当前位置:文档之家› 平面向量的加法与减法

平面向量的加法与减法

平面向量的加法与减法
平面向量的加法与减法

课题:§2从位移的合成到向量的加法

---平面向量加法与减法

三维目标:

1.知识与技能

(1)掌握向量加法的概念;能熟练运用三角形法则和平行四边形法则做几个向量的和向量;能准确表述向量加法的交换律和结合律,并能熟练运用

它们进行向量计算.

(2)了解相反向量的概念;掌握向量的减法,会作两个向量的减向量

(3)通过实例,掌握向量加、减法的运算,并理解其几何意义.

(4)初步体会数形结合在向量解题中的应用.

2.过程与方法

教材利用同学们熟悉的物理知识引出向量的加法,一方面启发我们利用位移的合成去探索两个向量的和,另一方面帮助我们利用物理背景去理解向量的加法. 然后用“相反向量”定义向量的减法;最后通过讲解例题,指导发现知识结论,培养学生抽象概括能力和逻辑思维能力.

3.情感态度与价值观

重点与难点:

重点:向量加法的概念和向量加法的法则及运算律.

难点:向量的减法转化为加法的运算.

教学方法:

(1)自主性学习+探究式学习法(2)反馈练习法:以练习来检验知识的应用情

况,找出未掌握的内容及其存在的差距.

教学过程

【创设情境】

一、提出课题:向量是否能进行运算?

1. 某人从A 到B ,再从B 按原方向到C ,

则两次的位移和:?→?AB +?→?BC =?→

?AC

2. 若上题改为从A 到B ,再从B

按反方向到C , 则两次的位移和:?→?AB +?→?BC =?→

?AC 3. 某车从A 到B ,再从B 改变方向到C , 则两次的位移和:?→?AB +?→?BC =?→

?AC 4. 船速为,水速为, 则两速度和:?→

?AB +?→

?BC =?→

?AC

提出课题:向量的加法

【探究新知】

1.定义:求两个向量的和的运算,叫做向量的加法。 注意:两个向量的和仍旧是向量(简称和向量)

2.三角形法则:

强调:

① “向量平移”(自由向量):使前一个向量的终点为后一个向量的起点

②可以推广到n 个向量连加 ③a a a =+=+00

④不共线向量都可以采用这种法则——三角形法则 例题讲评

例1、已知向量、,求作向量+ 作法:在平面内取一点,

A B C A B

C

A B

C

A A

B B

C C O

A

a

a

a

b

b b

a +

b a +b a a b

b b a

a b

作→

?→

?=a OA →

?→

?=b AB 则→

?→

?+=b a OB

【探究新知】

3.加法的交换律和平行四边形法则

思考:上题中b +a 的结果与a +b 是否相同 验证结果相同 从而得到:1?向量加法的平行四边形法则 2?向量加法的交换律:a +b =b +a 4.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使→

?→

?=a AB , →

?→

?=b BC , →

?→

?=c CD 则(a +b ) +c =?→

??→

??→

?=+AD CD AC a + (b +c ) =?→

??→

??→

?=+AD BD AB ∴(a +b ) +c =a + (b +c )

从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行。 例题讲评

例2.如图,一艘船从A 点出发以h km /32的速度向垂直于对岸 的方向行驶,同时水的流速为h km /2,求船实际航行的速度的大小与方向。

解:设?→?AD 表示船垂直于对岸的速度,?→

?AB 表示水流的速度, 以AD,AB 为邻边作平行四边形ABCD ,则?→

?AC 就是船实际航行的速度 在ABC Rt ?中,2||=?→

?AB ,32||=?→

?BC

A

B

C

D

a c

a +b+c

b

a +b

b+c

所以4||||||22

=+=?→

??→

??→?BC AB AC 因为 6032

3

2tan =∠?==∠CBA CAB 【探究新知】

思考:已知a ,b

,怎样求作b a -?

这个问题涉及到两个向量相减,到底如何运算呢?首先引入“相反向量”这个概念.

5.用“相反向量”定义向量的减法

①“相反向量”的定义:与a 长度相同、方向相反的向量;记作 -a ②规定:零向量的相反向量仍是零向量。-(-a ) = a

任一向量与它的相反向量的和是零向量。a + (-a ) = 0

如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 ③向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法。 6.用加法的逆运算定义向量的减法:

向量的减法是向量加法的逆运算:

若b + x = a ,则x 叫做a 与b 的差,记作a - b 7.请同学们自己解决思考题:

b a

-的作法:

方法一:已知向量a 、b

,在平面内任取

一点O ,作→

?→

?→?→

?==b OB a OA ,,

则 ?→

?BA →

→-=b a 。即b a

-可以表示为

从向量b 的终点指向向量a 的终点的

向量

方法二:在平面内任取一点O ,作

?→

?→?→

?==b OB a OA ,则?→?AB →→-=b a 。即→

→-b a 也可以表示为从向量a 的起

点指向向量b

的起点的向量.

方法三:在平面内任取一点O ,作→

?→?→?→?-==b OB a OA ,

,则由向量加法的平行四

边形法则可得=?→?OC →

→→→-=-+b a b a )(.

