,长度不得小于深度的10倍。表面清除的深度,单面不得大于连铸板坯厚度的10%,两相对面清除深度之和不得大于厚度15%。清除深度自实际尺寸算起。4、如果清除深度大于厚度的4%,而清除处又不在连铸坯宽度方向的中部1/3内时,可在连铸板坯同一面上与长度方向的中心轴线对称位置修磨相应的面积和深度。5、经供需双方协商,连铸板坯表面质量要求可在适当范围内调整。 板坯表面裂纹主要有:表面纵裂或角部纵裂、表面横裂或角部横裂、星裂。资料显示:钢的温度与裂纹有关系,称之为“钢的高温性能”。⑴钢可分为三个延性区:Ⅰ区凝固脆性区(Tm-1350℃),Ⅱ区高温塑性区(1300-1000℃),Ⅲ区低温脆化区(900-700℃),Ⅰ区使铸坯产生内裂纹,Ⅲ区使铸坯产生表面裂纹。⑵外力作用为:结晶器坯壳与铜板摩擦力、钢水静压力产生鼓肚、喷水冷却不均匀产生热应力、铸坯弯曲或矫直力、支承辊不对中产生的机械力、相变应力,当这些力作用在高温铸坯表面或凝固前沿产生的应力或应变量超过钢的σ临或ε临时就产生裂纹,然后在二冷区裂纹进一步扩展。⑶工艺性能为:浇注过热度、杂质元素含量( S 、Mn/S 、P 、Cu 、Sn 、Zn……)、二冷水量和铸坯表面温度分布、坯壳与结晶器铜板良好的润滑性、结晶器液面的稳定性、结晶器内坯壳均匀生长。设备性能:结晶器锥度、结晶器的振动(振动频率f,振幅S,负滑脱时间tN)、气水喷雾冷却、对弧准确,防止坯壳变形(对弧误差[0.5mm])、在线检测支承辊开口度([0.5mm])、支承辊变形、多点矫直或连续矫直、多节辊、压缩浇注等。外力、钢的高温性能、工艺性能和设备性能共同作用下产生缺陷。 ⑴表面纵向裂纹(见图8) 连铸坯表面纵裂纹是指在铸坯长度方向的裂纹。资料表明:纵裂一般发生在铸坯内弧,长度有几十毫米到几百毫米,有的甚至贯穿,裂纹长度不小于100㎜,深有几毫米,一般出现在铸坯宽面中部,经常在Q235B等钢种中出现,裂纹处有初次树枝晶,一般可以通过按标准进行修磨(可参考YB/T2012)给予去除。尺寸较小的裂纹,长度不大于20~30㎜,深度不大于1㎜,随机出现在铸坯宽面中部到1/4宽处,可用手砂轮修磨掉,如果不进行处理,钢板上面会有裂纹,大多数可以轻微修磨消除。

板坯连铸机漏钢事故的原因分析及防止 精品

板坯连铸机漏钢事故的原因分析及防止 摘要:本文分析了某某钢二炼钢厂板坯连铸机漏钢事故产生产的原因及防止板坯连铸机漏钢的措施。采取 相应控制措施之后,目前某某钢二炼钢厂常规板坯连铸机频繁漏钢的势头得到了明显的控制。 关键词:板坯粘结漏钢保护渣水口浸入深度 1 前言 某某钢第二炼钢厂常规板坯连铸机自2005年4月18日投产以来,铸机漏钢问题始终困绕着二炼钢厂的正常生产,对二炼钢厂的正常生产造成了重大的冲击,连铸机的漏钢问题成为制约二炼钢厂生产的瓶颈环节。频繁的漏钢事故使连铸机设备的劣化趋势明显加剧,铸机检修质量无法保证。为降低连铸机漏钢事故,二炼钢厂成立了攻关组,经过对漏钢事故的原因进行分析,采取了相应的措施,板坯连铸机结晶器漏钢事故得到了明显的控制。 2 某某钢第二炼钢厂常规板坯连铸机参数及漏钢相关情况简介 2.1某某钢第二炼钢厂常规板坯连铸机的主要工艺参数 表1 主要工艺参数 铸机产量万吨/年 2 生产钢种四大类二十多个品种 3 连铸坯厚度mm 160,220 4 连铸坯宽度mm 850~1600 5 铸机半径m 9.5 6 连铸机型式立弯式(连续弯曲,连续矫直) 7 连铸机冶金长度m 31.9 8 铸机正常拉速m/min 1.0~1.4 9 结晶器长度mm 950 10 振动方式液压(正弦,非正弦) 11 二冷方式气水冷却(十四个控制回路) 2.2漏钢统计情况 从某某钢二炼钢厂常规板坯连铸机从2004年4月18日正式投产以来,共发生各种漏钢事故17次。其中粘结漏钢14次,占到所有漏钢的82%。其它三次漏钢为卷渣漏钢,裂纹漏钢,尾坯漏钢。板坯连铸机漏钢事故成为制约全厂正常生产的瓶颈环节。 3 某某钢二炼钢厂常规板坯连铸机漏钢原因分析 3.1粘结漏钢 结晶器粘结漏钢形成的过程如图1所示。

