当前位置:文档之家› 电磁学的应用(译文)

电磁学的应用(译文)

电磁学的应用(译文)
电磁学的应用(译文)

为什么研究电磁学:第一单元

在本科电磁学课程

艾伦Taflove教授

电子与计算机工程部门

西北大学的伊文斯顿1.介绍

麦克斯韦方程组,大约制定于1870年,它代表了一个基本统一电气和磁场.电磁波现象预测的者------诺贝尔奖获得者Richard费曼召被称作19th最杰出世纪中叶的科学家。现在,工程师和世界各地的科学家利用计算机从简单的桌面机大规模并行阵列处理器得到这些方程的解。

当我们到了第二十一世纪,我们感到这似乎有点奇怪,我们付出很多努力研究解决第十九个世纪的最佳方程。为此,我们有一个疑问:―电磁学的相关研究与我们的现代社会有什么联系?―

这一单元的目的是帮助回答这个问题。而电磁学研究的动机主要是过去军事防御的要求,而电磁学这整个领域迅速的转变为重要的商业产业。应用在高速通信中,触动每个人在日常生活中。总之,这对国家的经济以及军事安全有积极作用

4.应用超高速光子集成电路

在超高速光子集成电路中微环谐振器组件和磁盘提出过滤,路由,交换,调制和复用/解复用的任务。图4是一个扫描电子显微镜图像的一部分的原型光子电路组成的5.0-mm-diameter砷化铝镓(镓)微盘谐振器耦合到0.3-mm-wide光波导在空气间隙跨越0.1–0.3毫米[ 4]。

图4.扫描电子显微镜图像的一部分的原型光子集成电路[ 4]。光子电路是由5.0-mm-diameter AlGa As微盘谐振器耦合光波导0.3-mm-wide AlGa As在空气间隙生成少0.1毫米通过计算求解麦斯威尔方程,得到有效的从直流到光,耦合,传输,和共振行为的微光学结构可以在图4确定。这允许有效的工程设计。例如,图5显示了假彩色可视化计算正弦稳态光学电场分布为典型的微型磁盘在图4[ 5]。在左上角板,光激发是在非共振频率,193.4赫兹(波长的光,我,1.55毫米)。在这里,99.98%在事件信号保持在较低的波导。在右上方的面板,激励是在共振频率的一阶径向回音壁模式的微型磁盘,189.2赫兹(=1.585毫米)。在这里,有一个很大的场增强的微型磁盘,和99.79%的入射功率切换到上部波导在反向(左)方向这产生行动的一种被动,波长选择开关左下和右下板是可视化,分别,谐振频率的二和三阶耳语廊模式,191.3赫兹(=1.567毫米)和187.8赫兹(=1.596毫米)。当前的目标是抑制这种高层次的设计工作模式允许使用小磁碟作为被动的波分复用设备具有低串扰在广泛,或主动单模激光源。

图 5.假彩色可视化显示正弦稳态电场分布在 5.0-mm-diameter型微谐振器耦合的直0.3-mm-wide单频激励型光波导传播到右下波导[ 5]。上left-off-resonance信号;右上—共振信号,一阶径向模式下left-second-order radial-mode;共振;共振下right-third-order径向模式。

7.成像的人体

最后介绍本单元话题涉及的前景,先进的人体成像技术,它启用详细麦斯威尔方程解的电磁相互作用波与复杂的几何形状。图,8和9说明这样一个很大的社会医学问题,检测恶性乳腺肿瘤的早期。近年来,一些研究人员已经进行了理论研究的应用宽带微波脉冲对早期乳腺癌检测。原则上,这技术可以检测小肿瘤较大的地区可能比目前的乳房使用乳房X线照相术,并进一步避免暴露病人的潜在危险电离辐射。在这种技术中,一系列的小天线放置在乳房表面发射和接收短电磁脉冲持续不到100ps。信号处理技术将被应用到每个接收脉冲天线单元形成乳腺图像。在工作日里,大规模的计算解决方案中,麦斯威尔方程提供了模拟试验数据和允许的优化成像算法。图所示.8和9,数值模拟表明承诺成像小,根深蒂固的恶性肿瘤中存在的背景杂波由于对于复杂的周围正常组织[ 8,9 ]。脂肪组织

图8.现实的乳腺组织模型的高分辨率磁共振成像用于超宽带脉冲肿瘤显像研究[ 8]。来源:X .李和南卡罗来纳hagness,威斯康星大学–麦迪逊。李和hagness威斯康星大学麦迪逊分校?2001

