当前位置:文档之家› 配电变压器及配电线路设备防雷保护方式分析

配电变压器及配电线路设备防雷保护方式分析

配电变压器及配电线路设备防雷保护方式分析
配电变压器及配电线路设备防雷保护方式分析

配电变压器及配电线路设备防雷保护方式分析

发表时间:2019-07-05T12:48:21.180Z 来源:《电力设备》2019年第4期作者:韩荣

[导读] 摘要:经济的大力发展在提升我国国际地位的同时也方便了人们的日常生活,电力设备也不断的更新并且其使用范围也更加广泛在此背景下,电力系统的完善就具有了十分重要的意义但由于自然状况的不可改变性在遇到雷雨天气时,很多电力设备、配电线路等都容易受到雷雨的袭击,产生电力系统故障甚至电力安全事故所以加强配电系统及配电线路的安全性,提高其应对雷雨等自然破坏的抵抗性,这都需要从配电线路的防雷保护方式入手。

(国网宁夏电力有限公司吴忠供电公司宁夏吴忠 751100)

摘要:经济的大力发展在提升我国国际地位的同时也方便了人们的日常生活,电力设备也不断的更新并且其使用范围也更加广泛在此背景下,电力系统的完善就具有了十分重要的意义但由于自然状况的不可改变性在遇到雷雨天气时,很多电力设备、配电线路等都容易受到雷雨的袭击,产生电力系统故障甚至电力安全事故所以加强配电系统及配电线路的安全性,提高其应对雷雨等自然破坏的抵抗性,这都需要从配电线路的防雷保护方式入手。

关键词:配电变压器;线路设备;防雷保护;分析

1导言

雷电在自然界中十分常见,具有较大的随意性,可对电力配网系统造成严重危害。在实际情况中,很难对其进行有效预控。根据雷电的发生规律,配电网防雷措施有多种形式。通过对电网等级、负荷状况、系统正常运行、雷电出现频率等因素的研究,结合地形地貌、土壤电阻率等实际条件,选取可行性、安全性、经济性突出的防雷保护措施。

2开关防雷保护措施

配电变压器高压侧柱上和负荷开关,应设置相应的避雷保护装置,根据实际情况也可使用空气间隙。断路频率较大的带电开关(含隔离开关、柱上开关与负荷开关)需要在带电侧设置避雷装置,也可使用空气保护间隙,防雷保护装置的接地线需要与变压器金属外壳进行连接,并保证接地电阻阻值在10Ω以内,这主要是出于断路频率较大的带电开关在出现落雷时,由于受到雷电电流反作用的影响,使得电压增加一倍,容易造成闪络击穿方面的考虑,这样的保护措施可以有效防止此类事故的发生。

3配电线路防雷保护措施

对于35kV之内的配电线路,由于线路绝缘相对较弱,所以,设置避雷线的实际效果并不明显,加之线路中多呈现网状形式供电,这在一定程度上可以起到保护的作用,因此,无需在线路全线设置避雷线。针对线路进线侧安全,可在进线侧适当位置安装避雷线,以防万一。在架空线中,其绝缘一般只是针式绝缘子,相比之下更为脆弱,若安装避雷线,非但不会起到有效的保护效果,甚至还会造成反击。对于35kV以上的配电线路,常用的防雷措施为运用钢筋混凝土杆直接接地,或者是中性点非接地两种方法。除此之外,还需考虑自动重合闸,确保实际成功率保持在50%~80%之内。在配电线路中,切实强化绝缘有利于防雷效果的实现,所以,在一些无法满足安全供电需求的条件下,可根据当地实际情况运用等级较高的绝缘子。在基础条件允许的前提下,采用瓷横担是十分有效的提高绝缘方法。在木材产业较为发达的地区,也可以运用木质横担,借助木材本身的抗冲击能力来有效强化绝缘。配电线路的运行经验表明,运用消弧线圈可熄灭所有单相接地电弧。对于110kV的铁塔配电线路而言,由于其绝缘十分脆弱,因此,单一使用避雷线并不能取得显著效果,应在防雷系统中加入消弧线圈。

4配电变压器防雷保护措施

4.1配电变压器高压侧防雷措施

在配电变压器的高压侧(3-10kV)应安装金属氧化物避雷装置或者是阀型避雷装置。特殊情况中,还可使用两相阀型避雷装置,保护方式为一相间隙或者是两相间隙。阀型避雷装置可由管型取代。为避免残压对变压器的绝缘性造成影响,保护装置应可能的贴近变压器,保护装置接线。为有效防止雷电电流通过电阻形成压降和避雷装置残压的叠加现象出现在绝缘体上,需使避雷装置与变压器的外壳一同接地,保证存在于高压侧上的残压只来源于阀型避雷装置。然而,在此时接地体与接地引下线中潜在的压降,有可能会使配电变压器外壳出现电位升高的情况,进而引发逆放电。因此,在接线的过程中,需要确保中性点与变压器外壳处于同一平面。这样一来,即使低压侧的电位升高,二者之间也不会出现闪络放电现象。但这种接线方式也存在一定不足,比如,高压侧当中的雷电电流会被传送至低压侧,对外端用户的正常用电造成影响,甚至还会出现安全事故,面对这样的实际问题,可切实强化用电防雷加以弥补。

4.2配电变压器低压侧防雷措施

配电变压器高压侧被损害有很大一部分是低压侧造成的,具体原因为:若变压器的3-10kV侧发生落雷,相应的阀型避雷装置立即启动,会在接地电阻中生成压降,记为I=5kA和R=7Ω,代入U=IR计算可得此时的压降数值为35kV。在此时,几乎所有压降都作用于低压绕组中。由于受到电磁感应作用,高压绕组中将产生较大的电压,电压的数值符合变压比特性。比如,对于10/0.38kV的配电变压器而言,其变压比数值26,通过计算可得该变压器的瞬时冲击电压值可达910kV。由于变压器高压侧的绕组出线端实际电位由避雷装置固定,所以,电位沿绕组均匀分布,中性点区域中的电位达到峰值,可直接击穿绝缘。另外,此时的匝间电压也较大,同样具有击穿的危险。若配电变压器低压侧发生落雷,所产生的冲击电压会按照变压比作用于高压侧中。与高压侧相比,低压侧绝缘裕度往往较大,因此,有可能会使高压绝缘击穿。由此可见,无论落雷发生在哪一侧,都存在绝缘击穿的可能。以此有效限制低压绕组中的高电压,进而起到保护变压器的作用。对于35/0.4k型变压器,高压侧与低压侧都应设置避雷装置。对于低压侧中性点未进行接地保护的变压器,需在中性点和变压器外壳之间设置一个保险器件,可以是小型的空气间隙。为避免避雷装置残压对配电变压器造成损害,无论高压侧还是低压侧上的避雷装置接地点,都需与变压器外壳保持尽可能短的距离。