铸件外观缺陷图

铸件常见缺陷 常见缺陷 缺陷的分类:铸件常见缺陷分为孔眼、裂纹、表面缺陷、残缺类缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格六大类。 1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、等。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:其表面一般比较光滑,主要呈梨形\圆形和椭圆形.一般在铸件表面露出,大孔常孤立存在,小孔则成群出现。(如图) 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔壁粗糙并带有技状晶,常出现在铸件最后凝固的部位,广义的缩孔包括缩松。(如图)

产生的原因是:金属在液体及凝固期间由于补缩不良而产生的孔洞,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:铸件断面上出现的分散而细小的缩孔.助高倍放大镜才能发现的缩松称为显微缩松,铸件有缩松的部位,在气密性实验时易渗漏。(如图) 产生的原因同以上缩孔。 1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。

渣眼的特征是:铸件浇注位置上表面的非金属夹杂物。通常在加工后发现与气孔并存,孔径大小不一,成群集结。(如图) 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:铸件内部或表面带有砂粒的孔洞(如图)。 。

连铸生产漏钢事故的分析

连铸生产漏钢事故分析 摘要:通过对连铸漏钢时结晶器内坯壳的剖析和工艺分析,查明漏钢的分类、原因和解决办法和如何避免事故的发生,如何提前预报漏钢。 关键词:连铸漏钢保护渣预报漏钢 一、漏钢的危害 漏钢—影响铸机有效性 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间。因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 二、漏钢的分类 根据漏钢坯壳的外观,大致把漏钢分成以下几类: 悬挂或粘结引起漏钢--钢水粘结到结晶器上,因而称为粘结或悬挂。这可能是由结晶器和坯壳之间润滑不适或者结晶器调节不当引起的,而润滑不适可能是由质量较差的保护渣、结晶器中坯壳夹渣、结晶器钢水溢流、结晶器角缝、方坯连铸机润滑不良、不均等原因造成的。 1、裂纹引起漏钢--坯壳角部纵裂和宽面纵向裂纹都会造成漏钢发生。如果纵向裂纹引起漏钢,则保护渣流动不均,结晶器传热不均导致坯壳厚度不均,保护渣选择不当和结晶器冷却不均造成冷却时坯壳破裂。对角部纵裂引起漏钢来说,沿结晶器窄面凝固厚度不够的坯壳因收缩时受到拉伸应力而破裂,拉伸应力是由结晶器窄面锥度减小和窄面传热不均造成的。 2、夹渣漏钢--坯壳夹带保护渣或大粒夹杂物导致传热减少,形成薄坯壳而漏钢。方坯连铸时,二次氧化产物、低碳钢冶炼时高粘性渣中不当的脱氧产物, 1

小方坯连铸机工艺培训课件

方坯连铸工艺培训课件一、方坯连铸工艺流程简图

二、方坯连铸基本参数 铸坯断面:150×150mm 定尺长度:6~12m(实际最短生产过9.25的,拉速2.1m/min)主要生产钢种:碳素结构钢、低合金结构钢。 55Q (轻轨钢)Q195(碳素结构钢,建筑,结构,摩托车架)热轧带肋钢筋HRB335/335E (二级)HRB400/400E (三级)HRB500/500E (四级)Q235 (普碳钢,建筑、化工) 三、主要经济技术指标

