当前位置:文档之家› 水轮机结构图

水轮机结构图

水轮机结构图
水轮机结构图

水轮机的结构和原理(+笔记)

水轮机 水轮机+ 发电机:水轮发电机组 功能:发电 水泵+ 电动机:水泵抽水机组 功能:输水 水泵+ 水轮机:抽水蓄能机组。 功能:抽水蓄能 水轮发电机组:水轮机是将水能转变为旋转机械能,从而带动发电机发出电能的一种机械,是水电站动力设备之一。 第一节水轮机的工作参数 水轮发电机组装置原理图 定义:反映水轮机工作状况特性值的一些参数,称水轮机的基本参数。 由水能出力公式:N=9.81ηQH可知,基本参数:工作水头H(m)、流量Q(m3/s)、出力N(kw)、效率η,工作力矩M、机组转速n。 一、水头(head):作用于水轮机的单位水体所具有的能量,或单位重量的水体所具有的势能,更简单的说就是上下游的水位差,也叫落差。142米 1. 毛水头(nominal productive head) H M=E U-E D=Z U - Z D 2. 反击式水轮机的工作水头

毛水头 - 水头损失=净水头 H G =E A - E B =H M - h I -A 3. 冲击式水轮机的水头 H G =Z U - Z Z - h I-A 其中Z U 和Z Z 分别为上游和水轮机喷嘴处的水位。 4. 特征水头(characteristic head) 表示水轮机的运行范围和运行工况的几个典型水头。 最大工作水头: H max =Z 正-Z 下min -h I-A 最小工作水头: H min =Z 死-Z 下max -h I-A 设计水头(计算水头) H r :水轮机发额定出力时的最小水头。 平均水头: H av =Z 上av -Z 下av 二、流量(m 3/s)(flow quantity):单位时间内通过水轮机的水量Q 。单机12.2m 3/s Q 随H 、N 的变化:H 、N 一定时, Q 也一定; 当H =H r 、N =N 额时,Q 为最大。 在H r 、n r 、N r 运行时,所需流量Q 最大,称为设计流量Q r 三、出力 (output and):水轮机主轴输出的机械效率。N(KW): 指水轮机轴传给发电机轴的功率。 水轮机的输入功率 (水流传给水轮机的能量),即水流效率,与a.作用于水轮机的有效水头;b.单位时间通过水轮机的水量,即流量Q ;c.水体容重γ成正比。其公式为:QH QH N w 8.9==γ γ指水体容重(即单位容积水所具有的重力,比重): 水的比重=1000kg/m 3、G=9.8N/Kg γ=9800N/m 3 )(8.9)/(9800)/(9800)()/()/(33kw QH s J QH s m N QH m H s m Q m N N w ==?=??=γ 水轮机的输出功率:ηηQH N N w 8.9== 四、效率(efficiency ):输入水轮机的水能与水轮机主轴输出的机械能之比,又叫水轮机的机械效率、能量转换效率。η

水轮发电机结构

一、简介 (一)、简介 水轮机是水电厂将水轮转换为机械能的重要设备。 1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击型 利用水流的压能和动能,冲击型利用水流动能。 2、反击式中又分为混流、轴流、斜流和贯流四种; 3、冲击式中又分为水斗、斜击和双击式三种。 1)、混流式: 水流从四周沿径向进入转轮,近似轴向流出 应用水头范围:30m~700m 特点:结构简单、运行稳定且效率高 2)、轴流式 水流在导叶与转轮之间由径向运动转变为轴向流动 应用水头:3~80m 特点:适用于中低水头,大流量水电站 分类:轴流定桨、轴流转桨 3)、冲击式 转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。 水头范围:300~1700m 适用于高水头,小流量机组。 (二)、水轮机主要类型归类

二、水轮机主要基本参数 1、水轮机主要基本参数 水头:Hg、H、Hmax、Hmin、Hr(设计水头)流量:Q 转速:f=np/60 出力:N=9.81QHη(Kw) 效率:η 2、水轮机型式代号 混流式:HL 斜流式:XL 轴流转桨式:ZZ 轴流定桨式:ZD 冲击(水斗式):CJ 双击式:SJ 斜击式:XJ 贯流转桨式:GZ 贯流定桨式:GD 对于可逆式,在其代号后增加N 3、混流式水轮机 型号:HL100—LJ—210 HL:代表混流式水轮机 100:转轮型号(也称比转速)

LJ:立式金属蜗壳 210:转轮直径(210厘米) 4、轴流式水轮机 ZZ560—LH—1130 ZZ:轴流转桨式水轮机 560:转轮型号 LH:立式混凝土蜗壳 1130:表示转轮直径为1130厘米 5、冲击式水轮机 CJ47—W—170/2X15.0 CJ:冲击式 W:卧轴 170:转轮直径170cm 2:2个喷嘴 15.0:射流直径 三、水轮机主要部件 (一)、组成 引水部件、导水部件、工作部件、泄水部件 1、引水部件 组成:引水室(蜗壳)、座环 作用:以较小的水力损失把水流均匀地、对称地引入导水部件,并在进入导叶前形成一定的环量。

水轮机的结构和原理(笔记)