思考与讨论:

思考:从向量a

的终点指向向量b 的终点的向量是什么?(a b -)

讨论:如右图,a ∥b

时,怎样作出b a -呢?

例3.已知向量a 、b 、c 、d ,求作向量a -b 、c -d 。

解:在平面上取一点O ,作?→

?OA = a , ?→

?OB

?→?OC = c , ?→?OD = d , 作?→

?BA , ?→

?DC ,

则?→

?BA =a -b ,

?→

?DC = c -d

例4.平行四边形中,?→?AB =→a ,?→?AD =→

b ,用a 、b

表示向量?→?AC ,?→?DB .

解:由平行四边形法则得:

?→

?AC = a + b, ?→?DB = ?→

?AB -?→

?AD = a -b

变式一:当a , b 满足什么条件时,a +b 与a -b 垂直?(|a | = |b |) 变式二:当a , b 满足什么条件时,|a +b | = |a -b |?(a , b 互相垂直) 变式三:a +b 与a -b 可能是相当向量吗?(不可能,∵ 例5.试用向量方法证明:对角线互相平分的四边形是平行四边形。

A

B

C

b

a

d c

D

O

A B

证:由向量加法法则:

?→

?

AB=

?→

?

AO+

?→

?

OB,

?→

?

DC=

?→

?

DO+

?→

?

OC

由已知:

?→

?

AO=

?→

?

OC,

?→

?

OB=

?→

?

DO

?→

?

AB=

?→

?

DC即AB与CD平行且相等∴ABCD为平行四边形

课堂练习:

P ( 76 ) 练习1 2 3 4

P(78)练习1 2

课堂小结:

①向量加法的三角形法则与平行四边形法则.

②向量加法运算律.

③相反向量及向量减法的运算法则.

作业布置

P( 73 ) 习题2-1 3 4

板书设计:

§2从位移的合成到向量的加法

---平面向量加法与减法

1.平面向量的加法的三角形法则与平行四边形法则

2. 平面向量的减法的三角形法则与平行四边形法则

3.平面向量加法与减法的运算律

A B

范例讲评:

例1:例3:

例2:例4:教后记:

平面向量综合试题(含答案)

B A C D 一.选择题: 1. 在平面上,已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论: ①BC CA AB =- ②OB OC OA =+ ③OA OB AC 2-= 其中正确..结论的个数是 ( )A .1个 B .2个 C .3个 D .0个 2. 下列命题正确的是 ( ) A .向量A B 的长度与向量BA 的长度相等 B .两个有共同起点且相等的向量,其终点可能不同 C .若非零向量AB 与C D 是共线向量,则A 、B 、C 、D 四点共线 D .若→ a → b → c ,则→ a → c 3. 若向量= (1,1), = (1,-1), =(-1,2),则 等于( ) A.+ B. C. D.+ 4. 若 ,且与也互相垂直,则实数的值为( ) A . C. 5.已知=(2,3) , =(,7) ,则在上的正射影的数量为( ) A. B. C. D. 6. 己知 (2,-1) .(0,5) 且点P 在 的延长线上, , 则P 点坐标为( ) A.(-2,11) B.( C.( ,3) D.(2,-7) 7.设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b 8.已知D 点与ABC 三点构成平行四边形,且A (-2,1),B (-1,3),C (3,4),则D 点坐标为( ) A.(2,2) B.(4,6) C. (-6,0) D.(2,2)或(-6,0)或(4,6) 9.在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2 AC AC AB =? (B ) 2 BC BA BC =? (C )2AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???= 10. 设两个向量22 (2,cos )a λλα=+-和(, sin ),2m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( ) A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 10.已知P ={a |a =(1,0)+m (0,1),m ∈R },Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量集合,则P ∩Q 等于 ( )A .{(1,1)} B .{(-1,1)} C .{(1,0)} D .{(0,1)} 二. 填空题:11.若向量a b , 的夹角为 60,1a b ==,则() a a b -= . 12.向量2411()(),, ,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 . 13.向量a 、b a b =1,b 3-=3,则 b +3 =

(完整版)平面向量练习题集答案

平面向量练习题集答案 典例精析 题型一向量的有关概念 【例1】下列命题: ①向量AB的长度与BA的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点的单位向量,其终点必相同; ④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上. 其中真命题的序号是. 【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD 是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①. 【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可. 【变式训练1】下列各式: a?; ①|a|=a ②(a?b) ?c=a?(b?c); ③OA-OB=BA; ④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+DC=2MN; ⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为() A.1 B.2 C.3 D.4 a?正确;(a?b) ?c≠a?(b?c);OA-OB=BA正确;如下图所示,【解析】选D.| a|=a MN=MD+DC+CN且MN=MA+AB+BN, 两式相加可得2MN=AB+DC,即命题④正确; 因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线, 即得(a+b)⊥(a-b). 所以命题①③④⑤正确.