5保护配电线路设备的有效措施

5.1线路杆塔与配电设备接地装置防雷的途径

当遇到雷雨天气,接地装置的保护作用就得到充分突显,同样也有很多事故都是受接地装置不合理所引发。对原因进行分析可以发现,在接地装置电压接收的过程中,受接地电阻影响会发生事故。要想有效地规避这种类型事故的发生,最关键的就是将接地装置电阻的数值有效降低。在此过程中,对降阻剂进行运用来减小电阻值,也可以在计算的方式下保证接地设备装置处于安全范围之内,使得电阻与电压都能够在安全范围运行。对于接地装置使用环境来说,接地装置很容易受腐蚀。由于我国地域辽阔,地域的类型也十分多样。而与水

低压配电线路的防雷技术(一)

低压配电线路的防雷技术(一) 为了防止雷电过电压在电气设备的端子之间产生火花放电,文章提出了降低雷电过电压的措施,以及能限制和断开续电流等措施。 1、电力线路发生雷电过电压的频率 在非常广地区的低压配电网络上发生雷电过电压受到该地区的地形、气象条件雷雨日数、雷云的移动路径、雷击电流峰值的颁高低压配电线路的架设密度和对地雷击密度等的影响。在这些因素中,对在低压配电线路上发生雷电过电压峰值的频率颁发问的清楚统计是重要的。 根据观测结果,计算出低压配电线路上发生的概率值。在研究耐雷设计中,要有最基本的雷电过电压的频率分布曲线。在这项观测中,从 2kv以上的雷电过电压中,担心在低压配电设备的端子板或者设备内部会发生火花放电的雷电过电压假定为10kv限值,在超过10kv以上所观测到的累计频率为10%左右,而在5kv以下所观测到的累计频率为70%左右。 还有另一个观测结果,在一个非常狭窄的面积范围内,在同样的低压配电线路上装了电涌计数器进行了187次累计观测。将这两次观测结果的雷电过电压累积频率颁进行比较,它们各自的频率分布双对数曲线都近似于一条直线。但是两条直线不是完全一致的。这是因为在电涌计数器上设定的雷电过电压的下限值有区别。 2、雷电过电压的情况分析 从配电线路上一直彩的防雷措施进行的研究来看,已考虑到在低压配

电线路上发生雷电过电压的因素有:①直击雷(直接雷击到低压配电线路上);②感应雷(雷击到低压配电线路附近的地区时,对配电线路感应生成的感应雷);③高压侧的雷电过电压是侵入低压侧的雷电过电压的原因,由于避雷器动作使大地(接地)电位上升,从柱上变压器的高压侧过渡到低压侧的雷电过电压。 实际上,除了在低压配电线路上发生雷电过电压之外,还有雷击电流直接侵入配电线路附近的建筑物上设置的避雷针,使得大地电位上升影响到配电设备的接地系统的场合应考虑这些是产生雷电过电压的合成原因。 2.1从高压侧过渡到低压侧的雷电过电压压配电线路上发生雷电过电压各种情况进行一般的研究,将高压配电线路上的雷电过电压侵入低压配电线路上发生雷电过电压所产生的各种情况,进行一些试验性的研究。这些研究中,应在实际规模的高压配电线路上施加了雷电脉冲电压。 由于配电用避雷器的放电使大地电位上升,通过柱上变压器的过渡电压,使低压配电线路上发生雷电过电压。 2.2感应雷过电压作为对象,对有关低压配电线路上发生雷电过电压的情况的试验进行研究。为了模拟在近处有雷击时的配电线路和雷电通道,架设一条按现行配电线的1/4比例大小的模型线路,还从气球上吊下电线。这根电线有脉冲电流渡过,这时,测定在配电线路的导体上感应的电压波形。