水轮机 水轮机 + 发电机:水轮发电机组 功能:发电 水泵 + 电动机:水泵抽水机组 功能:输水 水泵 + 水轮机:抽水蓄能机组。 功能:抽水蓄能 水轮发电机组:水轮机是将水能转变为旋转机械能,从而带动发电机发出电能的一种机械,是水电站动力设备之一。 第一节水轮机的工作参数 水轮发电机组装置原理图 定义:反映水轮机工作状况特性值的一些参数,称水轮机的基本参数。 由水能出力公式:N=9.81ηQH可知,基本参数:工作水头H(m)、流量Q(m3/s)、出力N(kw)、效率η,工作力矩M、机组转速n。 一、水头(head):作用于水轮机的单位水体所具有的能量,或单位重量的水体所具有的势能,更简单的说就是上下游的水位差,也叫落差。142米 1. 毛水头(nominal productive head) H =E U-E D=Z U - Z D M

2. 反击式水轮机的工作水头 毛水头 - 水头损失=净水头 H G =E A - E B =H M - h I -A 3. 冲击式水轮机的水头 H G =Z U - Z Z - h I-A 其中Z U 和Z Z 分别为上游和水轮机喷嘴处的水位。 4. 特征水头(characteristic head) 表示水轮机的运行围和运行工况的几个典型水头。 最大工作水头: H max =Z 正-Z 下min -h I-A 最小工作水头: H min =Z 死-Z 下max -h I-A 设计水头(计算水头) H r :水轮机发额定出力时的最小水头。 平均水头: H av =Z 上av -Z 下av 二、流量(m 3/s)(flow quantity):单位时间通过水轮机的水量Q 。单机12.2m 3/s Q 随H 、N 的变化:H 、N 一定时, Q 也一定; 当H =H r 、N =N 额时,Q 为最大。 在H r 、n r 、N r 运行时,所需流量Q 最大,称为设计流量Q r 三、出力 (output and):水轮机主轴输出的机械效率。N(KW): 指水轮机轴传给发电机轴的功率。 水轮机的输入功率 (水流传给水轮机的能量),即水流效率,与a.作用于水轮机的有效水头;b.单位时间通过水轮机的水量,即流量Q ;c.水体容重γ成正比。其公式为:QH QH N w 8.9==γ γ指水体容重(即单位容积水所具有的重力,比重): 水的比重=1000kg/m 3、=9800N/m 3, ) (8.9)/(9800)/(9800)()/()/(33kw QH s J QH s m N QH m H s m Q m N N w ==?=??=γ 水轮机的输出功率:ηηQH N N w 8.9== 四、效率(efficiency ):输入水轮机的水能与水轮机主轴输出的机械能之比,又叫水

水轮机的基本组成结构

水轮机 一、水轮机的基本参数 1)工作水头(H):水轮机的工作水头就是指水轮机的进、出口单位 能量差,也就是上游水位与下游水位之差,用H表示,其单位为m。其大小表示水轮机利用水流单位能量的多少。 2)流量(Q):在单位时间内流经水轮机的水量,称为流量,用Q表 示,其单位为m3/s。其大小表示水轮机利用水流能量的多少 3)出力(P):具有一定水头和流量的水流通过水轮机便做功,而在 单位时间内所做的功率称为水轮机的出力,用P表示,其单位KW。 水轮机的出力为:P=9.81QH 4)效率(η)目前混流式水轮机的最高效率95% P=9.81QHη 5)比转速指工作水头H为1m、发出的功率P为1kw时水轮机所具有的转速,故称为比转速。 二、水轮机的类型与代号 我们根据水流能量的转换的特征不同,把水轮机分为两大类,及反击型和冲击型水轮机。 反击型水轮机,具有一定位能的水流主要以压能的形态,由水轮机转变为机械能。按其水流经过转轮的方向不同,反击型水轮机可分为以下几种类型: 反击型:轴流(定桨、转桨)水轮机、混流式水轮机、贯流式水轮机、斜流式水轮机

冲击型:水流不充满过流流道,而是在大气压力下工作,水流全部以动能形态由转轮变为机械能。按射流冲击水斗的方式不同,可分为如下几种类型: 冲击型:水斗式水轮机、斜击式水轮机、双击式水轮机 我国水轮机式的代号,有三部分组成,第一部分由水轮机型式及转轮型号组成,并由汉语拼音表示。 水轮机型式的代号 水轮机型式代号水轮机型式代号 混流式HL 轴流转桨式ZZ 斜流式XL 轴流定桨式ZD 双击式SJ 贯流转桨式GZ 斜击式XJ 贯流定桨式GD 冲击式CJ 以本电站为例:水轮机型号:HL(247)—LJ—235,表示混流式水轮机,转轮型号为247,立轴,金属蜗壳,转轮直径为235㎝。三、混流式水轮机 1定义:水流从径向流入转轮,在转轮中改变方向后从轴向流出的水轮机。其叶片固定,不能转动调节。 2 混流式水轮机 - 结构特点 混流式水轮机主要应用于20—450米的中水头电厂, 其结构紧凑,效率较高,能适应很宽的水头范围,是目前 世界各国广泛采用的水轮机型式之一。