题型二 与向量线性运算有关的问题 【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM = DO 31,点N 在线段OC 上,且ON =OC 3 1 ,设AB =a , AD =b ,试用a 、b 表示AM ,AN ,MN . 【解析】在?ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=1 2 (a -b ), AO =OC =12AC =12(AB +AD )=1 2(a +b ). 又DM =13DO , ON =1 3OC , 所以AM =AD +DM =b +1 3DO =b +13×12(a -b )=16a +56 b , AN =AO +ON =OC +1 3OC =43OC =43×12(a +b )=2 3(a +b ). 所以MN =AN -AM =23(a +b )-(16a +56b )=12a -16 b . 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足OP =OA +λ(AB +AC ),若λ=1 2 时,则PA ?(PB +PC )的值为 . 【解析】由已知得OP -OA =λ(AB +AC ), 即AP =λ(AB +AC ),当λ=12时,得AP =1 2(AB +AC ), 所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC , 所以PB +PC =PB +BP =0, 所以PA ? (PB +PC )=PA ?0=0,故填0.

向量的加法与减法运算练习

练习一 选择题: 1.如图,等腰梯形两腰上的向量、是( ) (A)相等的向量(B)模相等的向量(C)方向相反的向量(D)方向相同的向量2.如图,在菱形中,可以用同一条有向线段表示的向量是( ). 第2题 (A)和(B)和(C)和(D)和 3.如图,,-+等于( ). (A) (B) (C) (D) 4.如图,在中,-+等于( ) (A) (B) (C) (D) 填空题: 5.如图,正六边形,为中心,图中所示向量中: (1)与相等的向量有__________; (2)与相等的向量有__________; 6.=_________;

7.化简 (1)++—_____________; (2)____________; (3)++=_____________; (4)-+=_____________; 解答题: 8.已知向量、,求作+,-. 9.河水自西向东流,流速为3 m/s,轮船垂直水流方向以18.7 km/h的速度向北航行,求轮船的实际航速. 答案、提示和解答: 1.B.2.B.3.C.4.B. 5.(1),;(2). 6.0. 7.(1)0;(2);(3);(4)0.8.略. 9.设=“向东方向,3 m/s”,=“向东方向,18.7 km/h”≈“向北方向,5.19 m/s”,如图,适当选取比例尺,作

==“向东3 m/s” ==“向北,5.19 m/s”, =+=+. ||= 与夹角的余弦值为,则与夹角为60°. 所以轮船的实际航速为东偏北60°,6 m/s. 练习二 选择题: 1.如图,梯形,其中||=||,相等的向量是( ). (A)与(B)与(C)与(D)与 2.已知如图,、分别是与的中点,、、、、、中,相等的向量共有( ). (A)1组(B)2组(C)3组(D)4组

平面向量综合试题(含答案)

A C 平面向量 一.选择题: 1. 在平面上,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面的结论: ①= -②= +③2 - = 其中正确 ..结论的个数是() A.1个B.2个C.3个D.0个 2.下列命题正确的是() A.向量的长度与向量的长度相等B.两个有共同起点且相等的向量,其终点可能不同C.若非零向量与CD是共线向量,则A、B、C、D四点共线D.若 → a → b → c,则 → a → c 3. 若向量= (1,1), = (1,-1), =(-1,2),则等于( ) A.+ B. C. D.+ 4.若,且与也互相垂直,则实数的值为( ) A. B.6 C. D.3 5.已知=(2,3) , =(,7) ,则在上的正射影的数量为()A. B. C. D. 6.己知(2,-1) .(0,5) 且点P在的延长线上,, 则P点坐标为( ) A.(-2,11) B.( C.(,3) D.(2,-7) 7.设, a b是非零向量,若函数()()() f x x x =+- a b a b的图象是一条直线,则必有() A.⊥ a b B.∥ a b C.|||| = a b D.|||| ≠ a b 8.已知D点与ABC三点构成平行四边形,且A(-2,1),B(-1,3),C(3,4),则D点坐标为() A.(2,2) B.(4,6) C. (-6,0) D.(2,2)或(-6,0)或(4,6) 9.在直角ABC ?中,CD是斜边AB上的高,则下列等式不成立的是 (A) 2 AC AC AB =?(B)2 BC BA BC =? (C) 2 AB AC CD =?(D)2 2 ()() AC AB BA BC CD AB ??? = 10.设两个向量22 (2,cos) aλλα =+-和(,sin), 2 m b mα =+其中,,m λα为实数.若2, a b =则 m λ 的取值范围是 ( ) A.[6,1] - B.[4,8] C.(,1] -∞ D.[1,6] - 10.已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(-1,1),n∈R}是两个向量集合,则P∩Q等于()A.{(1,1)} B.{(-1,1)} C.{(1,0)} D.{(0,1)} 二. 填空题:11.若向量a b ,的夹角为 60,1 a b ==,则() a a b -=. 12.向量2411 ()() ,,, a=b=.若向量() λ ⊥ b a+b,则实数λ

平面向量练习题(附答案)

平面向量练习题 一.填空题。 1. BA CD DB AC +++等于________. 2.若向量=(3,2),=(0,-1),则向量2-的坐标是________. 3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________. 4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________. 5.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与CD 共线,则|BD |的值等于________. 7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______. 8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______ 9. 已知向量a,b 的夹角为ο120,且|a|=2,|b|=5,则(2a-b )·a=______ 10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____ 11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____ 13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +u u u r u u u r u u u r 的最小值是 . 14.将圆22 2=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 . 二.解答题。 1.设平面三点A (1,0),B (0,1),C (2,5). (1)试求向量2+的模; (2)试求向量与的夹角;