连铸机主要设备性能 4.1 钢包汇总台 4.1 钢包回转台 功能支承钢包并将满包从受包位旋转到中间罐上方的浇 铸位。 结构型式直臂式。主要由回转臂、回转支承系统、回转台底 座、基础框架、传动装置及钢包加盖装置等部分组

成。 主要技术参数双臂最大承重 2×125t 回转半径 4.9m 回转速度 0~1.0r/min 回转范围 360度 事故回转180度 4.2 中间罐 功能保证连浇;均匀分配钢流到结晶器;促使夹杂物上 浮。 结构型式中间罐为梯形带盖式, 主要技术参数中间罐最大容量 20t 钢水液面高度工作液面:800mm 溢流液面:900mm 4.3 中间罐车

功能支承中间罐,并运载中间罐在烘烤位和浇铸位之间 移动。 结构型式半悬挂(高低腿)式。主要由车架、走行机构、横 移机构、摆槽、液压升降机构及驱动系统等主要技术参数最大承载重量 60t 走行速度 0~20m/min 横移行程±50mm 升降行程 500mm 4.4 中间罐烘烤(干燥)装置

功能加热(预热)中间罐,降低第一包钢水的温降。 结构型式中间罐烘烤(干燥)装置由支座、风机、电液推杆、 管件、阀门、烧嘴等组成。 主要技术参数烘烤时间 180 min 烘烤温度~1000℃ 4.5 结晶器

冷轧质量缺陷图谱1

冷轧产品表面缺陷图谱 为方便管理者和操作者识别冷轧产品的表面缺陷、了解缺陷产生的原因及规范冷轧产品的质量缺陷定义,收集和整理了本缺陷图谱手册,以利于提高产品质量。 目录 第一部分:冷轧质量缺陷定义规范 第二部分:质量缺陷实例及分析 第一部分 冷轧质量缺陷定义规范 1.凸棱:分布在钢带的纵向上,目视缺陷部位发亮,用手触摸有凸起的感觉。 2.夹杂:钢板表面有明显的呈白色或黑色的点状、块状、长条状缺 陷,严重时表面起皮。 3.氧化铁皮:钢带表面粘附着一层鱼鳞状、细条状、块状或弥散型 点状的棕色或灰黑色物,可表现为麻点、线痕或大面积的压痕。 4.翘皮:是呈舌状、线状、层状或M状的折叠(不连续,常出现翘 起),常出现在钢带表面边部。 5.欠酸洗:钢带表面残留着未酸洗掉的氧化铁皮,呈横向的黑色条 纹(类似“抬头纹”的横向黑色细纹),形成带状或片状分布在钢

板表面上。用手摸,手上将粘有黑色的污物。 6.过酸洗:钢带表面比正常酸洗后的钢板粗糙,颜色不是银白色, 而是呈现暗黑色或棕黑色。 7.停车斑:停车斑是酸洗线停车时,由于化学物质沾在钢带表面形 成大片斑迹。可分布在钢带的任何位置。 8.震纹:呈不规则波纹状,沿轧制方向可分布在整个钢带宽度上, 在轧制方向上钢带厚度有变化。 9.乳化液斑:是残留在钢带表面的裂化乳化液,随机的分布在钢带 表面,形状不规则,颜色发暗。 10.黑带:钢板表面上的黑色薄膜,呈条状或片状纵向分布,条状 宽窄不同,颜色深浅不一。 11.轧油斑:钢带表面上存在大小不等的黑色或褐色的斑痕,经退 火后一般有明显的轮廓线。 12.孔洞:钢带表面非连续的、贯穿钢带上下表面的缺陷。一般位 于钢带的中部或边部,大多呈串状分布。 13.清洗黑印:钢带经过清洗机组后,沿带钢轧制方向有表面残留 的黑色痕迹。 14.清洗液残留:经过清洗机组后,钢带表面残留的清洗液,呈片 状,退火前不明显,退火后呈现白色斑迹。 15.氧化:冷轧钢带退火后在钢带表面呈现的黄色或蓝色痕迹,罩 式炉退火后在钢带边部呈S形,在连续退火情况下,变色痕迹会均匀的分布在整个钢带表面。