(完整word版)水轮机结构

水轮机结构 一、简介 (一)、简介水轮机是水电厂将水轮转换为机械能的重要设备。 1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击型利用水 流的压能和动能,冲击型利用水流动能。 2、反击式中又分为混流、轴流、斜流和贯流四种; 3、冲击式中又分为水斗、斜击和双击式三种。 1)、混流式:水流从四周沿径向进入转轮,近似轴向流出应用水头范围:30m~700m 特点:结构简单、运行稳定且效率高 2)、轴流式水流在导叶与转轮之间由径向运动转变为轴向流动应用水头:3~80m 特点:适用于中低水头,大流量水电站分类:轴流定桨、轴流转桨 3)、冲击式 转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。 水头范围:300~1700m 适用于高水头,小流量机组。 (二)、水轮机主要类型归类 二、水轮机主要基本参数 1、水轮机主要基本参数

水头:Hg、H、Hmax、Hmin、Hr (设计水头) 流量:Q 转速:f=np/60 出力:N=9.81QH n(Kw) 效率:n 2、水轮机型式代号 混流式:HL 斜流式:XL 轴流转桨式:ZZ 轴流定桨式:ZD 冲击(水斗式):CJ 双击式:SJ 斜击式:XJ 贯流转桨式:GZ 贯流定桨式:GD 对于可逆式,在其代号后增加N 3、混流式水轮机 型号:HL100—LJ—210 HL :代表混流式水轮机 100:转轮型号(也称比转速) LJ:立式金属蜗壳 210:转轮直径(210 厘米)

4、轴流式水轮机 ZZ560—LH —1130 ZZ:轴流转桨式水轮机 560:转轮型号 LH :立式混凝土蜗壳1130:表示转轮直径为1130 厘米 5、冲击式水轮机 CJ47—W—170/2X15.0 CJ:冲击式 W :卧轴 170:转轮直径170cm 2: 2 个喷嘴 15.0:射流直径三、水轮机主要部件(一)、组成 引水部件、导水部件、工作部件、泄水部件 1、引水部件 组成:引水室(蜗壳)、座环作用:以较小的水力损失把水流均匀地、对称地引入导水部件,并在进入导叶前形成一定的环量。 2、导水部件 组成:导叶及其操作机构、顶盖、底环 作用:调节进入转轮的流量和形成转轮所需的环量 3、工作部件

水轮发电机结构

一、贯流式水轮机的特点 贯流式水轮机是开发低水头水力资源的一种机组,适用于25m以下的水头。这种机型流道呈直线状,是一种卧轴水轮机,转轮形状与轴流式相似,也有定桨和转桨之分,由于水 流在流道内基本上沿轴向运动不拐弯,因此较大的提高了机组的过水能力和水力效率。 此外,与其它机型相比,它还有其它一些显著特点: (1)从进水到出水方向轴向贯通形状简单,过流通道的水力损失减小,施工方便,另外它效率较高,其尾水管恢复功能可占总水头的40%以上。 (2)贯流式机组有较高的过流能力和比转速。 (3)贯流式水轮机适合作可逆式水泵水轮机运行,由于进出水流道没有急转弯,使水泵工况和水轮机工况均能获得较好的水力性能。如应用于潮汐电站上可具有双向发电,双向抽水和双向泄水等六种功能,很适合综合开发利用低水头水力资源,另外在一般平原地区的排灌站上可作为可逆式水泵水轮机运行,应用范围比较广泛。 (4)贯流式水电站一般比立轴的轴流式水电站建设周期短、投资小、收效快、淹没移民少,电站靠近城镇,有利于发挥地区兴建电站的积极性。 二、贯流式水轮机的分类 根据贯流式水轮机机组布置形式的不同可将其划分为以下几种形式: 1.轴伸贯流式 这种贯流式水轮发电机组基本上采用卧式布置,水流基本上沿轴向流经叶片的进出口, 出叶片后,经弯形(或称S形)尾水管流出,水轮机卧式轴穿出尾水管与发电机大轴连接,发电机水平布置在厂房内。 轴伸贯流式机组按主轴布置方式可分成前轴伸、后轴伸和斜轴伸等几种,如图7-1所示。这种贯流式机组与轴流式相比没有蜗壳、肘形尾水管,土建工程量小,发电机敞开布置,易于检修、运行和维护。但这种机组由于采用直弯尾水管,尾水能量回收效率较低,机组容量大时不仅效率差,而且轴线较长,轴封困难,厂房噪音大都将给运行检修带来不方便。所以一般只用于小型机组。 2.竖井贯流式 这种机组主要特点是将发电机布置在水轮机上游侧的一个混凝土竖井中,发电机与水轮机的连接通过齿轮或皮带等增速装置连在一起如图7-2所示。