浅析输配电线路的雷击故障与防雷措施

浅析输配电线路的雷击故障与防雷措施 发表时间:2018-06-25T16:32:48.163Z 来源:《电力设备》2018年第4期作者:郑钊源 [导读] 摘要:输电线路是电网的基本组成部分,常面临各种不同地理环境和气候环境的影响,当不利条件及组合足以导致线路故障时,就会影响线路的安全运行,严重时甚至会形成大面积停电事故。 (广东电网有限责任公司湛江徐闻供电局广东湛江 524000) 摘要:输电线路是电网的基本组成部分,常面临各种不同地理环境和气候环境的影响,当不利条件及组合足以导致线路故障时,就会影响线路的安全运行,严重时甚至会形成大面积停电事故。本文主要对输变电线路雷击故障与防雷措施进行研究分析。 关键词:输配电线路;雷击故障;防雷措施 1.雷电对于输电线路的危害 从输电线路以及电网的安全考虑,雷电的危害主要体现在两个方面:一是雷电放在输电线路上,会引起很高的过电压,导致继电保护动作跳闸,切断运行线路造成巨大损失;考验周围设备的绝缘水平和耐受能力,对人员、设备造成威胁。二是雷电带来巨大电流施加在输电线路上,导致雷电击中点炸毁、燃烧使导线损毁或熔断,巨大电流产生的强大电动力还会造成杆塔等电力设备的机械损伤。 雷电导致的灾害往往不能通过电力系统自身的修复能力自动恢复,造成设备损坏更是需要一定时间和力量进行检修处理。雷电发生集中在春季和夏季,正是生产集中的时期,这一时期的电力中断将会造成极大的经济损失。雷电天气发生在夜晚、环境恶劣地区的可能性较大,更增大了检修的难度。此外,运行中的输电线路比不带电的输电线路遭受雷击的可能性更大。我国每年都有大量因雷电导致停电事故的报道,有效的防雷可以避免这些事故的发生,对于减少经济损失和提高电网安全可靠运行水平具有极其重要的意义。 2.输配电线路遭受雷击的形式 线路遭受雷击的形式主要包括感应雷、直击雷、球形雷。 2.1直击雷 直击雷在发生时候可以让巨大的雷电电流侵入地表,使得被雷击的地方接触的到的各种金属产生很高的对地电压,很容易发生触电事故的发生。同时,由于直接雷击释放出的电流巨大,冲击电压很容易让电力变压器和发电机发生烧毁,也可能造成电线烧毁,或者断裂,因而产生停电,甚至诱发火灾,因此,这种雷电的毁灭性巨大,造成的损失严重。 2.2球形雷 球形雷出现的次数少而不规则,因此取得的资料十分有限,其发生的原理现在还没有形成统一的观点。球形雷能从门、窗、烟囱等通道侵入室内,极其危险。 2.3雷电感应,也称感应雷 雷电感应分为静电感应和电磁感应两种。巨大雷电流在周围空间产生迅速变化的强大磁场;这种磁场能在附近的金属导体上感应出很高的电压,造成对人体或者设备的二次放电,从而损坏电气设备。 3.输配电线路防雷措施分析 3.1建立健全科学合理的整体防雷系统 从整个输配电线路系统而言,要做好防雷措施,首先要从整体上做好防雷规划,从内到外,做到防雷措施的全面覆盖。整体而言,外部可以可以安装避雷针,接闪器等,避免雷电直接打击输配电线路或者是相关的线缆配电箱等基础设施,引起火灾或者事故。同时,内部要做好电磁屏蔽、等电位连接、共用接地系统和浪涌吸收保护器等一些子输配电系统,通过它们可以将引人建筑物内的浪涌电压和浪涌电流泻放到大地,并将其钳位在一定的电压范围内,以完善地保护电气设备。从整体上做好防雷规划,内外覆盖,这是采取具体防雷措施之前的基础性工作。 3.2减小保护角 随着线路保护角的逐渐减小,线路的绕击率呈下降趋势,减小保护角是降低绕击跳闸率比较有效的方法。但是对于已建线路,改变线路保护角可行性较差,并且对于山区地面倾角较大的杆塔,由于受塔头设计的限制保护角不可能大幅度降低,应采取其它有效的绕击防护措施,减小保护角技术经济性不高。 3.3安装塔头避雷针 通过在塔头安装可控放电避雷针,可有效提高杆塔的引雷能力,增强杆塔对其附近导线的雷电屏蔽能力,从而降低雷电绕击导线的概率,减小绕击跳闸率,同时,由于能发生绕击的雷电流一般较小,接地电阻值控制在允许范围内时被吸引至杆塔时也不会产生反击闪络,不增加反击跳闸率。合理的安装方式和安装方法对可控放电避雷针的防护效果非常关键,同时一定要控制好杆塔接地电阻,对不合格杆塔应进行降阻改造,以确保可控放电避雷针发挥更好的防护效果。 3.4架设耦合地线及耦合地埋线 架设耦合地线虽不能减少绕击率,但能在雷击杆塔时起分流作用和耦合作用,降低杆塔绝缘子上所承受的电压,提高线路的耐雷水平。在 220kV 双避雷线线路上架设耦合地线后,耦合系数由0.275增大到0.364,分流作用也明显增大;当杆塔冲击接地电阻为16―100Ω时,耦合地线分流为8%―21.5%,华东电力试验研究所进行的试验测量并提出耦合地线能分流12%― 22%。在接地电阻较大的山区,杆塔所处的地质条件差,电阻率较高(如达到2000 Ω.m),降低接地电阻非常困难时采用在架空线下加装耦合地线,能起到较好的分流和耦合作用,降低雷击跳闸的概率。与耦合地线雷同的耦合地埋线也可以降低接地电阻及起一部分架空地线的作用。国外的运行经验证明:耦合地埋线是降低高土壤电 阻率地区杆塔接地电阻的有效措施之一,曾在一个 20 基杆塔的易击段埋设耦合地线后,10年中只发生一次雷击故障,国外文献介绍可降低跳闸率40%,显著提高线路耐雷水平。 3.5采用差绝缘或不平衡绝缘方式 这种方式一直以来都存在争议,且它也受到杆塔尺寸的限制。差绝缘方式适宜于中性点不接地或经消弧线圈接地的中低压系统,且导线为三角形排列的情况。采用差绝缘方式的同一基杆塔上三相绝缘有差异,下面两相较之最上面一相各增加一片绝缘子,当雷击杆塔或上导线时,由于上导线绝缘相对较“弱”而先击穿,雷电流经杆塔入地,避免了两相闪络。在同杆双回的线路中也有采用不平衡绝缘方式以达

变压器如何防雷

变压器如何防雷 雷击损坏配变过去单纯认为是雷电波进入高压绕组引起,实际上这种认识带有程度的片面性。理论分析和 实际试验表明:配变雷害事故的主要原因是由于配电系统遭受雷害时的“正反变换”的过电压引起,而反变换过 电压损坏事故尤甚。现就正反变换过电压发展过程进行分析,讨论配变的防雷保护。 1、正反变换过电压 1.1 正变换过电压当低压侧线路遭受雷击时,雷击电流侵入低压绕组经中性点接地装置入地,接地电流Ijd 在接地电阻Rjd 上产生压降。这个压降使得低压侧中性点电位急剧升高。它叠加在低压绕组出现过电压,危及低压绕组。同时,这个电压通过高低压绕组的电磁感应按变比升高至高压侧,与高压绕组的相电压叠加,致使高压绕组出现危险的过电压。这种由于低压绕组遭受雷击过电压,通过电磁感应变换到高压侧,引起高压绕组过电压的现象叫“正变换”过电压。 1.2 反变换过电压当高压侧线路遭受雷击时,雷电流通过高压侧避雷器放电入地,接地电流Ijd 在接地电阻Rjd 上产生压降。这个压降作用在低压侧中性点上,而低压侧出线此时相当于经电阻接地,因此,电压绝大部分加在低压绕组上了。又经电磁感应,这个压降以变比升高至高压侧,并叠加于高压绕组的相电压上,致使高压绕组出现过电压而导致击穿事故。这种由于高压侧遭受雷击,作用于低压侧,通过电磁感应又变换到高压侧,引起高压绕组过电压的现象叫“反变换过电压”。 2、变压器不同接线对正反变换过电压的影响 2.1Yznil接线。当低压侧线路落雷时,雷电流进入低压侧的两个半绕组”中,大小相等,方向相反,在每 个铁心柱上的磁通正好互相抵消,因而也就不会在高压绕组中产生正变换过电压。在高压侧线路落雷时,实际上由于变压器结构和漏磁等原因引起磁路不对称,因而磁通不可能完全抵消,正反变换过电压仍然存在,但是较小,可认为有较好的防雷作用。 2.2Yyn0 接线

10kV架空配电线路防雷措施

10kV架空配电线路防雷措施 摘要:针对10KV架空配电线路常发生雷击断线事故,从而进行防范措施探讨,以求提高10KV 配电网安全运行水平。目前10KV架空配电线路上,现在都已广泛地应用了绝缘导线。可以说,配电网架空导线的绝缘化,已是一项成熟的技术。 但是,绝缘导线在应用过程中,也出现了一些新的问题。其中,最为突出的问题,是遭受雷击时,容易发生断线事故。据有关资料的统计,南昌经开区2008至2009年两年内,一个30平方公里的供电区域内,雷击断线事故与雷击跳闸事故约为35次,直接损失电量约为30万千瓦时,严重降低了供电可靠性,给社会带来了不良的效果。这两年里雷击断线事故率占76.2%。 以上一些统计资料表明:雷击断线事故,是应用绝缘导线中最突出的一个严重问题,这引起我们的广泛注意,并积极开展对等试验研究工作,并找到许多有效的防范措施。 一、雷击断线与跳闸机理 1电弧放电规律 ①电网雷电过电压闪络,亦即大气压或高于大气压中大电流放电,为电弧放电形式。 ②雷电过电压闪络时,瞬间电弧电流很大、但时间很短。 ③当雷电过电压闪络,特别是在两相或三相(不一定是在同一电杆上)之间闪络而形成金属性短路通道,引起数千安培工频续流,电弧能量将骤增。 2 架空绝缘导线断线 当雷击架空绝缘线路产生巨大雷电过电压,当它超过导线绝缘层的耐压水平时(一般大于139KV)就会沿导线寻找电场最薄弱点将导线的绝缘层击穿(通常在绝缘子两端30公分范围内),形成针孔大小的击穿点,然后对绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,工频电弧固定在一点燃烧后熔断导线。 3 架空裸导线的断线率低但跳闸事故频繁 当雷击架空裸导线产生巨大雷电过电压时,就会沿导线寻找电场最薄弱点的绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,引发线路跳闸事故。由于接续的工频短路电流电弧在电磁力的作用下沿着导线向背离电源方向移动,一般不会烧断导线。