平面向量综合试题(含答案)

A 平面向量 一.选择题: 1. 在平面上,已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论: ①BC CA AB =- ②OB OC OA =+ ③OA OB AC 2-= 其中正确..结论的个数是 ( )A .1个 B .2个 C .3个 D .0个 2. 下列命题正确的是 ( ) A .向量A B 的长度与向量BA 的长度相等 B .两个有共同起点且相等的向量,其终点可能不同 C .若非零向量AB 与C D 是共线向量,则A 、B 、C 、D 四点共线 D .若→ a → b → c ,则→ a → c 3. 若向量= (1,1), = (1,-1), =(-1,2),则 等于( ) A.+ B. C. D.+ 4. 若 ,且与也互相垂直,则实数的值为( ) A . C. 5.已知=(2,3) , =(,7) ,则在上的正射影的数量为( )A. B. C. D. 6. 己知 (2,-1) . (0,5) 且点P 在 的延长线上, , 则P 点坐标为( ) A.(-2,11) B.( C.( ,3) D.(2,-7) 7.设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b 8.已知D 点与ABC 三点构成平行四边形,且A (-2,1),B (-1,3),C (3,4),则D 点坐标为( ) A.(2,2) B.(4,6) C. (-6,0) D.(2,2)或(-6,0)或(4,6) 9.在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =? (B ) 2 BC BA BC =? (C )2 AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???= 10. 设两个向量22 (2,cos )a λλα=+-和(, sin ),2m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( ) A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 10.已知P ={a |a =(1,0)+m (0,1),m ∈R },Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量集合,则P ∩Q 等于( )A .{(1,1)} B .{(-1,1)} C .{(1,0)} D .{(0,1)} 二. 填空题:11.若向量a b , 的夹角为 60,1a b ==,则() a a b -= .

平面向量综合试题

《平面向量》综合测试题 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 若A (2,-1),B (-1,3),则的坐标是 ( ) A.(1,2) B.(-3,4) C. (3,-4) D. 以上都不对 2.与a =(4,5)垂直的向量是 ( ) A.(-5k ,4k ) B. (-10,2) C. (54 ,k k -) D.(5k , -4k ) 3. △ABC 中,BC =a , =b ,则等于 ( ) +b (a+b ) 4.化简 52(a -b )-3 1 (2a +4b )+152(2a +13b)的结果是 ( ) 5 1±51 B.0 C. 51a +51b D. 51a -5 1b 5.已知|p |=22,|q |=3, p 与q 的夹角为 4 π ,则以a =5p +2q ,b =p -3q 为邻边的平行四边形的一条对角线长为 ( ) B.15 C. 16 6.已知A (2,-2),B (4,3),向量p 的坐标为(2k -1,7)且p ∥,则k 的值为 ( ) A.109- B.109 C.1019- D.10 19 7. 已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则点P 与△ABC 的关系是 ( ) A. P 在△ABC 的内部 B. P 在△ABC 的外部 C. P 是AB 边上的一个三等分点 D. P 是AC 边上的一个三等分点 8.已知△ABC 的三个顶点,A (1,5),B (-2,4),C (-6,-4),M 是BC 边上一点,且△ABM 的面积是△ABC 面积的 4 1 ,则线段AM 的长度是 ( ) 259.设e 1,e 2是夹角为450 的两个单位向量,且a =e 1+2e 2,b =2e 1+e 2,则|a +b |的值 ( ) A.23 B.9 C.2918+ D.223+ 10.若|a |=1,|b a -b )⊥a ,则a 与b 的夹角为 ( ) .450 C

三角函数、平面向量综合题六类型

三角函数与平面向量综合题的六种类型 题型一:结合向量的数量积,考查三角函数的化简或求值 【例1】(2007年高考安徽卷)已知04 πα<<,β为()cos(2)8 f x x π =+的最小正 周期,(tan(),1),(cos ,2),4a b a b m βαα=+-=?= ,求22cos sin 2()cos sin ααβαα ++-的值. 【解答】因为β为()cos(2)8 f x x π =+ 的最小正周期,故βπ=.因为a b m ?= , 又cos tan()24a b βαα?=?+- ,故cos tan()24 m βαα?+=+. 由于04 π α<< ,所以 2 2cos sin 2() cos sin ααβαα ++= -2 2cos sin(22) cos sin ααπαα ++- 2 2cos sin 2cos sin αααα += -2cos (cos sin ) cos sin ααααα +=-1tan 2cos 1tan ααα +=?- cos tan()24 m β αα=?+ =+. 【评析】 合理选用向量的数量积的运算法则构建相关等式,然后运用三角函数中的和、差、半、倍角公式进行恒等变形,以期达到与题设条件或待求结论的相关式,找准时机代入 求值或化简。 题型二:结合向量的夹角公式,考查三角函数中的求角问题 【例2】 (2006年高考浙江卷)如图,函数2sin(),y x x R π?=+∈(其中02 π ?≤≤) 的图像与y 轴交于点(0,1)。 (Ⅰ)求?的值; (Ⅱ)设P 是图像上的最高点,M 、N 是图像与x 轴的交点,求PM 与P N 的夹角。 【解答】(I )因为函数图像过点(0,1), 所以2sin 1,?=即1sin .2?= 因为02 π ?≤≤ ,所以6 π ?= . (II )由函数2sin()6 y x π π=+ 及其图像,得1 15 (,0),(,2),(,0),636 M P N - - 所以11 (,2),(,2),22 P M P N =-=- 从而 cos ,|||| PM PN PM PN PM PN ?<>=? 1517=,故,P M P N <>= 15arccos 17 .