水轮机的基本结构及其主要部件的作用

水轮机的基本结构及其主要部件的作用 水轮机总体由引水、导水、工作和排水四大部分组成。 1、水轮机的引水部件: 主要指蜗壳及座环等,水流由蜗壳引进,经过座环后才进入导水机构。蜗壳的作用是使进入导叶以前的水流形成一定的旋转,并轴对称地、均匀地将水流引入导水机构;座环的作用是:承受整个机组及其上部混凝土的重量以及水轮机的轴向水推力;以最小的水力损失将水流引入导水机构;机组安装时以它为基准。所以,座环既是承重件,又是过流件,也是基准件。因此,要求座环必须有足够的强度、刚度和良好的水力性能。 2、水轮机的导水机构: 导水机构主要由操纵机构(推拉杆、接力器及其锁锭装置)、导叶传动机构(包括控制环、拐臂、连杆和连接板等)、执行机构(导叶及其轴套等)和支撑机构(顶盖、底环等)四大部分组成。其作用使进入转轮前的水流形成旋转,并可改变水流的入射角度,当发电机负荷发生变化时,用它来调节流量,正常与事故停机时,用它来截断水流。 导水机构的操纵机构 导水机构的操纵机构的作用是:在压力油的作用下,克服导叶的水力矩及传动机构的摩擦力矩,形成对导叶在各种开度下的操作力矩。导水机构的操纵机构分为直缸式和环形接力器两大类。 调速环或接力器锁锭装置 锁锭装置的作用是:当导叶全关闭后,锁锭投入,可阻止接力器活塞向开侧移动;一旦关侧油压消失,又可防止导叶被水冲开。 导水机构的传动机构 导水机构的传动机构的作用:是将操纵机构的操作力矩传递给导叶轴并使之发生转动。其型式主要有叉头式和耳柄式两种。太站为耳柄式,长站为叉头式。正常运行时应着重检查控制环、拐臂、连杆和连接板之间的连接销有无串出或脱落。剪断销及引线是否完好。 导水机构的执行机构

全贯流式水轮机基本结构

贯流式水轮机基本结构 一、贯流式水轮机的特点 贯流式水轮机是开发低水头水力资源的一种新型机组,适用于25m以下的水头。这种机型流道呈直线状,是一种卧轴水轮机,转轮形状与轴流式相似,也有定桨和转桨之分,由于水流在流道内基本上沿轴向运动不拐弯,因此较大的提高了机组的过水能力和水力效率。 此外,与其它机型相比,它还有其它一些显著特点: (1)从进水到出水方向轴向贯通形状简单,过流通道的水力损失减小,施工方便,另外它效率较高,其尾水管恢复功能可占总水头的40%以上。 (2)贯流式机组有较高的过滤能力和比转速,所以在水头与功率相同的条件下,贯流式的要比转桨式的直径小10%左右。 (3)贯流式水轮机适合作了逆式水泵水轮机运行,由于进出水流道没有急转弯,使水泵工况和水轮机工况均能获得较好的水力性能。如应用于潮汐电站上可具有双向发电,双向抽水和双向泄水等六种功能,很适合综合开发利用低水头水力资源,另外在一般平原地区的排灌站上可作为可逆式水泵水轮机运行,应用范围比较广泛。 (4)贯流式水电站一般比立轴的轴流式水电站建设周期短、投资小、收效快、淹没移民少,电站靠近城镇,有利于发挥地区兴建电站的积极性。 二、贯流式水轮机的分类 根据贯流式水轮机机组布置形式的不同可将其划分为以下几种形式: 1.轴伸贯流式 这种贯流式水轮发电机组基本上采用卧式布置,水流基本上沿轴向流经叶片的进出口, 出叶片后,经弯形(或称S形)尾水管流出,水轮机卧式轴穿出尾水管与发电机大轴连接,发电机水平布置在厂房内。 轴伸贯流式机组按主轴布置方式可分成前轴伸、后轴伸和斜轴伸等几种,如图7-1所示。这种贯流式机组与轴流式相比没有蜗壳、肘形尾水管,土建工程量小,发电机敞开布置,易于检修、运行和维护。但这种机组由于采用直弯尾水管,尾水能量回收效率较低,机组容量大时不仅效率差,而且轴线较长,轴封困难,厂房噪音大都将给运行检修带来不方便。所以一般只用于小型机组。 2.竖井贯流式 这种机组主要特点是将发电机布置在水轮机上游侧的一个混凝土竖井中,发电机与水轮机的连接通过齿轮或皮带等增速装置连在一起如图7-2所示。

论混流式水轮机各部件功能及其安装程序和要求

论混流式水轮机各部件功能及其安装程序和要求 导叶:由导叶体和导叶轴两部分组成。为减轻导叶重量,常做成中空导叶。导叶的断面形状为翼型。导叶轴颈通常比连接处的导叶体厚度大,在连接处采用均匀圆滑过渡形状,以避免应力集中。 导叶轴承:上、中、下轴套,高水头机组为防止导叶上浮力超过导叶自重,保证导叶上端面间隙,在导叶套筒的法兰上一般设有止推装置(止推压板或止推块)。 导叶传动机构:导叶传动机构由控制环、连杆、导叶臂三部分组成,用于传递接力器操作力矩,使导叶转动,调节水轮机流量。该机构形式有叉头式受力情况较好和耳柄式受力情况相对较差。导水叶外围,座环的蝶形边与蜗壳相连,并被蜗壳包围。导轴承位于顶盖上,控制环口通过推拉环与接力器相连。在座环下发布置有基础环,通过锥形环与尾水管相连。混流式水轮机附属装置还有布置在顶盖上的真空破坏阀、吸力补气阀和放水阀等。 水轮机的导水机构是有导叶、传动机构(转臂、连杆、控制环)、接力器、和推拉杆等组成。 水轮机的底环是由上环、下环、和固定导叶三部分组成,它既是水轮机的通水部件,机组安装时的基准部件,又是机组运行的承重部件。要求具有水力损失小,具有一定的强度和刚度。 混流式水轮机的转轮主要由上冠、叶片、下环、止漏环、泄水锥和减