配电变压器的保护措施及其注意事项(2021新版)

配电变压器的保护措施及其注意事项(2021新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0166

配电变压器的保护措施及其注意事项 (2021新版) 配电变压器是配电系统中根据电磁感应定律变换交流电压和电流而传输交流电能的一种静止电器。通常安装在电线杆、台架或配电所中,一般将6~10千伏电压降至400伏左右输入用户。变压器运行是否正常直接影响用户生产和生活用电,并关系到用电设备的安全。为了保证用户用上优质、安全电,必须保证配变运行正常。因此我们有必要从保护配置技术角度和日常运行管理两大方面来谈谈配电变压器的保护措施及其注意事项: 一、保护配置技术方面 1、装设避雷器保护,防止雷击过电压:配变的防雷保护,采用装设无间隙金属氧化物避雷器作为过电压保护,以防止由高低压线路侵入的高压雷电波所引起的变压器内部绝缘击穿,造成短路,杜

绝发生雷击破坏事故。采用避雷器保护配变时,一是要通过正常渠道采购合格产品,安装投运前经过严格的试验达到运行要求再投运;二是对运行中的设备定期进行预防性试验,对于泄漏电流值超过标准值的不合格产品及时加以更换;三是定期进行变压器接地电阻检测,对100KVA及以上的配电变压器要求接地电阻必须在4Ω以内,对100KVA以下的配电变压器,要求接地电阻必须在10Ω以内。如果测试值不在规定范围内,应采取延伸接地线,增加接地体及物理、化学等措施使其达到规定值,每年的4月份和7月份进行两次接地电阻的复测,防止焊接点脱焊、环境及其它因素导致接地电阻超标。如果变压器接地电阻超标,雷击时雷电流不能流入大地,反而通过接地线将雷电压加在配电变压器低压侧再反向升压为高电压,将配变烧毁;四是安装位置选择应适当,高压避雷器安装在靠配变高压套管最近的引线处,尽量减小雷电直接侵入配变的机会,低压避雷器装在靠配变最近的低压套管处,以保证雷电波侵入配变前的正确动作,按电气设备安装规范标准要求安装,防止盲目安装而失去保护的意义。

低压配电线路的防雷技术详细版

文件编号:GD/FS-3076 (解决方案范本系列) 低压配电线路的防雷技术 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

低压配电线路的防雷技术详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 为了防止雷电过电压在电气设备的端子之间产生火花放电,文章提出了降低雷电过电压的措施,以及能限制和断开续电流等措施。 1、电力线路发生雷电过电压的频率 在非常广地区的低压配电网络上发生雷电过电压受到该地区的地形、气象条件雷雨日数、雷云的移动路径、雷击电流峰值的颁高低压配电线路的架设密度和对地雷击密度等的影响。在这些因素中,对在低压配电线路上发生雷电过电压峰值的频率颁发问的清楚统计是重要的。 根据观测结果,计算出低压配电线路上发生的概率值。在研究耐雷设计中,要有最基本的雷电过电压

的频率分布曲线。在这项观测中,从2kv以上的雷电过电压中,担心在低压配电设备的端子板或者设备内部会发生火花放电的雷电过电压假定为10kv限值,在超过10kv以上所观测到的累计频率为10%左右,而在5kv以下所观测到的累计频率为70%左右。 还有另一个观测结果,在一个非常狭窄的面积范围内,在同样的低压配电线路上装了电涌计数器进行了187次累计观测。将这两次观测结果的雷电过电压累积频率颁进行比较,它们各自的频率分布双对数曲线都近似于一条直线。但是两条直线不是完全一致的。这是因为在电涌计数器上设定的雷电过电压的下限值有区别。 2、雷电过电压的情况分析 从配电线路上一直彩的防雷措施进行的研究来

变压器防雷技术

编号:AQ-CS-03756 ( 安全常识) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 变压器防雷技术 Lightning protection technology of transformer

变压器防雷技术 备注:安全是指没有受到威胁、没有危险、危害、损失。人类的整体与生存环境资源的和谐相处,互相不伤害,不存在危险、危害的隐患, 是免除了不可接受的损害风险的状态,安全是在人类生产过程中,将系统的运行状态对人类的生命、财产、环境可能产生的损害控制在人类能接受水平以下的状态。 雷击损坏配变过去单纯认为是雷电波进入高压绕组引起,实际上这种认识带有程度的片面性。理论分析和实际试验表明:配变雷害事故的主要原因是由于配电系统遭受雷害时的“正反变换”的过电压引起,而反变换过电压损坏事故尤甚。现就正反变换过电压发展过程进行分析,讨论配变的防雷保护。 1正反变换过电压 1.1正变换过电压当低压侧线路遭受雷击时,雷击电流侵入低压绕组经中性点接地装置入地,接地电流Ijd在接地电阻Rjd上产生压降。这个压降使得低压侧中性点电位急剧升高。它叠加在低压绕组出现过电压,危及低压绕组。同时,这个电压通过高低压绕组的电磁感应按变比升高至高压侧,与高压绕组的相电压叠加,致使高压绕组出现危险的过电压。这种由于低压绕组遭受雷击过电压,通过电磁感应变换到高压侧,引起高压绕组过电压的现象叫“正变换”

过电压。 1.2反变换过电压当高压侧线路遭受雷击时,雷电流通过高压侧避雷器放电入地,接地电流Ijd在接地电阻Rjd上产生压降。这个压降作用在低压侧中性点上,而低压侧出线此时相当于经电阻接地,因此,电压绝大部分加在低压绕组上了。又经电磁感应,这个压降以变比升高至高压侧,并叠加于高压绕组的相电压上,致使高压绕组出现过电压而导致击穿事故。这种由于高压侧遭受雷击,作用于低压侧,通过电磁感应又变换到高压侧,引起高压绕组过电压的现象叫“反变换过电压”。 2变压器不同接线对正反变换过电压的影响 2.1Yzn11接线。当低压侧线路落雷时,雷电流进入低压侧的两个“半绕组”中,大小相等,方向相反,在每个铁心柱上的磁通正好互相抵消,因而也就不会在高压绕组中产生正变换过电压。在高压侧线路落雷时,实际上由于变压器结构和漏磁等原因引起磁路不对称,因而磁通不可能完全抵消,正反变换过电压仍然存在,但是较小,可认为有较好的防雷作用。