平面向量简单练习题

一、选择题 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足⊥, 则λ的值 ( ) 2.已知)2 , 1(-=,52||=,且//,则=( ) 5.已知1,2,()0a b a b a ==+=r r r r r g ,则向量b r 与a r 的夹角为( ) 6.设向量(0,2),==r r a b ,则,r r a b 的夹角等于( ) 7.若向量()x x a 2,3+=和向量()1,1-=→b 平行,则 =+→ →b a ( ) 8.已知()()0,1,2,3-=-=,向量b a +λ与b a 2-垂直,则实数λ的值为( ). 9.设平面向量(1,2)a =r ,(2,)b y =-r ,若向量,a b r r 共线,则3a b +r r =( ) 10.平面向量a r 与b r 的夹角为60o ,(2,0)a =r ,1b =r ,则2a b +r r = 11.已知向量()1,2=,()1,4+=x ,若//,则实数x 的值为 12.设向量)2,1(=→a ,)1,(x b =→,当向量→→+b a 2与→→-b a 2平行时,则→ →?b a 等于 13.若1,2,,a b c a b c a ===+⊥r r r r r r r 且,则向量a b r u r 与的夹角为( ) 142= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是 ( ) 15.已知向量AB u u u r =(cos120°,sin120°),AC u u u r =(cos30°,sin30°),则△ABC 的 形状为 A .直角三角形 B .钝角三角形 C .锐角三角形 D .等边三角形 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) C .(4,6)- D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--=r r r r 则a ( ) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 20. 已知向量,a b r r 满足0,1,2,a b a b ?===r r r r 则2a b -=r r ( ) 21.设向量a r =(1.cos θ)与b r =(-1, 2cos θ)垂直,则cos2θ等于 ( ) 23.化简 AC -u u u r BD +u u u r CD -u u u r AB u u u r = 25.如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么=EF u u u r ( )

最新平面向量及其加减运算(练习)

练习内容:22.7平面向量 22.8平面向量的加法 22.9平面向量的减法 姓名 学号 成绩 一、选择题 (每小题3分,共18分) 1.在四边形ABCD 中,AB DC =,且||||AB BC =,那么四边形ABCD 为 ( ) A 、平行四边形 B 、菱形 C 、长方形 D 、正方形 2.四边形ABCD 中,若向量AB 与CD 是平行向量,则四边形ABCD ( ) A 、是平行四边形 B 、是梯形 C 、是平行四边形或梯形 D 、不是平行四边形,也不是梯形 3.设b 是a 的相反向量,则下列说法错误的是 ( ) A 、a 与b 的长度必相等 B 、a ∥b C 、a 与b 一定不相等 D 、a 是b 的相反向量 4.下列说法中不正确的是 ( ) A 、零向量是没有方向的向量 B 、零向量的方向是任意的 C 、零向量与任一向量平行 D 、零向量只能与零向量相等 5.下列四式不能化简为AD 的是 ( ) A 、()A B CD B C ++ B 、()()A D MB BC CM +++ C 、A D AD BM +- D 、OC AO CD ++ 6.下列说法中,正确的有 ( ) ① 若a b =±,则a ∥b ② 若a ∥b ,则a b =± ③ 若a b =±,则||||a b = ④ 若||||a b =,则a b =± A 、1个 B 、2个 C 、3个 D 、4个

二、填空题 (每小题4分,共40分) 7.规定了方向的线段叫做 8.向量是既有大小、又有 的量,可以用 线段表示 9.AB BA + = ;a a - = 第10题到15题的图 10.平行四边形ABCD 中,与AB 相等的向量有 11.平行四边形ABCD 中,与AB 相反的向量有 12.平行四边形ABCD 中,与AB 平行的向量有 13.平行四边形ABCD 中,与AO 相等的向量有 14.平行四边形ABCD 中,与AO 相反的向量有 15.平行四边形ABCD 中,与AO 平行的向量有 16.设a 表示“向东走1km ”,b ”,则a b +表示 三、简答题 (每小题6分,共24分) 17.判断下列命题是否为真命题 (1)★ AB BC DC AD +-= ( ) (2)★ 向量b 的长度记作||b ( ) (3)★ 用两个字母表示有向线段,起点字母与终点字母随便哪个写在前面无所谓 ( ) 18.判断命题“若a b =,则a 与b 是平行向量”是否是真命题。若是真命题,请说明理由;若是假命题,请举反例;并写出此命题的逆命题 D