压装置等组成。 水轮机的转轮包括转体、叶片、泄水锥等。 立轴混流式水轮机引水室采用金属焊接蜗壳,其进口与压力水管相连接,其余各节与座环相连。为了便与检修,在蜗壳上开有专门进人孔(蜗壳人孔门),其底部并有排水孔和阀门,以便排出蜗壳积水。 座环位于蜗壳里,布置导水机构,它是水轮机的承重部分,又是过流部件在安装时它还是一个主要基准件,因此它要符合水力,强度和刚强等诸方面的要求。 基础环埋在混凝土内,是转轮室的组成部分,早机组安装和检修拆卸转轮时,用来支撑水轮机转轮。混流式转轮上叶片(24),呈空间扭曲状,断面为流线型,是直接将谁能转换为机械能的最主要部件。止漏装置 止漏装置的作用是用来减小转动部分与固定部分之间的漏水损失。止漏装置分为固定部分和转动部分,为防止水流向上和向下漏出,水轮机上一般装有上、下两道止漏环。上止漏环固定部分装在顶盖上,其转动部分装在上冠上,下止漏环的固定部分一般装在底环上,转动部分装在转轮的下环上。目前广泛采用的止漏环结构型式有间隙式,迷宫式,梳齿式和阶梯式四种,止漏环又称迷宫环,作用是阻止水流从转轮上、下间隙处漏出,分转动和固定部分。 水轮机导轴承的作用:一是承受机组在各种工况下运行时由主轴传来

大型发电机结构说图解

大型发电机 一、发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机可分为直流发电机和交流发电机,交流发电机又可分为同步发电机和异步发电机(很少采用) ,还可分为单相发电机与三相发电机。 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 二、发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。图1为同步发电机的工作原理图。发电机转子与汽轮机转子为同轴连接,当蒸汽推动汽轮机高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电源后,便建立了一个磁场,这个磁场有一对主磁极,它随着汽轮机发电机转子旋转。磁通自转子的一个极(N级)出来,经过空气隙、定子铁芯、空气隙,进入转子另一个极(S极)构成回路。 图1 同步发电机工作原理图2 发电机出线的接线发电机转子具有一对磁极,转子旋转一周,定子绕组中感应电动势正好交变一次(假如发电机转子为P对磁极是,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次。这样,发电机转子以每秒50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中心点)连在一起,绕组的首端引出线与用电设备相连,就会有电流流过,如图2所示。 三、发电机的结构 图3 大型发电机基本结构 目前我国热力发电厂的发电机皆采用二极、转速为3000r/m的卧式结构。如图4所示,发电机最基本的组成部件是定子和转子。 图4 300MW汽轮发电机组侧视图 1-发电机主体;2-主励磁机;3-永磁副励磁机;4-气体冷却器;5-励磁机轴承;6-碳刷架隔音罩;7-电机端盖;8-连接汽轮机背靠轮;9-电机接线盒;10-电路互感器;11-引出线;12测温引线盒;13-基座定子由铁芯和定子绕组构成,固定在机壳(座)上,转子由轴承支撑置于定子铁芯中央,

水轮发电机构造

水轮发电机的构造 本课件2012年8月重新编辑(将图片黑底色更换为白色) 水轮机的转速都比较低,特别是立式水轮机,为了能发出50Hz的交流电,水轮发电机采用多对磁极结构,对于每分钟120转的水轮发电机,需要25对磁极。由于过多磁极不易看清结构,本课件介绍一个有12对磁极的水轮机发电机模型。 水轮发电机的转子采用凸极式结构,图1是发电机的磁轭与磁极,磁极安装在磁轭上,磁轭是磁极磁力线的通路,发电机模型有南北相间的24个磁极,每个磁极上都绕有励磁线圈,励磁电源由安装在主轴端头的励磁发电机提供,或由外部的晶闸管励磁系统提供(由集电环向励磁线圈供电)。 图1 水轮发电机转子有多对磁极 磁轭安装在转子支架上,在转子支架中心安有发电机主轴,在主轴的上端头安装有励磁发电机或集电环。见图2。

图2 水轮发电机转子 发电机定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽, 用来嵌放定子线圈,见图3。 图3 水轮发电机定子铁芯 定子线圈嵌放在定子槽内,组成三相绕组,每相绕组由多个线圈组成,按一定规律排列,

见图4。 图4 水轮发电机定子绕组 水轮发电机安装在由混凝土浇筑的机墩上,在机墩上安装机座,机座是定子铁芯的安装基座,也是水轮发电机的外壳,在机座外壳安装有散热装置,降低发电机冷却空气的温度;在机墩上还安装下机架,下机架有推力轴承,用来安装发电机转子,推力轴承可承受转子的重量与振动、冲击等力。见图5。