脂肪组织

图9。上图:获得乳房模型显示的位置,2毫米直径的恶性肿瘤在水深3厘米。底部:图像重建从散射波形麦斯威尔方程的求解。彩色规模在分贝。需要注意的是,肿瘤的签名15–30分贝(30–1000倍)比散射杂波由于周围正常组织。来源:美国的戴维斯等人。,J .和电磁波的应用,在图[ 9 ]。

然而过去主要研究电磁学的动机是通过军事防御的要求,但整个领域的迅速融入到重要的生活应用中.在高速通信,计算和生物医学会方面.它融入到每个人的日常生活。最终,这将使它积极影国家响经济和社会福利以及他们的军事安全。事实上,电磁学研究的从根本提高机电计算机工程技术为我们继续推动超极复杂的和超快的计算。麦斯威尔方程管辖的物理现象,对电磁波直流发光,和准确的解决方案是对了解所有的高速信号的影响必不可少的.无论对电子或光学。学生所要理解的基础电磁学现象是对涉及进展范围广泛的重要问题

电气和计算机工程将直接受益的社会。

军事领域的一些电磁学应用

军事领域的一些电磁学应用 09级地球物理专业PB09007126 sidpx 内容简介 本文将介绍电磁学在军事领域的一些应用。 首先将介绍的是未来将取代火炮的电磁炮技术,这一部分包括电磁线圈炮以及电磁轨道跑的发射原理以及多方面的应用。 其次将会简略介绍特斯拉线圈,以及其产生人工闪电的基本原理,文中附带实物图以及电路图,有兴趣的同学可以搜集一些详细资料进行制作。 关键词:电磁轨道炮电磁线圈炮特斯拉线圈 引言 电磁学理论经过人类数百年的探索已形成非常完备的理论体系,对于理论物理中电磁学的问题由于本人水平所限无法加以探讨,本文将着重介绍电磁学在军事领域的一些应用,电磁炮武器是当今军事领域比较热门的话题,很多军事强国都对电磁炮进行不少研究实验,本文将介绍一些粗浅的总体知识;其次将介绍特斯拉线圈,特斯拉在电磁学的理论和应用领域为全人类做出过卓绝的贡献,在国防军事领域的尖端领域也有不少涉足,比如外界传闻中神秘的“死光”武器(并非激光),以及发现特斯拉效应(恐怖的地球物理武器的理论依据),文章所选取的特斯拉线圈并非现实军事领域的武器(不过在游戏中被引作武器),在这里写这个确有点不切题,在此写下略抒对这位伟大天才的敬仰,还望见谅。 电磁炮 电磁线圈炮 电磁线圈炮是由环绕炮膛的一系列固定线圈与环绕弹丸的弹体线圈所组成。炮弹发射时,电源依次给环绕炮膛的一系列固定线圈供电,产生一个沿炮管运动的移动磁场,使得在环绕弹丸的弹体线圈中产生感应电流,感应电流也形成一个磁场,产生加速力,使弹丸在炮管整个长度上得到加速。弹丸就这样高速地被发射了出去。 基本发射原理 如下示意图,发射时先接通线圈1的电流,然后断开并接通线圈2的电流,而后断开2的电流接通线圈3的电流,从而产生一个沿炮管运动的移动磁场,使得在环绕弹丸的弹体线圈中产生感应电流,炮弹向减少内线圈磁通量减少的方向运动(向前推进),从而炮弹被不断加速发射。 电磁轨道炮

电磁理论

电磁理论 自人们发现电现象、磁现象、电磁感应现象以来,对电、磁和电磁感应现象进行了深入广泛的研究,发现了电磁之间的关系及其规律,形成了完整、系统的电磁理论。电磁理论促进了科学技术的发展,有力的推动了社会的进步。电磁理论认为:变化着的电场伴随变化着的磁场,变化着的磁场也伴随变化着的电场。 麦克斯韦电磁理论基础的电学和磁学的经验定律包括:静电学的库仑定律,涉及磁性的高斯定理,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程预言:变化的电磁场以波的形式向空间传播. 麦克斯韦电磁场理论的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。这个电磁场理论体系的核心就是麦克斯韦方程组。 麦克斯韦方程组是由四个微分方程构成,: (1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 麦克斯韦方程都是用微积分表述的,涉及到的方程包括: 1. 安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和。 2.法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间的负偏导。 3.磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零。 4.高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量。麦克斯韦:电位移的散度等于电荷密度。 高斯定理 高斯定理1 矢量分析的重要定理之一。 穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。 换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比 由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力