高一三角函数与平面向量综合题

讲座 三角形内的三角函数问题 ○知识梳理 1.内角和定理:三角形三角和为π,这是三角形中三角函数问题的特殊性,解题可不能忘记! 任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余. ,sin()sin ,sin cos 22 A B C A B C A B C π++=-+== 锐角三角形?三内角都是锐角?三内角的余弦值为正值?任两角和都是钝角? 任意两边的平方和大于第三边的平方. A>B a>b sinA>sinB ??,60?o A,B,C 成等差数列B= 2.正弦定理:2sin sin sin a b c R A B C ===(R 为三角形外接圆的半径). 注意:①正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::; ()sin ,sin ,sin 222a b c ii A B C R R R = == ; ()2sin ,2sin ,2sin iii a R A b R B b R C ===; ②已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解. 3.余弦定理:2 2 2 2222cos ,cos 2b c a a b c bc A A bc +-=+-=等,常选用余弦定理鉴定 三角形的形状. 4.面积公式: 222111222 111sin sin sin 222sin sin sin sin sin sin 1112sin 2sin 2sin 1()2 ==========++=a b c S ah bh ch ab C bc A ca B B C C A A B a b a A B C r a b c (其中r 为三角形内切圆半径,2 a b c p ++=). 5.射影定理: a = b ·cos C + c ·cos B ,b =a ·cos C +c ·cos A ,c =a ·cos B +c ·cos A . 特别提醒:求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。

平面向量与三角函数、解三角形的综合习题

三角函数与平面向量、解三角形综合题 题型一:三角函数与平面向量平行(共线)的综合 【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量. (Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 题型二. 三角函数与平面向量垂直的综合 【例2】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π 2 ,2π),且→a ⊥→b . (Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π 3)的值. 题型三. 三角函数与平面向量的模的综合 【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=2 5 5.(Ⅰ)求cos(α-β)的值;(Ⅱ) 若-π2<β<0<α<π 2,且sinβ=-513,求sinα的值. 题型四 三角函数与平面向量数量积的综合 【例3】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值. 题型五:结合三角形中的向量知识考查三角形的边长或角的运算 【例5】(山东卷)在ABC ?中,角,,A B C 的对边分别为,,a b c ,tan 37C =. (1)求cos C ;(2)若5 2 CB CA ?=u u u r u u u r ,且9a b +=,求c . 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算 【例6】()f x a b =?r r ,其中向量(,cos 2)a m x =r ,(1sin 2,1)b x =+r ,x R ∈, 且函数()y f x =的图象经过点( ,2)4 π . (Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。

数学必修平面向量综合练习题

、选择题 【共12道小题】 1、卜列说法中止确的是 ( ) A.两个单位向量的数量积为 1 B.若 a ? b=a ?c 且 a * 0,则 b=c C. AS = 0A — 0B D.若 b 丄 c,则(a+c) ? b=a ?b 参考答案与解析:解析:A 中两向量的夹角不确定;B 中若a 丄b,a 丄c,b 与c 反方向则不成立;C 中应 为-亠 _ 一丄, ;D 中 b lc = b ? c=0,所以(a+c) ? b=a ? b+c ? b=a ? b. 答案:D 主要考察知识点:向量、向量的运算 2、设e 是单位向量,二L=2e, -二=-2e,|」丄|=2,则四边形ABCD 是( ) 又因为|上」|=| H 丄1=2,所以四边形 ABCD 是菱形? 答案:B 主要考察知识点:向量、向量的运算 3、已知|a|=|b|=1 , a 与b 的夹角为90° ,且c=2a+3b , d=ka-4b,若c ±d,则实数k 的值为( ) A. 6 B.-6 C.3 D.-3 参考答案与解析:解析:I c 丄d, ??? c ? d=(2a+3b) ? (ka -4b)=0,即 2k- 12=0, A k=6. 答案:A 主要考察知识点:向量、向量的运算 4、设 O WBv 2 n ,已知两个向量 '■ - =(cos 0, sin 0 ), ' - =(2+sin 0, 2-cos 0 ),则向量-二 长 度的最大值是( ) B. / 参考答案与解析:解析:-」 亠 -=(2+sin 0 - cos 0 ,2 - cos 0 - sin 0), 所以〔丽 $ J 【2 +拠即斗(2-皿。-血册=-区血日三屈鼻伍 答案:C 主要考察知识点:向量与向量运算的坐标表示 5、设向量 a=(1,-3) , b=(-2,4) , c=(-1,-2),若表示向量 4a 、4b-2c 、2(a-c)、d 的有向线段首尾 相接能构成四边形,则向量 d 为( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 参考答案与解析:解析:依题意,4a+4b-2c+2(a-c)+d=0,所以 d=-6a+4b-4c=(-2 , -6). 答案:D A.梯形 形 B.菱形 C.矩 D.正方形 参考答案与解析 :解析:儿- -- ,所以|亠厶|=| |,且AB// CD 所以四边形 ABCD 是平行四边 形 A.