图5 水轮发电机机墩、机座、下机架 在机座上安装定子铁芯与定子线圈,见图6。 图6 水轮发电机的定子 转子插在定子中间,与定子有很小间隙,转子由下机架的推力轴承支撑,可以自由旋转,见图7。

水轮机类型和工作参数

第一节水轮机的主要类型 自然界有多种能源,其中有很多式可以开发利用的,目前已被利用的能源中主要有热能、水能、风能和核能。其中水能是一种最经济的能源,水能的开发利用已受到越来越多的关注。我国有着丰富的水力资源,对水能的开发利用已受到社会的广泛关注,对水能最重要的开发形式就是兴建各种各样的水电站。水轮机作为将水能转换成旋转机械能的一种水力原动机,是水电站中最重要的组成部分。根据转轮转换水流能量方式的不同,水轮机分成两大类:反击式水轮机和冲击式水轮机。反击式水轮机包括混流式、轴流式、斜流式和贯流式水轮机;冲击式水轮机分为水斗式、斜击式和双击式水轮机。 一、反击式水轮机 反击式水轮机转轮区内的水流在通过转轮叶片流道时,始终是连续充满整个转轮的有压流动,并在转轮空间曲面型叶片的约束下,连续不断地改变流速的大小和方向,从而对转轮叶片产生一个反作用力,驱动转轮旋转。当水流通过水轮机后,其动能和势能大部分被转换成转轮的旋转机械能。 1.混流式水轮机 如图1-1所示,水流从四周沿径向进入转轮,然后近似以轴向流出转轮。混流式水轮机应用水头范围较广,约为20~700m,结构简单,运行稳定且效率高,是现代应用最广泛的一种水轮机。 图1-1 混流式水轮机 1—主轴;2—叶片;3—导叶 2.轴流式水轮机 如图1-2所示,水流在导叶与转轮之间由径向流动转变为轴向流动,而在转轮区内水流保持轴向流动,轴流式水轮机的应用水头约为3~80m。轴流式水轮机在中低水头、大流量水电站中得到了广泛应用。根据其转轮叶片在运行中能否转动,又可分为轴流定桨式和轴流转桨式水轮机两种。轴流定桨式水轮机的转轮叶片是固定不动的,因而结构简单、造价较低,但它在偏离设计工况运行时效率会急剧下降,因此,这种水轮机一般用于水头较低、出力较小以及水头变化幅度较小的水电站。轴流转桨式水轮机的转轮叶片可以根据运行工况的改变而转动,从而扩大了高效率区的范围,提高了运行的稳定性。但是,这种水轮机需要有一个操作叶片转动的机构,因而结构较复杂,造价较高,一般用于水头、出力均有较大变化幅度的大中型水电站。 图1-2 轴流式水轮机 1—导叶;2—叶片;3—轮毂 3.斜流式水轮机 如图1-3所示,水流在转轮区内沿着与主轴成某一角度的方向流动。斜流式水轮机的转轮叶片大多做成可转动的形式,具有较宽的高效率区,适用水头在轴流式与混流式水轮机之间,约为40~200m。它是在50年代初为了提高轴流式水轮机适用水头而在轴流转桨式水轮机基础上改进提出的新机型,其结构形式及性能特征与轴流转桨式水轮机类似,但由于其倾

水轮发电机的构造

水轮发电机的构造 水轮机的转速都比较低,特别是立式水轮机,为了能发出50Hz的交流电,水轮发电机采用多对磁极结构,对于每分钟120转的水轮发电机,需要25对磁极。由于过多磁极不易看清结构,本课件介绍一个有12对磁极的水轮机发电机模型。 水轮发电机的转子采用凸极式结构,图1是发电机的磁轭与磁极,磁极安装在磁轭上,磁轭是磁极磁力线的通路,发电机模型有南北相间的24个磁极,每个磁极上都绕有励磁线圈,励磁电源由安装在主轴端头的励磁发电机提供,或由外部的晶闸管励磁系统提供(由集电环向励磁线圈供电)。 图1--水轮发电机转子有多对磁极 磁轭安装在转子支架上,在转子支架中心安有发电机主轴,在主轴的上端头安装有励磁发电机或集电环。轴下端有连接水轮机的法兰,见图2。 图2--水轮发电机转子

发电机定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽, 用来嵌放定子线圈,见图3。 图3--水轮发电机定子铁芯 定子线圈嵌放在定子槽内,组成三相绕组,每相绕组由多个线圈组成,按一定规律排列,见图4。 图4--水轮发电机定子绕 水轮发电机安装在由混凝土浇筑的机墩上,在机墩上安装机座,机座是定子铁芯的安装基座,也是水轮发电机的外壳,在机座外壳安装有散热装置,降低发电机冷却空气的温度;在机墩上还安装下机架,下机架有推力轴承,用来安装发电机转子,推力轴承可承受转子的重量与振动、冲击等力。见图5。

图5--水轮发电机机墩、机座、下机架在机座上安装定子铁芯与定子线圈,见图6。 图6--水轮发电机的定子

转子插在定子中间,与定子有很小间隙,转子由下机架的推力轴承支撑,可以自由旋转,见图7。 图7--定子与转子安装在机座上 安装上机架,上机架中心安装有导轴承,防止发电机主轴晃动,使它稳定的处于中心位置。 图8--水轮机发电机未盖地板