电磁加速器的原理及应用

电磁加速器的原理及应用 摘要: 当代物理学发展极其迅速,各种新奇的机械装置都是层出不穷,极大地提高了我们的生活水平,并且节约了能源。这都要归功于人类的智慧以及对物理学的深入研究。电磁学作为物理学中的一大板块,对人类来说自然是很重要而且极具发展前途的,依据电磁学的原理,人们已经制出了包括电磁铁起重机、电视的显像管、回转加速器和电磁加速器等等的一系列应用到电磁感应的原理来工作的装置。其中的电磁加速器是现在各个大国都在研究的热门领域,利用电磁加速可以在更加环保的条件下获得更好的加速效果,在战略性武器和航空航天领域都有着十分广阔的前景。下面我们来探究一下电磁学原理在电磁加速器中的应用。 关键词: 物理学、电磁学、电磁加速器、原理及应用、前景; 正文: 要了解电磁加速器的原理,首先要了解电磁学的原理和什么是电磁加速器。 需要了解的电磁学知识: 1. 电流磁效应:通电导体周围会形成磁场,由丹麦物理学家奥斯特提出。 2. 安培力:通电导体在磁场中所受的磁场力,为纪念物理学家安培而得以命名。 3. 磁感应强度:描述磁场强弱的物理量,符号B 。磁感应强度的单位是特斯拉,简称特,符号T ,1 T =1 N/A ·m 。 4. 判断电流周围磁感应强度方向的右手定则和判断安培力方向的左手定则,由科学家们通过观察并总结而得,原理较简单,在此不做详细说明。 电磁加速器:利用电磁力提升和推动物体,或者把物体加速到超高速 ( > 3km/s )的装置。基本原理如图。 电源 物体 电流 电流 电流 开关 导轨 导轨 回 路 导轨 电枢 磁感线 电流 图1

如图,高压电源,开关,导轨和物体(若物体本身不导电,则在物体底面加上一个可以导电的电枢)组成回路(如图1),使两导轨有反向电流通过,根据安培右手定则可知导轨中间会产生很大的同向磁场(如图2,方向向下),再根据左手定则,可知电枢受一个如图2所示的,方向向前的力F。 根据安培力公式: F=ILB 又根据动量定理: v=Ft/m 可知加速物体至一个很大的速度,需要有足够长的导轨(提供时间)和足够大的电流,并尽可能减少轨道与物体间的摩擦。 这便是简单的电磁加速器的原理。 接下来就来看看电磁加速器的应用吧,高端的技术只有用在合适的地方才能凸显其高端所在。 应用一:电磁轨道炮 电磁轨道炮(磁轨炮)我们经常在很多影视作品中看到,我们也为其绚丽的效果和巨大杀伤力所震骇。而在实际中,各国也将磁轨炮的发展作为重点研究对象。磁轨炮作为一种利用电磁发射技术制成的一种先进的高科技设备在许多发面都有着重要的应用,而与传统的大炮在原理上有着重要的区别。 美国于1982年研制成功实验级磁轨炮,弹丸质量317g 、初速4200m/ s 。 1992 年夏,美国研制成功世界上第一套完整的9MJ 靶场磁轨炮,并在陆军试验场进行了发射试验,迈出了电磁炮走出实验室的第一步。该炮是一个连续发射物体 图2

电磁学的发展及生活生产中的应用

电磁学的发展及生活生产中的应用摘要:电磁学核心及发展,电磁学应用(磁悬浮列车、电磁炮) 关键字:电磁学、磁悬浮、电磁炮 引言: 随着电话,电视等电子产品的广泛应用,电磁学也日益受到人们的重视。内容: 简单的说来,电磁学核心只有四个部份:库伦定律、安培定律、法拉第定律与麦克斯威方程式。并且顺序也一定如此。这可以说与电磁学的历史发展平行。其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不容易说清楚。不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。因此,要了解电磁学的应用就必须先了解它的发展。 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。电磁学的进一步发展促进了电磁在生活技术当中的应用。 (一)民用--磁悬浮列车 1911年,俄国托木斯克工艺学院的一位教授曾根据电磁作用原理,设计并制成一个磁垫列车模型。该模型行驶时不与铁轨直接接触,而是利用电磁排斥力使车辆悬浮而与铁轨脱离,并用电动机驱动车辆快速前进。 1960年美国科学家詹姆斯?鲍威尔和高登?丹提出磁悬浮列车的设计,利用