浅析漏钢的原因及预防

浅析漏钢的类型及预防 连铸二车间技术组-郭幼永 一、前言:板坯漏钢的形式多种多样但重点主要集中在粘结漏钢和开浇起步后的漏钢。本文简要介绍常见漏钢的类型、漏钢的起因及相应的预防措施。为各班组在实际浇钢过程中提供参考便于降低漏钢事故的发生。 二、漏钢的类型 1、粘结漏钢 粘结漏钢是连铸生产过程中的主要漏钢形式,据统计诸多漏钢中粘结漏钢占50%以上。所谓粘结的引起是由于结晶器液位波动,弯月面的凝固壳与铜板之间没有液渣,严重时发生粘结。当拉坯时磨擦阻力增大,粘结处被拉断,并向下和两边扩大,形成V型破裂线,到达出结晶器口就发生漏钢。 粘结漏钢的发生有以下情况:内弧宽面漏钢发生率比外弧宽面高(大约3:1);宽面中部附近(约在水口左右300mm)更易发生粘结漏钢;大断面板坯容易发生宽面中部漏钢;而小断面则发生在靠近窄面的区域;铝镇静钢比铝硅镇静钢发生漏钢几率高;保护渣耗量在0.25kg/t钢以下,漏钢几率增加。 2、发生粘结漏钢的原因: 1)、形成的渣圈堵塞了液渣进入铜管内壁与坯壳间的通道; 2)、结晶器保护渣Al2O3含量高、粘度大、液面结壳等,使渣子流动性差,不易流入坯壳与铜板之间形成润滑渣膜。 3)、异常情况下的高拉速。如液面波动时的高拉速,钢水温度较低时的高拉速。4)、结晶器液面波动过大,如浸入式水口堵塞,水口偏流严重,更换钢包时水口凝结等会引起液面波动。 3、防止粘结性漏钢预防措施 在浇注过程中防止粘结漏钢的对策有: (1)监视保护渣的使用状况,确保保护渣有良好性能。如测量结晶器液渣层厚度经常保持在8~15mm,保护渣消耗量不小于0.4kg/t钢,及时捞出渣中的结块等。

板坯粘结漏钢原因与预防措施

板坯粘结漏钢原因与预防措施 Doi :10.3969/j .issn .l 006-110X .2018.z l .005 板坯粘结漏钢原因与预防措施 孟阳 (天津钢铁集团有限公司炼钢厂,天津300301) [摘要]天津钢铁集团有限公司3号板坯连铸机短时间内多次发生的漏钢事故,作者通过排除法分析出漏钢 事故类型为粘结性漏钢。重点分析了发生粘结漏钢的原因,并对其他类型的漏钢机理进行简要介绍。针对3号板坯连 铸机的工艺操作和设备精度调整等方面制定了详细的改进措施,实施后,天钢3号板坯连铸机发生漏钢的几率大大降 低,降低了其对生产顺行的影响。 [关键词]漏钢;粘结;工艺;改进;板坯;连铸 Causes and Preventive Measures of Steel B1eed-out by Slab Bonding MENG Yang (Steel-making Plant , Tianjin Iron and Steel Group Co ., Ltd . Tianjin 300301, Ch 74$比"8+ In Tianjin Iron and Steel Group Co . Ltd . the bleed-out accident occurred many times in a short period of t ime on the No .3 slab continuous caster , and the author analyzed that the type of bleed-out accident by the method of exclusion was adhesive bleed -out . The cau were analyzed , and the mechanism of other types of bleed-out was brie process operation of No . 3 slab continuous casting machine and the adjustment of equ the detailed improvement measures were made . After the implementation , the probability of steel bleed-out in the No . 3 slab caster was greatly reduced , and the influence on production was reduced .Ke5 bleed -out , bonding , technology , improvement , slab , continuous casting o 引言 随着天钢板坯的连铸技术操作水平逐年提高, 漏钢率已经控制的很低。但是在2015年7月底至8 月初的5天时间内,天钢3#板坯连铸机出现两次漏 钢,经过仔细分析和逐一排除法,分析出这两次漏 钢均属于粘结漏钢。漏钢发生于板坯连铸生产环 节,造成设备损坏、产量降低、生产不稳定等严重后 果。本文分析了漏钢的原因,并提出解决漏钢问题 的方法,以预防漏钢事故的发生。 1连铸机基本情况 1.1 天钢炼钢厂3(板坯连铸机主要技术参数 (1) 机型:一机一流直结晶器弧形板坯连铸机, R =8.4m ; (2) 铸坯断面尺寸:180/200/250mm x 1050" 收稿日期:2018-06-02 作者简介:孟阳(1991一)男,天津人,主要从事板坯连铸工艺技 1600mm ; (3) 铸坯定尺:一切 6~9.9m ,二切 2"3.3m ;(4) 拉速范围:0.4~1.6m/min ;(5) 引锭杆插入方式:下装式;(6) 结晶器铜板长度:900mm ; (7) 振动装置:四偏心高频率小振幅振动系统;(8) 中间包容量:35~38t 。2 漏钢种类及原因 漏钢的种类大致可分为3种,开浇漏钢、尾坯 封顶漏钢和浇铸过程中漏钢。 2.1 开F 漏钢 指开浇过程中,不当的操作致使引锭头刚被拉 出结晶器,随机出现漏钢事故。2.2封顶漏钢 当浇注结束时,对尾坯进行尾坯封顶操作,封 顶前熔化的保护渣未捞干净,如二冷强度过大,出 结晶器的板坯收缩过大,使板坯鼓肚且又受到支撑 术管理工作。 tmmsmmmmm 你〈钢铁冶炼〉你 -15 -