轴流式水轮机的结构

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1— 1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转 轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保

水轮机知识水轮机的主要类型及适用水头

水轮机的主要类型及适用水头水轮机是将水能转换成旋转机械能的一种水力原动机。根据转轮转换水流能量方式的不同,水轮机分成两大类:反击式水轮机和冲击式水轮机。反击式水轮机包括混流式、轴流式、斜流式和贯流式水轮机;冲击式水轮机分为水斗式、斜击式和双击式水轮机。 一、反击式水轮机 反击式水轮机转轮区内的水流在通过转轮叶片流道时,始终是连续充满整个转轮的有压流动,并在转轮空间曲面型叶片的约束下,连续不断地改变流速的大小和方向,从而对转轮叶片产生一个反作用力,驱动转轮旋转。当水流通过水轮机后,其动能和势能大部分被转换成转轮的旋转机械能。 1.混流式水轮机 如图1-4所示,水流从四周沿径向进入转轮,然后近似以轴向流出转轮。混流式水轮机应用水头范围较广,约为20~700m,结构简单,运行稳定且效率高,是应用最广泛的一种水轮机。 图1-4 混流式水轮机 1—主轴;2—叶片;3—导叶 2.轴流式水轮机 如图1-5所示,水流在导叶与转轮之间由径向流动转变为轴向流动,而在转轮区内水流保持轴向流动,轴流式水轮机的应用水头约为3~80m。轴流式水轮机在中低水头、大流量水电站中得到了广泛应用。根据其转轮叶片在运行中能否转动,又可分为轴流定桨式和轴流转桨式水轮机两种。轴流定桨式水轮机的转轮叶片是固定不动的,因而结构简单、造价较低,但它在偏离设计工况运行时效率会

急剧下降,因此,这种水轮机一般用于水头较低、出力较小以及水头变化幅度较小的水电站。轴流转桨式水轮机的转轮叶片可以根据运行工况的改变而转动,从而扩大了高效率区的范围,提高了运行的稳定性。但是,这种水轮机需要有一个操作叶片转动的机构,因而结构较复杂,造价较高,一般用于水头、出力均有较大变化幅度的大中型水电站。 图1-5 轴流式水轮机 1—导叶;2—叶片;3—轮毂 3.斜流式水轮机 如图1-6所示,水流在转轮区内沿着与主轴成某一角度的方向流动。斜流式水轮机的转轮叶片大多做成可转动的形式。因此,斜流式水轮机具有较宽的高效率区,适用水头在轴流式与混流式水轮机之间,约为40~200m。它是在50年代初为了提高轴流式水轮机适用水头而在轴流转桨式水轮机基础上改进提出的新机型,其结构形式及性能特征与轴流转桨式水轮机类似,但由于其倾斜桨叶操作机构的结构特别复杂,加工工艺要求和造价均较高,所以一般只在大中型水电站中使用,目前这种水轮机应用还不普遍。 图1-6 斜流式水轮机 1—蜗壳;2—导叶;3—转轮叶片;4—尾水管

轴流式水轮机基本结构

轴流式水轮机基本结构 轴流式水轮机与混流式水轮一 样属于反击式水轮机,二者结构上 最明显的差别是转轮,其次是导叶 高度。根据转轮叶片在运行中能否 调节,轴流式水轮机又分为轴流定 桨式和轴流转桨式两种型式。轴流 式水轮机用于开发较低水头 (3m~55m),较大流量的水能资源。 它的比转速大于混流式水轮机,属 于高比转速水轮机。在低水头条件 下,轴流式水轮机与混流式水轮机 相比较具有较明显的优点,当它们 使用水头和出力相同时,轴流式水 轮机由于过流能力大(图5-13), 可以采用较小的转轮直径和较高的 转速,从而缩小了机组尺寸,降低了 投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的功率。但在相对高水头条件下,轴流式水轮机除了空化系数较大,厂房要有较大开挖量外,飞逸转速和轴向水推力较混流式水轮机高。 轴流转桨式水轮机,由于桨叶和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,是一种值得广泛使用的优良机型。 限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量和单位转速都比较大,转轮中水流的相对流速比相同直径 的混流式转轮中的高,所以它具有较大的空化系数。在相同水头下,轴流式水轮机由于桨叶数少,桨叶单位面积上所承受的压差较混流式叶片的大,桨叶正背面的平均压差较混流式的大,所以它的空化性能较混流式叶片的差。因此,在同样水头条件下,轴流式水轮机比混 流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机桨叶数较少(3~8片),桨叶呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加桨叶数和桨叶的厚度,为了能够方便地布置下桨叶和转动机构,转 轮的轮毂比,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单 位流量下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了轴流式水轮机应用水头的提高。 但是,随着科学技术的发展,通过改进转轮的设计方法,选择更加合理的流道几何参数和桨叶的型线,使得桨叶背面的压力分布更加均匀,降低桨叶正面和背面的平均压差,从而达到

水轮机分类和结构(水电站培训资料)