强大的磁场将列车提升至离轨几十毫米,以时速300公里行驶而不与轨道发生摩擦。遗憾的是,他们的设计没有被美国所重视,而是被日本和德国捷足先登。德国的磁悬浮列车采用磁力吸引的原理,克劳斯?马菲公司和MBB公司于1971年研制成常导电磁铁吸引式磁浮模型试验车。 随着超导和高温超导热的出现,推动了超导磁悬浮列车的研制。1987年3月,日本完成了超导体磁悬浮列车的原型车,其外形呈流线形,车重17吨,可载44人,最高时速为420公里。车上装备的超导体电磁铁所产生的电磁力与地面槽形导轨上的线圈所产生的电磁力互相排斥,从而使车体上浮。槽形导轨两侧的线圈与车上电磁铁之间相互作用,从而产生牵引力使车体一边悬浮一边前进。由于是悬空行驶,因而基本上不作用车轮。但在起动时,还需有车轮做辅助支撑,这和飞机起降时需要轮子相似。这列超导磁悬浮列车由于试验线路太短,未能充分展示出空的卓越性能。 (二)军用—电磁炮 早在1845年,查尔斯?惠斯通就制作出了世界第一台磁阻直流电动机,并用它把金属棒抛射到20米远。此后,德国数学家柯比又提出了用电磁推进方法制造“电气炮”的设想。而第一个正式提出电磁发射(电磁炮)概念并进行试验的是挪威奥斯陆大学物理学教授伯克兰。他在1901年获得了“电火炮”专利。1920年,法国的福琼?维莱普勒发表了《电气火炮》文章。德国的汉斯莱曾将10克弹丸用电磁炮加速到1.2公里,秒的初速。1946年,美国的威斯汀豪斯电气公司建成了一个全尺寸的电磁飞机弹射器,取名“电拖”。 到20世纪70年代,随着脉冲功率技术的兴起和相关科学技术的发展,电磁发射技术取得了长足的进步。澳大利亚国立大学的查里德?马歇尔博士运用新技术,把3克弹丸加速到了5.9公里,秒。这一成就从实验上证明了用电磁力把物体推进到超高速度是可行的。他的成就1978年公布后,使世界相关领域的科学家振奋不

电磁学在电力系统中的应用

电磁学在电力系统中的应用 任何一门科学的诞生和发展都离不开科学内部知识的继承和外部社会历史条件的制约,1 9世纪电磁学的崛起正是科学发展的内在逻辑与当时电力技术革命相互影响相互推动的结果。近年来,传统的电工理论、电磁场理论与电子科学、信息科学、控制科学、材料科学以及生命科学的交叉融合,产生了许多对社会经济发展和人类生活有重大影响的新兴学科,如生物电工学、生物电磁学、纳米磁学等。其中电磁兼容技术是一门迅速发展的交叉学科,涉及电子、计算机、通信、航空航天、铁路交通、电力、军事以至人民生活各个方面。另一方面,高频电磁场在电厂中的除垢技术也是当前重点研发的项目之一。本文将主要讨论电磁兼容技术和高频电磁场除垢技术在电力系统中的应用。 一、电磁兼容技术 电磁兼容( EMC)是指设备或系统在所处的电磁环境中能正常工作且不对该环境中任何其他事物构成不能承受的电磁骚扰的能力。在当今信息社会,随着电子技术、计算机技术的发展,一个系统中采用的电气及电子设备数量大大增加,而且电子设备的频带日益加宽,功率逐渐增大,灵敏度提高,联接各种设备的电缆网络也越来越复杂,因此,电磁兼容问题日显重要。 电力系统电磁兼容的主要内容包括:: (1)电磁环境评价。即通过实测或数字仿真等手段,对设备在运行时可能受到的电磁干扰水平(幅值、频率、波形等)进行估计。例如,利用可移动的电磁兼容测试车对高压输电线路或变电站产生的各种干扰进行实测,或通过电磁暂态计算程序对可能产生的瞬变电磁场进行数字仿真。电磁环境评价是电磁兼容技术的重要组成部分,是抗干扰设计的基础。 (2)电磁干扰耦合路径。弄清干扰源产生的电磁搔扰通过何种路径到达被干扰的对象。一般来说,干扰可分为传导型干扰和辐射型干扰两大类。传导干扰是指电磁搔扰通过电源线路,接地线和信号线传播到达对象所造成的干扰,例如,通过电源线传入的雷电冲击源产生的干扰;辐射干扰是指通过电磁源空间传播到达敏感设备的干扰。例如,输电线路电晕产生的无线电干扰或电视干扰即属于辐射型的干扰。研究干扰的耦合途径, 对制定抗干扰的措施, 消除或抑制干扰有重要的意义。 (3)电磁抗扰性评价。研究电力系统中各种敏感的设备仪表,如继电保护、自动