连铸坯质量缺陷

连铸坯的质量缺陷及控制 摘要 连铸坯质量决定着最终产品的质量。从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。连铸坯质量是从以下几个方面进行评价的: (1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。 (2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。 (3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。 (4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。 下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。 关键词:连铸坯;质量;控制 1 纯净度与质量的关系 纯净度是指钢中非金属夹杂物的数量、形态和分布。夹杂物的存在破坏了钢基体的连续性和致密性。夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。 此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。随着薄板与薄带技术的发展,S/V 可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。所以降低钢中夹杂物就更为重要了。 提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。为此应采取以下措施:

连铸板坯质量

连铸板坯质量 概述 纵裂纹时发生在板坯宽面与浇注方向平行的表面裂纹。该类缺陷造成板坯表面清理量增大,收得率低,严重时大量报废,甚至漏钢,给生产带来不稳定因素,影响铸机生产和铸坯质量。 铸坯纵裂纹影响因素 ?钢水过热度与拉速 过热度高,拉速波动大,对板坯表面质量有显著影响。过热度和拉速决定结晶器内坯壳的厚度。在结晶器水量设定不变,二冷水自动控制的条件下,拉速与过热度的匹配,对纵裂纹的发生率有着重要影响。过热度过高时,拉速降低,虽然能在结晶器上部形成一定厚度的坯壳,但在结晶器中下部过早形成气隙,使传热不均匀,坯壳不能均匀生长,造成热应力,摩擦力加大,极易导致纵裂纹,另外,钢水过热度高,导致钢水凝固推迟,坯壳厚度薄且平均温度高,坯壳温度向钢的第Ⅰ脆性区移动,使纵裂倾向加重。 ?钢种成份 1、碳的影响 C在0.10%—0.16%范围内的碳钢凝固过程会发生包晶反应,在凝固点附近体积收缩率增大,属于裂纹敏感区,极易因收缩不均匀产生纵裂。而又因Mn等合金的加入,碳的范围还要向下移,宝钢生产的中碳钢相当一部分在这个范围内。例如,表3-1中Ⅳ钢,其碳含量在0.08%—0.11%之间,属亚包晶钢,占每个月纵裂报废的大头。 2、钢种各元素对纵裂纹的影响程度用纵裂纹敏感因子表示如下: CSF=36%C+12%Mn+8%Si+540%S+812%P+5%Ni+3.5%Co-20%V 从上式中可以看到,P和S对纵裂的影响极大,主要是因为P、S在δ-Fe中的溶解度和扩散系数要比在γ-Fe中大得多,在相变时有可能产生晶界富集,导致裂纹的发生。 因此降低钢中P、S含量,对提高坯壳的强度,减少裂纹的初生与扩展都是有益的,有经验表明提高Mn/S可以有效降低S对裂纹的影响,减少纵裂的发生,当Mn/S<40时,会发生严重的晶界脆化现象,Mn/S>100时,使FeS充分转化为MnS,减少了低熔点硫化物的析出,可使裂纹发生率降低。 3、另外Cu、Sn等元素在钢种能显著降低钢的热塑性,在晶界富集降低晶界表面能, 增大晶界处孔洞形核与长大速度,增加裂纹的敏感度。 宝钢生产的耐候钢中P含量很高,C含量又在亚包晶范围内,因此纵裂发生率及报废量特别高,约占50%,在不影响产品质量的情况下,我们对其中的几个钢种进行了降碳试验,结果表明,C含量避开包晶范围能有效降低纵裂的发生率。 ?结晶器一冷水 结晶器缓冷能减轻初生坯壳的热应力,有效减少纵裂的发生。 ①提高结晶器入口水温,经与能源部水处理分厂协商,为减少纵裂的发生,把结晶器入 口水温目标值由原来的36℃提高到38℃,对防止纵裂有一定的好处。 ②减小结晶器水量,减小结晶器水量能有效减少结晶器的冷却强度,对纵裂敏感性钢种 均采用K1方式(小水量)取得了一定效果,但为防止结晶器一冷水的局部沸腾,对一冷水的流速有最低限制,为了能得到进一步的缓冷,我们采取了减少结晶器水槽深度的方法,把原来深度为28-29mm的水槽改为25-26mm,22-23mm,这样水量有了进一步调节的余地。 ?铸坯纵裂影响因素 结晶器内形成的裂纹大都细而浅,铸坯进入二冷区后,如果冷却强度过大或冷却不均匀,强的热应力会促使铸坯已形成的微细裂纹扩大、延伸,最终发展成表面纵裂缺陷。目前