角函数、平面向量综合题九种类型

三角函数与平面向量综合题的九种类型
题型一:三角函数与平面向量平行(共线)的综合
【例 1】 已知 A、B、C 为三个锐角,且 A+B+C=π.若向量→p =(2-2sinA,cosA+sinA)与向量→q =(sinA -cosA,1+sinA)是共线向量.
(Ⅰ)求角 A;(Ⅱ)求函数 y=2sin2B+cosC-23B的最大值.
题型二. 三角函数与平面向量垂直的综合 【例2】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(32 ,2π),且→a ⊥→b .
α (Ⅰ)求 tanα 的值;(Ⅱ)求 cos( 2 + 3 )的值.
题型三. 三角函数与平面向量的模的综合 【例 3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求 cos(α-β)的值;(Ⅱ) 若- 2 <β<0<α< 2 ,且 sinβ=-153,求 sinα 的值.
题型四:结合向量的数量积,考查三角函数的化简或求值
【例 4】(2010 年高考安徽卷)已知 0 , 为 f (x) cos(2x ) 的最小正周期,
4
8
ar
(tan(
r ), 1),b
(cos, 2), ar
r b
m
,求
2 cos2
sin
2(
)
的值.
4
cos sin
练习:设函数 f(x)=→a ·→b .其中向量→a =(m,cosx),→b =(1+sinx,1),x∈R,且 f( 2 )=2.(Ⅰ)求实数 m 的值;(Ⅱ)求函数 f(x)的最小值.
题型五:结合向量的夹角公式,考查三角函数中的求角问题

平面向量简单练习题

试卷第1页,总5页 一、选择题 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足⊥,则λ的值 ( ) 2.已知)2 , 1(-=,52||=,且//,则=( ) 5.已知1,2,()0a b a b a ==+= ,则向量b 与a 的夹角为( ) 6.设向量(0,2),==r r a b ,则, a b 的夹角等于( ) 7.若向量()x x a 2,3+=和向量()1,1-=→b 平行,则 =+→→b a ( ) 8.已知()()0,1,2,3-=-=b a ,向量b a +λ与b a 2-垂直,则实数λ的值为( ). 9.设平面向量(1,2)a = ,(2,)b y =- ,若向量,a b 共线,则3a b + =( ) 10.平面向量a 与b 的夹角为60 ,(2,0)a = ,1b = ,则2a b + = 11.已知向量()1,2=,()1,4+=x ,若//,则实数x 的值为 12.设向量)2,1(=→a ,)1,(x b =→,当向量→→+b a 2与→→-b a 2平行时,则→→?b a 等于 13.若1,2,,a b c a b c a ===+⊥ 且,则向量a b 与的夹角为( ) 142= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是 ( ) 15.已知向量AB =(cos120°,sin120°),AC =(cos30°,sin30°),则△ABC 的形状为 A .直角三角形 B .钝角三角形 C .锐角三角形 D .等边三角形 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) C .(4,6)- D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--= 则a ( ) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 20. 已知向量,a b 满足0,1,2,a b a b ?=== 则2a b -= ( ) 21.设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos 2θ等于 ( ) 23.化简AC - BD + CD - AB = 25.如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么=EF ( )

平面向量的加法

教学主题向量加法 教学目标: 1、能熟练地掌握向量加法的平行四边形法则和三角形法则,并能作出 已知两向量的和向量掌握向量加法概念; 2、理解向量加法满足交换律和结合律,表述两个运算律的几何意义; 3、掌握有特殊位置关系的两个向量的和,比如共线向量、共起点向量、 共终点向量等。 教学设计: 求和向量的问题→法则→简单应用。 教学方法: 引导启发式,讲练结合。 教学过程 (一)组织教学 (二)复习回顾 ①复习向量的概念; ②思考下面问题。 我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断. 另外,向量和我们熟悉的数一样可以进行加减运算,这一节,我们先学习向量的加法. 我们先给出向量加法的定义 1.向量加法的定义 已知a,b,在平面内任取一点A,作AB=a,BC=b,则向 量AC叫做a与b的和,记作a+b. 即a+b=AB+BC=AC. 求两个向量和的运算叫向量的加法. 2.向量加法的三角形法则 师:在定义中所给出的求向量和的方法就是向量加法的三角形法则,运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点

指向第二个向量的终点的向量即为和向量. 3.向量加法的平行四边形法则 如图,由于平行四边形对边平行且相等,则可把向量b的起点由B 移到A,即AD =BC =b,则:AC=AB+BC=AB+AD 即:在平面内过同一点A作AB=a,AD=b,则以AB、AD为邻边 构造平行四边形ABCD,则以A为起点的对角线向量AC即a与b的和,这种方法即为向量加 法的平行四边形法则. 说明:上述两种方法实质相同,但应用各有特色,三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适. 4.向量加法所满足的运算律 交换律:a+b=b+a 结合律:(a+b)+с=a+(b+с) 说明:运算律验证引导学生完成. 下面我们通过例题来进一步熟悉向量加法的三角形法则与平行四边形法则. 例1、如图,已知向量a,b,求作向量a+b. 分析:此题可以应用三角形法则也可应用平行四边形法则求解, 但应注意两种法则的适用前提不同,若用三角形法则,则应平移为两 向量首尾相接;若用平行四边形法则,则应平移为两向量同起点情形. 作法一:设a=AB,b=CD,过点B作BE=CD=b,则根据向量加法的三角形法则可得AE=AB+BE=a+b 作法二:过A作AE=CD=b,然后根据向量加法的平行四边形法则,以AB、AC 作出的平行四边形的对角线AF=a+b. 评述:在求作两已知向量的和向量时,对于向量加法的三角形法则和平行四边形法则,