工程光学习题参考答案第十章 光的电磁理论基础

第十章 光的电磁理论基础 解:(1)平面电磁波cos[2()]E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0 By Bz == 814610[210()] z Bx CEy t π π===??-+ 解:(1)215 cos[2()]10cos[10()]0.65E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?= -= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 320 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

解:∵ exp[()]E A i k r t ω=- x y z k r k x k y k z ?=?+?+? 0000000000 2,3,4234x y z x y z k k k k k x k y k z x y z k x y z ===∴=?+?+?=++=+ 6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试 求反射系数和透射系数。设玻璃折射率为1.5。 解:由折射定律 1 2211221122111122sin sin cos 1.5cos cos 0.3034cos cos 22cos 0.6966cos cos s s n n n r n n n t n n θθθθθθθθθθ= =∴=--∴==-+===+ 7. 太阳光(自然光)以60度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解: 22 2221 2 1112222221 22 111212sin sin 212111.54cos 4sin cos 30.8231cos sin () 2 cos 4sin cos 0.998cos sin ()cos ()() 0.91 2 s p s p n n ocs n n n n θθθθθθτθθθθθθτθθθθθτττ==∴=??= ?==+=?=+-+∴= = 8. 光波以入射角1θ从折射率为1n 介质入射到折射率为2n 的介质,在两介质的表面上发生反

电磁学在生活中的应用

电磁学在生活中的应用 材料与化学工程学院 高分子材料与工程 541004010122 李祥祥

电磁学在生活中的应用电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 电磁学在生活中应用也比较广泛,下面举例说明电磁学在生活中应用。 指南针 指南针是用以判别方位的一种简单仪器。指南针的前身是中国古代四大发明之一的司南。主要组成部分是一根装在轴上可以自由转动的磁针。磁针在地磁场作用下能保持在磁子午线的切线方向上。磁针的北极指向地理的北极,利用这一性能可以辨别方向。常用于航海、大地测量、旅行及军事等方面。地球是个大磁体,其地磁南极在地理北极附近,地磁北极在地理南极附近。指南针在地球的磁场中受磁场力的作用,所以会一端指南一端指北。电磁炉 电磁炉作为厨具市场的一种新型灶具。它打破了传统的明火烹调方式采用磁场感应电流(又称为涡流)的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁原子高速无规则运动,原

子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。因此,在电磁炉较普及的一些国家里,人们誉之为“烹饪之神”和“绿色炉具”。 电磁炉工作过程中热量由锅底直接感应磁场产生涡流来产生的,因此应该选择对磁敏感的铁来作为炊具,由于铁对磁场的吸收充分、屏蔽效果也非常好,这样减少了很多的磁辐射,所以铁锅比其他任何材质的炊具也都更加安全。此外,铁是对人体健康有益的物质,也是人体长期需要摄取的必要元素。 电磁起重机 电磁起重机是利用电磁原理搬运钢铁物品的机器。电磁起重机的主要部分是磁铁。接通电流,电磁铁便把钢铁物品牢牢吸住,吊运到指定的地方。切断电流,磁性消失,钢铁物品就放下来了。电磁起重机使用十分方便,但必须有电流才可以使用,可以应用在废钢铁回收部门和炼钢车间等。 利用电磁铁来搬运钢铁材料的装置叫做电磁起重机。电磁起重机能产生强大的磁场力,几十吨重的铁片、铁丝、铁钉、废铁和其他各种铁料,不装箱不打包也不用捆扎,就能很方便地收集和搬运,不但