连铸漏钢事故分为哪几类

连铸漏钢事故分为哪几类?其产生的主要原因有哪些? 所谓漏钢是指连铸初期或浇注过程中,铸坯坯壳凝固情况不好或因其他外力作用引起坯壳断裂或破漏使内部钢水流出的现象。漏钢是连铸生产中恶性事故之一,严重的漏钢事故不仅影响连铸机的正常生产,降低作业率,而且还会破坏铸机设备,造成设备损坏。漏钢事故因发生的时间不同及发生在铸机上的位置不同分为多种形式,其产生的原因也各不相同,主要分为以下几点: ⑴开浇漏钢:开浇起步不好而造成漏钢。 ⑵悬挂漏钢:结晶器角缝大,角垫板凹陷或铜板划伤,致使在结晶器中拉坯阻力增大,极易发生起步悬挂漏钢。 ⑶裂纹漏钢:在结晶器坯壳产生严重纵裂、角裂或脱方,出结晶器后造成漏钢。 ⑷夹渣漏钢:由于结晶器渣块或异物裹入凝固壳局部区域,使坯壳厚度太薄而造成漏钢。 ⑸切断漏钢:当拉速过快,二次冷却水太弱,使液相穴过长,铸坯切割后,中心液体流出。 ⑹粘结漏钢:铸坯粘结在结晶器壁而拉断造成的漏钢。 某厂生产500万吨板坯的统计表明,各类漏钢所占比例:开浇9.1%,夹渣2.3%,粘结54.5%,裂纹22.7%,鼓肚4.6%,水口凝钢2.3%,其他4.5%。 开浇时发生漏钢的原因有哪些?如何防止? 开浇时发生漏钢的原因主要有以下几点: ⑴结晶器内冷料放的不好,引锭头没有塞实。 ⑵起步早,起步拉速快,或拉速增长太快。 为防止开浇漏钢,开浇前应做好充分的准备和检查,重点应注意以下几点: ⑴检查引锭头密实和冷料堆放情况; ⑵检查水口与结晶器对中情况; ⑶检查结晶器铜板有无冷钢,锥度是否合适; ⑷检查二冷喷嘴是否畅通完好; ⑸了解钢水的流动性、钢水温度状态,中间包和水口是烘烤状态,保护渣的质量。 ⑹要根据铸坯断面决定注流大小和钢水在结晶器停留时间。 ⑺起步拉速一般保持为0.5m/min,增速要慢(0.15 m/min),防止结晶器液面波动过大。 浇注过程中发生漏钢的原因有哪些?如何防止? 浇注过程中发生漏钢的根本原因在于铸坯出结晶器后局部凝固壳过薄,承受不住钢水静压力而破裂导致漏钢。因而,为防止浇注过程中的漏钢事故发生,需找出凝固壳局部过薄的影响因素,其主要有以下几方面: ⑴设备因素:结晶器严重破损而失去锥度,铸坯脱方严重;结晶器与二次冷却段对弧不准;铸流与结晶器不对中等。此外,结晶器铜管变形、内壁划伤严重,液膜润滑中断等,也会造成坯壳悬挂而撕裂。 ⑵工艺操作因素:如拉速过快,注温过高,水口不对中、注流偏斜,结晶器液面波动太大,注流下渣,出结晶器冷却强度不足等。 ⑶异物或冷钢咬入凝固壳:如液面波动太大时,结晶器中未熔渣块卷入凝固壳,中间包水口内堵塞物随钢流落到结晶器液相穴,被凝固前沿捕捉而导致漏钢。 综上所述,为防止浇注过程中漏钢,在设备维护方面,应定期检查结晶器的使用情况,保证结晶器的倒锥度,结晶器应与二冷导向段保持对中,避免铸坯在拉钢过程中受到机械力的作用而发生坯壳变形破裂等引起拉漏。 在结晶器润滑方面,应保证结晶器润滑均匀,避免因润滑不好造成结晶器与坯壳的粘附漏钢和悬挂拉漏。 在工艺操作方面,应注意操作稳定,减少拉速的变动次数和变动量,保持结晶器内液面稳定,避免出现过大或过频繁的波动。同时应控制中间包内液面不能太低,避免大量的非金属夹杂物或钢渣卷入结