变压器防雷保护措施

变压器防雷保护措施 摘要防止雷电波对配电变压器的侵害,保证配电变压器安全运行,有必要对配电变压器防雷保护措施逐一分析,从而有选择性的采取适当的防雷保护措施。本文介绍了配电变压器防雷保护措施的应用,可以提高配电变压器防雷水平的效果。 关键词变压器;防雷措施;分析 1 变压器的防雷保护出现的问题 1)避雷器接地电阻偏高。由于避雷器接地电阻偏高,所以当雷电流流经接地电阻时,导致变压器外壳电压增高,当其超过一定数量时就会引起变压器绝缘击穿损坏。 2)避雷器损坏后未能及时检修。造成配电变压器实际没有防雷保护。因而当雷电波再次侵入时易导致配电变压器损坏。 3)避雷器引下线截面不符合规定。若采用截面小于规定的铝绞线,雷击时接地引下线被烧断,使雷电流不能泄入大地。有的接地接不牢固,避雷器动作时将连接处烧坏,也不能起泄放雷电流的作用。 4)避雷器引下线过长。对单杆配电变压器台来说,其避雷器接地端离变压器外壳和接地点一般有7m左右长的引下线,电感可达11.7uH~16.7uH,在某一陡度雷电流通过时,接地引下线的压降与避雷器的残压迭加在一起作用在变压器的绝缘上,有可能破坏变压器的 绝缘。 2 配电变压器防雷保护措施 1)在变压器高压侧装设避雷器。根据SDJ7-79《电力设备过电压保护设计技术规程》规定:“变压器的高压侧一般应采用避雷器保护,避雷器的接地线和变压器低压侧的中性点以及变压器的金属外壳三点应连接在一起接地。”这也是部颁DL/T620-1997《交流电气装置的过电压保护和绝缘配合》推荐的防雷措施。 然而,大量研究和运行经验均表明,仅在高压侧采用避雷器保护时,在雷电波作用下仍有损坏现象。一般地区年损坏率为1% ,在多雷区可达5%左右,个别100雷暴日的雷电活动特殊强烈地区,年损坏率高达50%左右。究其主要原因,乃是雷电波侵入变压器高压侧绕组所引起的正、逆变换过电压造成的。正、逆变换过电压产生的机理如下:①逆变换过电压。即当3kV~10kV侧侵入雷电波,引起避雷器动作时,在接地电阻上流过大量的冲击电流,产生压降,这个压降作用在低压绕组的中性点上,使中性点电位升高,当低压线路比较长时,低压线路

配电线路防雷技术应用及措施探究

配电线路防雷技术应用及措施探究 发表时间:2019-06-03T15:39:09.307Z 来源:《电力设备》2019年第2期作者:王德银 [导读] 摘要:配电线路是电力系统中担任电能“搬运工”的重要组成部分,其运行稳定性和可靠性关系到经济社会生产生活的正常用电。 (广西电网有限责任公司钦州供电局广西壮族自治区钦州市 535000) 摘要:配电线路是电力系统中担任电能“搬运工”的重要组成部分,其运行稳定性和可靠性关系到经济社会生产生活的正常用电。据统计,配电线路由于受雷击引发的故障约占总事故类型的22%。为确保配电线路的正常运行,必须要深入分析故障原因,有针对性地研发防雷技术并采取相应的、科学防雷措施。 关键词:配电线路;防雷技术;措施 一、雷电对配电线路多种影响 绝大部分配电线路直接暴露在自然环境中,极容易受周围环境的影响,线路一旦出现故障,故障定位、分析、处理和恢复供电需要投入较大的人力和物力资源,给供电企业和用电单位带来损失。雷击作为诱发配电线路故障自然因素中的主要因素,其对线路影响是多方面的,必须要对这些影响加以深入研究才能更好地采用针对性强的技术防雷。 (1)冲击电压效应。雷击过程发生时,会释放出巨大的瞬时冲击电压,尽管这种强电信号在传播过程中会有损耗,但这样数量级的电压足以损坏配电线路中的仪器设备,导致电路短路、引燃可燃物,给电力系统带来不可估量的损失。 (2)电磁感应效应。迅速变化的雷击电场会在配电线周围产生强交变磁场,进而在导线中产生巨大的感应电动势和感应电流,如果线路的局部电阻过大就会发生顺电放电现象,成为火灾的诱发因素,也威胁着行人安全。 (3)能量效应。雷击发生时除了伴随有巨大的电流、电压外,还会在极短的时间内释放出大量的热,雷击点的发热量能够达到 500~200MJ,如果不加以控制会引发火灾。 (4)机械力的影响。 (5)对人的影响。雷击导致线路受损后还可能会影响到周围行人和住宅中居民的生命财产安全。 二、配电线路雷击事故机理 (一)雷击后导致建弧率升高 落雷击中配电线路后会电离绝缘子周围空气,击穿下路绝缘对地闪络,导致线路短路;由雷电产生的电流,其冲击闪络时间为微妙级别,变电站开关的动作响应时间约为40ms,所以雷击电流很少诱发线路跳闸。放电现象结束后,冲击闪络转化为工频续流,在满足一定的条件下相间不熄弧、建弧率高,这也是低电压配电线路中引起高雷击跳闸率的主要原因。 (二)绝缘体闪络 雷电产生的巨大电压和电磁感应产生的高电动势会使绝缘部分闪络,二相以上闪络发生时线路中会有短路电流通过,由于发生的太过迅速所以变电站来不及做出断线响应,受此影响的停电范围较大。当闪络发生在绝缘导线中时,工频续流电弧点是固定不动的,电阻丝的熔断时间也会降低,同样也在变电站的故障处理响应时间之外。 (三)架空绝缘导线故障 架空导线绝缘层会阻碍两相(或三相)闪络发生后产生的工频续流,最终导致绝缘层局部过热、断线。而裸导线的应用则由于断路器响应在工频续流熔断导线之前,故障率要比架空导线低。 三、配电线路防雷技术 日本于上世纪六十年代开始研究配电线路防雷方法和技术,研究初期通常采用架空地线、安装避雷器等措施。七十年代开始利用计算机对不同防雷方法做出评估,例如研究了避雷器、架空地线分别对感应电压的抑制效果,同时还研究了不同接地阻抗抑制感应雷电压的效果等。我国大多采用10kV配电线路,而且在低电压配电线路中大多使用架空绝缘导线,所以防雷击研究主要集中在架空绝缘导线的故障研究(如防雷断线等)。 (一)防架空导线受雷断线方法 防止架空绝缘导线在过电压、过电流作用下断线的解决方案分为“开源”和“节流”两大类。 “开源”类方案以疏导闪络后的工频续流电弧为核心,保护配电线路中的绝缘子和架空绝缘导线。首先可以在绝缘导线根处安装防弧线夹,将闪络发生后产生的工频电弧引流到线夹上,使绝缘导线免受电弧的危害。这种在绝缘子和绝缘导线接触部分安装特质金具的方式需要在其受雷击之后及时更换金具,应用场景有限。另外还可安装穿刺型防弧金具或JCF穿刺型防弧接地线夹。此类方案存在的问题有以下几点:①需要破坏绝缘导线中完好的绝缘层,外部灰尘、水汽等会渗入导线,对线路造成电化学腐蚀;②从干弧距离角度分析,放电间隙的距离要小于绝缘子,当线路受雷击产生过电压(过电流)时更易出现闪络。③不能妥善地解决线路受雷击断线问题;④每次受雷击后都需重复施工,劳动强度大。 “节流”类方案以降低雷击闪络概率为主要目标,通过在环形电极外串联间隙(或无间隙)金属氧化物避雷器来提升配电线路的耐高压能力,进而降低建弧率或组织工频起弧,从源头解决导线熔断问题。避雷器与导线间隔相连,干弧距离满足要求,同时由于避雷器的存在将闪络发生的概率降到最低,高等级雷击电流流过导线后其等效电阻发生变化从而截断工频续流。此类方案同样要破坏绝缘导线,而且不利于故障点的定位判断。 (二)雷击定位与故障处理系统 基于GPS和GIS建立高效率、高精准度的雷击定位系统,实时显示落雷时间、位置以及雷击的物理参数(回击次数、回击参数等),另外也可收集雷电产生的电磁信号并基于此分析、计算雷电发生时间和位置等信息。定位雷击后,通过通讯系统构建与故障研判处理系统之间的指令联系,及时处理线路故障。 四、配电线路防雷措施 雷电对配电线路的影响是多元化的,在研究相关技术之前首先要了解清楚其诱发机理,从理论研究出发提高配电线路的抗雷击能力。另一方面,及时对配电线路中出现故障的设备、绝缘导线等更新换代,特别是绝缘子的更换,要以提升线路绝缘子的机械强度和绝缘水平为准则,确保恶劣天气状况下线路的正常工作。以10kV配电线路绝缘子的选用为例,首先要考虑配网线路的地质环境条件,然后根据不同