水轮机分类和结构 一、水轮机分类 1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击式利用水流的压能和动能,冲击式利用水流动能。反击式中又分为混流式、轴流式、斜流式和贯流式四种。冲击式中又分为水斗式、斜击式和双击式三种。 2、混流式:水流从四周沿径向进入转轮,近似轴向流出。应用水头范围:30m~700m。特点:结构简单、运行稳定且效率高。 3、轴流式:水流在导叶与转轮之间由径向运动转变为轴向流动。应用水头:3~80m。特点:适用于中低水头,大流量水电站。分类:轴流定桨、轴流转桨 4、冲击式:转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。水头范围:300~1700m。适用于高水头,小流量机组。 5、水轮机主轴布置形式分类 (1)水轮机按主轴的布置形式又可分为卧式和立式两种(也称横轴和立轴)。立式布置得水轮发电机分为悬式和伞式两种。 (2)悬式发电机的推力轴承位于发电机转子上部的上机架上或上机架中。伞式发电机的推力轴承位于转子下部的下机架中,或用支架支承在水轮机顶盖上。伞式发电机又分普通伞式(其上、下导轴承分别位于上、下机架中),半伞式(只用上导轴承,它布置在上机架

中,无下导轴承;我厂机组为此类型)和全伞式(只有下导轴承,它布置在下机架中,无上导轴承)。 二、水轮机主要基本参数 1、工作水头H是指水轮机进、出口断面处单位重量水体的能量差,单位是米(m),典型工作水头有以下: (1)最大水头(Hmax):水轮机运行范围内允许出现的最大净水头。(2)最小水头(Hmin):水轮机运行范围内允许出现的最小净水头。(3)设计水头(H设):水轮发电机组发出额定功率时的最小水头。 2、流量Q是指单位时间内,通过水轮机某一既定过流断面的水量,单位是立方米/秒。 3、出力N是指水流在单位时间内所做的功(功率),其大小与水轮机的水头,流量有关,单位为千瓦。计算公式:N=9.81QHn 4、效率是指水轮机总效率,是水轮机输入功率与输出功率之比,其值总是小于1,因为水轮机在工作过程中不可避免地要产生一些能量损失,主要包括: (1)水力损失:即水流经过蜗壳、导水机构、转轮、尾水管的水头损失。 (2)机械损失:即水轮机转动部分的摩擦损失。如转轮与水流之间、轴与轴承之间,止漏装置之间的摩擦损失。 (3)容积损失:转轮与固定部件因漏水而造成的损失。 5、转速是指水轮机转轮在单位时间内的旋转周数,以n 表示,单位为转/分。

轴流式水轮机的结构

轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1—1— 1—转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶

图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了混流式水轮机应用水头的提高。但随着科学技术的发展,相信轴流式水轮机的应用水头会进一步提高。 二、转轮体

水轮机结构与原理

水轮机是把水流的能量转换为旋转机械能的动力机械,它属于流体机械中的透平机械。 早在公元前100年前后,中国就出现了水轮机的雏形——水轮,用于提灌和驱动粮食加工器械。现代水轮机则大多数安装在水电站内,用来驱动发电机发电。在水电站中,上游水库中的水经引水管引向水轮机,推动水轮机转轮旋转,带动发电机发电。作完功的水则通过尾水管道排向下游。水头越高、流量越大,水轮机的输出功率也就越大。 水轮机按工作原理可分为冲击式水轮机和反击式水轮机两大类。冲击式水轮机的转轮受到水流的冲击而旋转,工作过程中水流的压力不变,主要是动能的转换;反击式水轮机的转轮在水中受到水流的反作用力而旋转,工作过程中水流的压力能和动能均有改变,但主要是压力能的转换。 冲击式水轮机按水流的流向可分为切击式(又称水斗式)和斜击式两类。斜击式水轮机的结构与水斗式水轮机基本相同,只是射流方向有一个倾角,只用于小型机组。 早期的冲击式水轮机的水流在冲击叶片时,动能损失很大,效率不高。1889年,美国工程师佩尔顿发明了水斗式水轮机,它

有流线型的收缩喷嘴,能把水流能量高效率地转变为高速射流的动能。 理论分析证明,当水斗节圆处的圆周速度约为射流速度的一半时,效率最高。这种水轮机在负荷发生变化时,转轮的进水速度方向不变,加之这类水轮机都用于高水头电站,水头变化相对较小,速度变化不大,因而效率受负荷变化的影响较小,效率曲线比较平缓,最高效率超过91%。 20世纪80年代初,世界上单机功率最大的水斗式水轮机装于挪威的悉·西马电站,其单机容量为315兆瓦,水头885米,转速为300转/分,于1980年投入运行。水头最高的水斗式水轮机装于奥地利的赖瑟克山电站,其单机功率为22.8兆瓦,转速750转/分,水头达1763.5米,1959年投入运行。 反击式水轮机可分为混流式、轴流式、斜流式和贯流式。在混流式水轮机中,水流径向进入导水机构,轴向流出转轮;在轴流式水轮机中,水流径向进入导叶,轴向进入和流出转轮;在斜流式水轮机中,水流径向进入导叶而以倾斜于主轴某一角度的方向流进转轮,或以倾斜于主轴的方向流进导叶和转轮;在贯流式水轮机中,水流沿轴向流进导叶和转轮。

相关主题
文本预览
相关文档 最新文档