连铸方坯的缺陷及其处理

连铸方坯的缺陷及其处理 1 表面缺陷 1.1 气孔和针孔 定义 : 垂直铸坯表面并在铸坯表面肉眼可见的小气孔并可能以针孔的形式深入表面。 原因 : 钢水脱氧不足、凝固时产生一氧化碳; 脱氧后又钢流二次氧化吸收的气体; 结晶器保护渣质量不合要求; 钢包及中间包烘烤不好 改进方法: 钢水完全脱氧; 不浇注过氧化的钢水; 保持浇注温度;(注温不能过高) 使用干燥的钢水罐及中间罐; 保护渣不能受潮,摆放时间不能太久。 1.2 坯头气孔及针孔 定义: 同1.1,但仅出现在每次浇注的第一根钢坯坯头处 原因: 钢液温度太低; 结晶器中钢水氧化; 保护渣受潮或杂质多; 结晶器内壁上有冷凝水; 引锭头潮湿; 填入结晶器中切屑及废钢有锈、有油或潮湿; 中间罐内衬及钢水罐内衬潮湿; 改进方法: 保持浇注温度; 采用适宜的保护渣; 采用干燥和洁净的废钢及切屑; 绝对避免在结晶器内壁及锭头上产生冷凝水; 干燥及烘烤中间罐; 1.3 夹渣 定义: 表面分布不均匀的夹渣,有时针孔和渣聚集,呈疏松态的外观

原因: 由保护渣耐火材料颗粒和钢水氧化产物以及出钢渣等引起,随着钢流带入并被卷至铸坯表面。 改进方法: 用挡渣出钢; 采用适宜的保护渣及耐火材料; 钢水不能过氧化,注温要合适。 1.4 振动波纹及折叠 定义: 在与铸坯轴线垂直方向上,铸坯表面上以均匀间距分布的波纹振痕,在不利的情况下出现折叠。 原因: 浇注速度波动大,使结晶器中钢液面不稳定。 改进方法: 保持均匀的浇注速度,稳定结晶器钢水液面。 调整振动频率使其与拉速相适应。 1.5 结疤与重皮 定义: 铸坯角部和表面上出现的疤痕 原因: 由于结晶器内坯壳破裂、钢水渗入到结晶器和铸坯之间的夹缝,以及保护渣结块造成。 改进方法: 保证结晶器具有准确的锥度,当结晶器使用时间过长而磨损会使坯壳过早脱离结晶器内壁而导致坯壳破裂。 1.6 分层: (双浇) 定义: 铸坯中间出现分界层 原因: 浇注中断又重新开始浇注时,使两次浇注连接出现重接。 改进方法: 浇注过程中不要断流,拉速要相对稳定,不要忽高忽低。 1.7 纵裂 定义: 分布在铸坯角部的纵向裂纹, 角部纵裂常是拉漏的预兆。 原因: 针孔、气泡及夹杂; 结晶器内坯壳不均匀冷却; 由于铜结晶器中和足辊上有沟槽,缺口,渣子等而引起裂纹; 结晶器壁磨损或单面磨损使该处坯壳提前脱离结晶器壁; 浇注速度过高或浇注温度过高,坯壳厚度薄; 足辊对位不准; 二次冷却水不均匀;