10kV配电变压器防雷保护措施技术分析

10kV配电变压器防雷保护措施技术分析 摘要:文章首先介绍了雷击对于10kV配电网变压器造成的危害,进而分析了目前10kV配电变压器防雷保护中存在的问题,最后针对防雷保护中存在的问题提出了相应的解决措施。 关键词:10kV;配电变压器;防雷;避雷器;接地电阻中图分类号:TM862 ; ; ; ;文献标识码:A ; ; ; ;文章编号:1009-2374(2014)18-0134-02 1雷击对10kV配电变压器造成的危害 相比于110kV及以上电压等级的主网而言,10kV配电网耐受雷击的能力要弱得多,一旦遭受雷击,10kV配电网更容易受到冲击,也更容易出现故障和事故。一般来说,雷击造成10kV配电变压器损坏有以下两种作用机理: 1.1雷电冲击波直接作用于10kV配电变压器 当雷电冲击波侵入到10kV配电变压器中,避雷器将动作,雷电流将经由接地电阻泄入大地,造成变压器绕组中性点的电压快速攀升。若雷电流是从10kV配变低压侧侵入,由于配变绕组中性点的电压较高,将在低压绕组上生成一个冲击电流,该电流将在配变的高压侧感应出一个很高的感应

电动势,导致中性点的绝缘被击穿,同时还会击穿绕组匝间及层间的绝缘;若雷电流是从10kV配变高压侧侵入,同理,在极短时间内高压侧绕组的中性点电压将快速攀升,进而引起低压侧绕组中性点电压也快速升高,并在低压绕组中生成一个过电压,从而对低压绕组的匝间和层间绝缘造成威胁。 1.2雷电流侵入到10kV配电变压器线圈 运行实践表明,当雷电流沿10kV配电线路传播到10kV 配电变压器的线圈中时,雷电流作用于线圈的瞬间线圈中的电流是不会突变的,此时可以将电路看作短路,因此该时刻流入10kV配变的电流相当于侵入雷电流以及反射电流的叠加值,其幅值近似于初始值的两倍,从而对10kV配变造成破坏。 210kV配电变压器防雷中存在的问题 2.110kV配变高压侧配电线路绝缘水平过高 在很多地区,为了提高10kV配电线路的绝缘水平,降低配电线路的雷击跳闸率,就采用更高绝缘水平的绝缘子,或增加配电线路绝缘子的数量。例如,某条10kV配电线路的绝缘子型号为X-70型,其单片闪络电压为100kV,为了提高绝缘水平,该线路采用2片绝缘子串联的方式,使其绝缘耐压水平升至200kV。但配电线路上10kV配变的主绝缘耐压水平仅为75kV,远远低于配电线路的绝缘耐压水平。这就导致当配电线路遭受雷击时,由于其绝缘水平较高,不