向量和三角函数综合试题(卷)

向量与三角函数综合试题 1.已知向量a 、b 满足b ·(a-b)=0,且|a|=2|b|,则向量a +2b 与a 的夹角为 ( D ) A.3π B.3π2 C. 2π D.6π 2.已知向量),(n m =,)sin ,(cos θθ=,其中R n m ∈θ,,.若||4||=,则当2 λλ或2-<λ B .2>λ或2-<λ C .22< <-λ D .22<<-λ 3.已知O 为原点,点P (x ,y )在单位圆x 2 +y 2 =1上,点Q (2cos θ,2sin θ),且PQ =(3 4, -3 2),则·的值是 ( A ) A .18 25 B .9 25 C .2 D .9 16 4.R t t ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0 0,则||的最小值是B A. 2 B. 22 C. 1 D. 2 1 5.如图,△ABC 中,AB=4,AC=4,∠BAC=60°,延长CB 到D ,使||||BA BD =u u u r u u u r ,当E 点在线段AD 上移动时,若,AE AB AC λμλμ=+-u u u r u u u r u u u r 则的最大值是( C ) A .1 B 3 C .3 D .236.已知向量(2,0)OB =u u u v ,向量(2,2)OC =u u u v ,向量22)CA αα=u u u v ,则向量OA u u u v 与向量OB uuu v 的夹角的取值围是( D ) A .[0, ]4π B .5[,]412ππ C .5[,]122ππ D .5[,]1212 ππ 7.已知向量(1,1),(1,1),(22)a b c θθ==-=r r r ,实数,m n 满足ma nb c +=r r r ,则 22(1)(1)m n -+-的最小值为( D ) A 21 B .1 C 2 D .322- 8.如图,BC 是单位圆A 的一条直径, F 是线段AB 上的点,且2BF FA =u u u r u u u r , 若DE 是圆A 中绕圆心A 运动的一条直径,则FD FE u u u r u u u r g 的值是( B ) B .)

向量的加法、减法运算及其几何意义

2.2.1 向量的加法运算及其几何意义 教学目标: 掌握向量的加法运算,并理解其几何意义; 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义. 学法: 数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律. 教具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路: 一、设置情景:

复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:=+ (2)若上题改为从A 到B ,再从B 按反方向到C 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:AC BC AB =+ (4)船速为,水速为,则两速度和:AC BC =+ 二、探索研究: 1、向量的加法:求两个向量和的运算,叫做向量的加法 . 2、三角形法则(“首尾相接,首尾连”) 如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量叫做a 与b的和,记作a +b,即 a +b=+=,规定: a + 0-= 0 + a A B C A B C A B C A B C a+b a+b a a b b a b b aa

平面向量的加减法测试题

平面向量的加减法练习题 一、选择题 1、下列说法正确的有 ( )个. ①零向量是没有方向的向量,②零向量的方向是任意的,③零向量与任一向量共线,④零向量只能与 零向量共线. A.1? B.2 ? C.3?D.以上都不对 2、下列物理量中,不能称为向量的有( )个. ①质量②速度③位移④力⑤加速度⑥路程 A.0 B.1 C.2 D.3 3、已知正方形ABCD的边长为1, = a, =b, =c,则|a+b+c|等于 ( ) A.0B.3? C.2 ? D.224、在平行四边形ABCD中,设= a, = b,=c, = d,则下列不等式中不正确的是( ) A.a+b=c? B.a-b=dC.b-a=d?D.c-d=b-d 5、△ABC中,D,E,F分别是AB、BC、CD的中点,则-等于() A.B.C.?D. 6、如图.点M是△ABC的重心,则MA+MB-MC为( ) A.0 B.4

?C .4 D .4 7、在正六边形ABCDEF 中,不与向量相等的是 ( ) ?A. + B.- C . + ?D.+ 8、a =-b是|a | = |b |的 ( ) A.充分非必要条件 ?B .必要非充分条件 ?C .充要条件 ? D.既非充分也非必要条件 二、填空题: 9、化简: + + + + = ______. 10、若a =“向东走8公里”,b =“向北走8公里”,则| a + b |=___,a +b 的方向是_ ____. 11、已知D、E、F 分别是△ABC 中BC 、CA 、AB 上的点,且 = 3 1 , = 3 1 , = 3 1,设 = a , = b ,则 = __________. 12、向量a,b 满足:|a|=2,|a+b|=3,|a -b |=3,则|b |=_____. 三、解答题: 13、如图在正六边形AB CDEF 中,已知: = a, = b ,试用a 、b 表示向量 , , , .

相关主题
文本预览
相关文档 最新文档