连铸板坯缺陷图谱及产生的原因分析(新)

第二篇连铸板坯缺陷(AA)

第二篇连铸板坯缺陷(AA) (1) 2.1表面纵向裂纹(AA01) (4) 2.2表面横裂纹(AA02) (6) 2.3星状裂纹(AA03) (7) 2.4角部横裂纹(AA04) (8) 2.5角部纵裂纹(AA05) (10) 2.6气孔(AA06) (11) 2.7结疤(AA07) (12) 2.8表面夹渣(AA08) (13) 2.9划伤(AA09) (14) 2.10接痕(AA13) (15) 2.11鼓肚(AA11) (16) 2.12脱方(AA10) (17) 2.13弯曲(AA12) (18) 2.14凹陷(AA14) (19) 2.15镰刀弯(AA15) (20) 2.16锥形(AA16) (21) 2.17中心线裂纹(AA17) (22) 2.18中心疏松(AA18) (23) 2.19三角区裂纹(AA19) (25) 2.20中心偏析(AA20) (27) 2.21中间裂纹(AA21) (28)

2.1表面纵向裂纹(AA01) 图2-1-1 1、缺陷特征 表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。 2、产生原因及危害 产生原因: ①钢中碳含量处于裂纹敏感区内; ②结晶器钢水液面异常波动。当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生; ③结晶器保护渣性能不良。保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹; ④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。 危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。 3、预防及消除方法 ①控制好钢中碳含量,使钢中碳含量不在裂纹敏感区; ②减少结晶器钢水液面异常波动,将结晶器钢水液面波动控制在±5mm以内; ③选择合适的结晶器保护渣; ④保证中间包浸入式水口与结晶器对中,防止钢水出浸入式水口侧孔后出现偏流。 4、检查判断 肉眼检查,必要时用钢卷尺测量裂纹长度及其分布位置;

小方坯连铸漏钢原因分析及预防措施

小方坯连铸漏钢原因分析及预防措施 发表日期:2007年10月31日【编辑录入:meimei】 摘要:从钢种、结晶器状况、过热度、拉速、振动、保护渣性能、工艺操作等方面分析了安钢二炼钢2号方坯连铸机产生漏钢的原因,并采取相应措施,取得了较好的效果。 关键词:小方坯;漏钢分析;改进措施 安阳钢铁股份有限公司第二炼钢厂(以下简称安钢二炼钢)2号方坯连铸机采用浸入式水口加保护渣保护浇注工艺。2004年铸机平均溢漏钢率为0.68%,上半年平均为0.9%,最高月份为1.2%,溢漏事故多,已严重影响了连铸生产。为促进连铸生产顺行,同时也为铸机高效化生产打下基础,于2005年元月开始对2号方坯连铸机溢漏钢进行攻关,并取得了显著效果。 1工艺现状 安钢二炼钢2号连铸机始建于1989年,铸机类型为国产SFR-6型四机四流小方坯连铸机,铸坯断面为120 mm×120mm,采用定径水口、浸人式水口、保护渣和事故摆槽等浇注方式。目前,主要浇注钢种为Q235B、HRB335、HRB400、Q345B等钢种,连铸机主要技术参数为: 流间距1 100 mm;正常拉速2.8~3.5 m/min;铜管长度850 mm;铜管壁厚12.5 mm;铜管材质为脱氧磷铜;水缝宽度3.5 mm;结晶器倒锥度(0.56%~0.76%)/m;结晶器水量95~100m3/h;结晶器水压0.6~0.7 MPa;振动结构形式为半板簧振动。 2漏钢事故概况 2004年2号机溢漏钢569次,统计结果见图1,角裂漏钢占69%,为主要漏钢类型,下渣漏钢和拉断漏钢分别占14.9%和6.7%。因此,控制角裂漏钢可以大幅度降低溢漏钢率。角裂漏钢铸坯的形貌如图2所示,角裂漏钢主要发生在出结晶器坯壳距角部10~25 mm处,漏钢长度100~200 mm,沿漏钢部位的上下有纵裂缺陷。

相关主题
文本预览
相关文档 最新文档