10kV配电架空线路防雷技术要点探讨 刘朝辉

10kV配电架空线路防雷技术要点探讨刘朝辉 发表时间:2018-05-30T15:41:56.493Z 来源:《基层建设》2018年第10期作者:刘朝辉 [导读] 摘要:随着我国社会不断发展与经济步伐的推进,我国的电力行业在这个过程中起到了不可或缺的推动作用。 广东电网有限责任公司梅州供电局 摘要:随着我国社会不断发展与经济步伐的推进,我国的电力行业在这个过程中起到了不可或缺的推动作用。其中,10KV架空线路是我国目前电网结构中主要的传输结构,是实现对不同地区进行电力稳定供应的保障。本文阐述了10kV配电架空线路雷击过电压的特点与形式,并对雷击产生故障的原因和10KV配电架空线路防雷技术要点进行了分析与探讨,以供同仁参考。 关键词:10kV线路;配电架空线路防雷;技术要点 一、前言 10kV配电架空线路是我国目前非常主要的一种传输结构,其能够较为有效的对我国不同地区进行电力方面的供应。而同我国普通的输电线路相比,架空线路具有更好的强度、受力以及绝缘性能,而这也使得其正是成为了我国目前乡镇电网改造工程的一种主要内容。在设计中如何提高防止雷电对10KV架空线路可能产生的故障进行防范,更好的保证电力线路的良好运行,则成为了10kV配电架空线路设计中的重点问题。本文阐述了10kV配电架空线路雷击过电压的特点与形式,并对雷击产生故障的原因和10KV配电架空线路防雷技术要点进行了分析与探讨,以供同仁参考。 二、10KV配电线路雷击过电压的特点及形式 常见的配电线路雷击过电压形式有两种,即:感应雷过电压和直击雷过电压。感应雷过电压是雷云电流击中配电线路周围路面,受电磁感应的作用,电流在导线处产生感应电压;直击雷过电压是雷云击在电力装置后,有较大雷电流经过电力装置,使电力装置产生较强电压。据有关研究表明,因为直击雷过电压致使10KV配电线路发生故障的概率并不大,真正致使线路产生故障的因素是感应雷过电压。雷云击中地面会对周围电力装置产生电磁感应,从而使配电线路产生感应过电压,感应过电压通常都在10K以上,当感应电压高于80KV时,线路工频电压与感应电压总和就会超过绝缘子一半放电电压,导致配电线路出现跳闸。 三、雷击产生故障的原因分析 雷击10kV架空电力线路事故有很多种,有绝缘子击穿或爆裂、断线、配电变压器烧毁等。雷击事故,与雷击线路这一客观原因有较大关系,和设备缺陷也有很大关系。 (1)绝缘子质量不过关。尤其是P-10型、PQ-15型针式绝缘子质量存在缺陷。近年来,笔者所在地区频频发生雷击针式绝缘子爆裂事故,引起10kV线路接地或相间短路故障。 (2)10kV线路防雷措施不完善。很多地区安装保护配电变压器的避雷器已更换为氧化锌避雷器,但一些距离较长的10kV架空电力线路,却没有安装线路型氧化锌避雷器。 (3)导线连接器接触不良。很多地区以前都习惯使用并沟线夹作为10kV线路的连接器,甚至直接缠绕接线。并沟线夹连接或缠绕接线都不是导线的最佳连接方法,因而导致导线接触不良,经受不住雷击电流的强力冲击。 (4)避雷器接地装置不合格。不合格的接地装置接地电阻阻值大于1Ω,使泄流能力降低,雷击电流不能快速流入大地。 四、10KV配电架空线路防雷技术要点 (1)提高线路本身绝缘水平。雷电危害的重要环节在于其能够产生感应雷电,而当感应雷电经过配网线路中的电压时,极易造成绝缘子的闪络状况发生。并且当前我国配网线路环境中,线路走廊的设置数量相对较少,且主要采用同塔多回路技术予以实现。此种技术能够有效减少线路走廊,对于整体成本的控制存在积极意义,但是通常会出现两条线路之间的电气距离不够,因此当雷击发生的时候,极容易出现接地故障,严重的情况下甚至可能多个回路一同跳闸。针对此种情况,在防雷设计时应当切实加强导线的绝缘设计,并且适当增加绝缘子数量,在导线和绝缘子之间设置绝缘皮,通过多种途径共同实现对于配网绝缘性能的提升。同时,在10kV线路上还有高压隔离开关、高压跌落式熔断器这些设备,如果这些开关是用硅胶做绝缘体的,这样防雷水平就比不上用陶瓷做绝缘体的,建议在防雷设计时将线路上所有用硅胶做绝缘体的高压隔离开关、高压跌落式熔断器更换为用陶瓷做绝缘体的高压隔离开关、高压跌落式熔断器。这样也可提高线路防雷能力。 (2)控制10kV配网设备接地电阻。通过降低10kV配网设备接地电阻来实现配网整体对于雷电灾害的抵御能力,在实践过程中证明可行并且有效。对于实际工作而言,具体可以通过水平接地体的设置和降阻剂的采用来达到这一目标。对于水平接地体而言,必须承认水平接地体能够在配网线路中起到有效的降阻作用,但它容易受到腐蚀,且使用寿命相对较短。针对此种情况,在选用水平接地体的时候应当加强定期检查,确保其状态能够服务于配电系统防雷工作。其次,降阻剂也能够起到很好的降阻作用,通常将高效的膨润土降阻剂施加在水平接地体附近,以降低10kV配网设备的接地电阻。对配电变压器的保护应该在低压侧装设低压避雷器(此方法对有架空低压配电线路的变压器效果较为明显),与高压侧避雷器、变压器外壳和低压侧中性点各自引下线一起在接地极处连接,称为“三位一体接地”。接地电阻值满足规程中所规定的100KVA以上容量配电变压器接地电阻在4Ω以下,100KVA以下容量的配电变压器接地电阻在10Ω以下。10kV线路上的断路器和隔离开关上的避雷器接地电阻不大于10Ω、避雷针的接地电阻不大于10Ω,100kVA及以上的变压器接地电阻不大于4Ω,100kVA 以下的变压器接地电阻不大于10Ω。 (3)间隙与避雷器相互配合。一是安装避雷器。避雷器对于10kv架空线路中的雷电过电压具有良好的防护效果,但是全线安装避雷器在经济和维护上都是不太可行的,因此将避雷器的安装建议如下:在输电线路雷害事故多发段杆塔进行安装;在配电线路分支处杆塔进行安装;在配电变压器、柱上开关和刀闸等重要配电设备处进行安装;在线路曦处进行安装;在架空绝缘线路与电缆线路转换处进行安装。二是使用并联间隙绝缘子。10kV配电线路保护间隙可以安装在绝缘子串两端,当雷击线路时它在系统中与自动重合闸配合使用,即可将雷电流及时接地,又可对用户不间断供电,从而起到防止绝缘子闪络烧毁,维持线路正常运行的作用。用于10kV配电线路的防雷保护间隙在设计时要考虑以下两个方面的要求:一是雷击线路时,保护间隙应当能够先于绝缘子串放电,捕捉放电电弧根部引导雷电流入地,从而保护绝缘子串和线路不被烧毁,这是保护间隙的首要作用;二是保护间隙与线路的绝缘配合应在保证在线路最大操作,下不击穿,不减低线路绝缘水平。 (4)采用自动重合闸或自重合熔断器作辅助防雷措施。实际证明,当线路受雷击时,10kV线路要完全避免相间短路是不可能的,此

10kV电力变压器防雷保护研究

10kV电力变压器防雷保护研究 发表时间:2016-08-23T15:32:24.853Z 来源:《电力设备》2016年第11期作者:刘慧袁秋霞[导读] 在各种电压等级的电网中,10 KV电网涉及的供电面积最大、线路最长。 刘慧袁秋霞 (国网山东省电力公司单县供电公司山东菏泽 274300) 摘要:10 KV电网在我国具有很大的供电面积且线路长,没有避雷线,容易受到雷害。10 KV电力变压器数量最多,雷害后直接影响供电。分析表明,雷击作用到变压器上产生的雷电过电压包括3个分量:避雷器残压、接地引下线的电压降和接地装置上的电压降。相关计算显示,10 KV避雷器放电动作时,接地装置上产生的电压降最大。在防雷保护的改造工程中,能够实施的工程措施是: 降低接地电阻,以减小接地装置上的电压降;在变压器附近的电杆上安装辅助火花间隙,以限制侵入雷电波的幅值。另外,将避雷器接地引下线与变压器外壳连接,减少避雷器引下线长度,也是重要的技术措施。 关键词:电力变压器;雷击;分析;保护措施 引言:在各种电压等级的电网中,10 KV电网涉及的供电面积最大、线路最长。在各种电压等级的电力变压器中,10 KV电力变压器数量最多,直接对用户供电。由于10 KV电网以架空线路为主,没有避雷线,暴露在旷野中,受到雷击的几率较人,如果防雷保护欠仔细,就可能造成雷雨季节中电力变压器遭受损坏,影响安全供电例如:某地区的1台10 KV电力变压器,在投运5年中连续2次发生需击损坏为了保证10 KV电力变压器的安全运行,本文对雷害原因进行了分析,探讨在防雷改造工程中能够主动采取的措施。 1、现场调查情况 对雷击损坏某地区的10 KV电力变压器进行调查现场看到,电力变压器安装在由2根10m高的圆柱形钢筋棍凝土电杆构成的平台上,变压器底部距离地面3m左右,距离变压器侧面约2m处是高 大的房屋建筑;变压器的电压等级为10/0.38 KV ,高压绕组采用星形连接,中性点不接地,低压绕组也采用星形连接,中性点直接接地;变压器的高压侧、高压侧的中性点和低压侧都安装了金属氧化物避需 器,其中高压侧的避雷器型号为 Y2W-12.7/42 ,高压侧中性点的避雷器型号为YS W-7.6/30,低压侧避雷器型号为Y1.SW-0.28/1.3所有避雷器的接地端、变压器低压侧的中性点都与外壳相连后,通过1根长度为4.3 m、直径为10 mm的铝钢绞线接地,接地装置的接地电阻经现场测试为31.5Ω,对接地极进行开挖检测,发现接地体腐蚀严重变压器高压侧10 KV架空线路的绝缘采用P-20型绝缘子,380 V三相四线低压线路采用电缆引入附近的分户电力表管理室。 2、雷害事故分析 在需电损坏变压器现场,没有见到支撑变压器的电杆顶部或侧面受到需电放电痕迹。变压器低压侧出线通过电缆连接到分户电力表管理室,不会遭受需电直击,只有沿着10 KV架空线路袭来的需电波才可能造成变压器损坏。 有2种方式在10 KV架空线路上产生需电过电压,一是直击雷,二是感应雷10 KV架空线路是一种无避雷线的架空线,当雷电直接击中导线,雷电流将一分为二沿导线流动,由于导线的波阻抗作用,在导线上形成了雷电过电压。雷云放电静电效应在线路上产生雷电感应过电压;另外,需云放电也产生强烈的脉冲磁场,磁力线与10 KV架空线路交链,在架空线路上感应出一定的电压。尽管需电流的大小具有随机性,但10 KV架空线路的绝缘耐受电压能力有限,若10 KV架空线路上的需电过电压高于绝缘子冲击放电电压,就会发生绝缘子闪络放电。 3、防雷工程改造 3.1限制入侵雷电波幅值 减小避需器放电的冲击电流,可以综合减少避雷器动作后对变压器产生的冲击过电压,为此,需要限制侵入雷电波的幅值。可在距离电力变压器253 m处的10 KV架空线路上增加1组辅助火花间隙,辅助火花间隙采用D8圆铜棒做成,试验的冲击耐受电压为35~40 KV;间隙位置朝下安装,可防止小鸟站立该处引发短路;间隙接地端的接地电阻控制在10Ω以下这是一种结构简单的避需器,它的放电电压远低于P-20型绝缘子的冲击放电电压(150KV),可将侵入电力变压器的雷电过电压限制到没有安装辅助火花间隙的4倍以下,对变压器绝缘的威胁也就相应减小了很多。 3.2改进避雷器接地引下线 为防止10 KV架空线路上入侵的需电过电压造成电力变压器损坏,常用的避需器保护接线如图1所示。其中避需器Y1作用是防止10 KV 架空线路侵入的雷电波;避雷器Y0作用是防止高压侧三相同时入波时,中性点电位升高可能损坏中性点附近的绝缘;避需器Y2的作用是一方面防止低压侧较小的浪涌过电压;另一方面可防止低压侧过电压通过变压器绕组间的电磁变换,在高压侧产生较大的过电压。 对图1避需器的保护接线,关键是将高压侧三相避需器的接地端先与变压器外壳连接(MN),然后再接地这样做,尽管避雷器动作后变压器外壳电位有所升高,可是接地引下线和接地极上的压降不再作用于变压器的绝缘,变压器就只承受避需器的残压作用,小于变压器的雷电冲击耐受电压(75KV ),不会造成变压器绝缘损坏改造工程中,尽量将接地引下线的敷设路径拉直,长度减到3.8 m,接地引下线的电压降减少1.5kv另外,将10kv避需器安装在变压器高压端子的同一高度也是一种工程措施,可以缩短避需器接地端与变压器外壳和中性点之间的连接距离,减少接地引下线电感,降低变压器外壳的电位升高。 3.3降低接地电阻 沿10 KV架空线侵入的需电波引起避雷器放电动作时,作用在变压器上的冲击电压主要是接地极上的电压降(157.5 KV),这会造成变压器外壳电位升高很多,还等效作用于变压器低压侧,加重低压避需器的负担。本例中,由于变压器位于山区,地质多石,土壤电阻率高,加之地表附近的接地极受湿度和氧化等影响,容易腐蚀,造成接地极的接地电阻高(达31.5Ω)。

配电系统的防雷与接地(标准版)

配电系统的防雷与接地(标准 版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0628

配电系统的防雷与接地(标准版) 雷电的危害,大家是有目共睹的。然而,近几年随着电网的改造,特别是城网改造和变电所自动化系统的建设,大家可能对这些设备的防雷接地保护还是认识不足,以致造成了多起雷害事故,造成自动化系统的瘫痪和一些电网设备事故,损失是比较严重的。因此,我们有必要探讨一下供、配电系统的防雷接地问题,为设计和施工人员提供一定的帮助。 1电力线路的防雷与接地 1.1输电线路的防雷与接地 输电线路的防雷,应根据线路的电压等级、负荷性质和系统运行方式,并结合当地地区雷电活动的强弱、地形地貌特点及土壤电阻率高低等情况,通过技术经济比较,采用合理的防雷方式。 (1)35kV线路不宜全线架设避雷线,一般在变电所的进线段架设

1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安装线路金属氧化物避雷器。 (2)110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线。 (3)220kV线路应全线架设避雷线,同时应采用双避雷线。 对于架设避雷线的线路,应注意杆塔上避雷线对边导线的保护角,一般采用20°~30°保护角,同时做好杆塔的接地。根据土壤电阻率的不同,杆塔的工频接地电阻,不宜大于表1所列数值。 表1杆塔的接地电阻 地壤电阻率(Ω·m)100及以下100以上至500500以上至1000 工频接地电阻(Ω)101520 对于35kV线路装设的金属氧化物避雷器的技术参数,一般应满足以下条件: ①持续运行电压(有效值)不小于40.8kV; ②额定电压(有效值)不小于51kV;

相关主题
文本预览
相关文档 最新文档