电磁学的应用

电磁学的应用—蓝牙技术 摘要:蓝牙是一种支持设备短距离通信(一般10m内)的无线电技术。利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网Internet之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道路。 关键词: 1、蓝牙系统 蓝牙系统一般由以下4个功能单元组成:天线单元、链路控制(固件)单元、链路管理(软件)单元和蓝牙软件(协议)单元。它们的连接关系如图1所示: 图1 蓝牙系统结构图 1.1 天线单元 蓝牙要求其天线部分体积十分小巧、重量轻,因此,蓝牙天线属于微带天线。蓝牙空中接口是建立在天线电平为0dBm的基础上的。空中接口遵循Federal Communications Commission(简称FCC,即美国联邦通信委员会)有关电平为0dBm的ISM频段的标准。如果全球电平达到100mW以上,可以使用扩展频谱功能来增加一些补充业务。频谱扩展功能是通过起始频率为2.402 GHz,终止频率为2.480GHz,间隔为1MHz 的79个跳频频点来实现的。出于某些本地规定的考虑,日本、法国和西班牙都缩减了带宽。最大的跳频速率为1660跳/秒。理想的连接范围为100mm~10m,但是通过增大发送电平可以将距离延长至100m。 蓝牙工作在全球通用的 2.4GHz ISM(即工业、科学、医学)频段。蓝牙的数据速率为1Mb/s。ISM频带是对所有无线电系统都开放的频带,因此使用其中的某个频段都会遇到不可预测的干扰源。例如某些家电、无绳电话、汽车房开门器、微波炉等等,都可能是干扰。为此,蓝牙特别设计了快速确认和跳频方案以确保链路稳定。跳频技术是把频带分成若干个跳频信道(hop channel),在一次

电磁学赵凯华答案第6章麦克斯韦电磁理论

1 一平行板电容器的两极板都是半径为的圆导体片,在充电时,其中电场强度的变化率为: 。试求:(1)两极板间的位移电流;(2)极板边缘的磁感应强度。 解: (1)如图所示,根据电容器极板带电情况,可知电场强度的方向水平向右(电位移矢量 的方向与的方向相同)。因电容器中为真空,故。忽略边缘效应,电场只分布在两板之间的空间内,且为匀强电场。 已知圆板的面积,故穿过该面积的的通量为 由位移电流的定义式,得电容器两板间位移电流为 因,所以的方向与的方向相同,即位移电流的方向与的方向相同。 (2)由于忽略边缘效应,则可认为两极板间的电场变化率是相同的,则极板间的位移电流是轴对称分布的,因此由它所产生的磁场对于两板中心线也具有轴对称性。 在平行板电容器中沿极板边缘作以半径为的圆,其上的大小相等,选积分方向与方向一致,

则由安培环路定理可得(全电流) 因在电容器内传导电流,位移电流为,则全电流为 所以极板边缘的磁感应强度为 根据右手螺旋定则,可知电容器边缘处的磁感应强度的方向,如图所示。 2 一平行板电容器的两极板为圆形金属板,面积均为,接于一交流电源时,板上的电荷随时间变化,即。试求:(1)电容器中的位移电流密度的大小;(2)设为由圆板中心到该点的距离,两板之间的磁感应强度分布。 解: (1)由题意可知,,对于平行板电容器电位移矢量的大小为 所以,位移电流密度的大小为 (2)由于电容器内无传导电流,故。又由于位移电流具有轴对称性,故可用安培环路求解磁感应强度。 设为圆板中心到场点的距离,并以为半径做圆周路径。 根据全电流安培环路定理可知通过所围面积的位移电流为

所以.最后可得 3. 如图(a)所示,用二面积为的大圆盘组成一间距为的平行板电容器,用两根长导线垂直地接在二圆盘的中心。今用可调电源使此电容器以恒定的电流充电,试求:(1)此电容器中位移电流密度;(2)如图(b)所示,电容器中点的磁感应强度;(3)证明在此电容器中从半径为﹑厚度为的圆柱体表面流进的电磁能与圆柱体内增加的电磁能相等。 解:(1)由全电流概念可知,全电流是连续的。 电容器中位移电流密度的方向应如图(c)所示,其大小为 通过电源给电容器充电时,使电容器极板上电荷随时间变化,从而使极板间电场发生变化。 因此,也可以这样来求: 因为由于,因此所以

电磁学知识在生产生活中的应用举例

电磁学知识在生产生活中的应用举例 2006年12月13日 教学目标: 知识与技能:1、懂得生活用电安全知识(C层) 2、会用学过的知识解释生活用电问题(B层) 3、了解传感器的作用,会对一些简单传感器的原理用中学物理知识作解释(AB层) 过程与方法:1、通过本节教学,引导学生把所学知识结合实际,养成理论联系实际的习惯;2、指导学生分析实际应用试题步骤、审题抓住要点,把题目分解成一个个小小问题的习惯。 教学重点:用电磁学知识解决新科技在生产生活中的应用。 教学方法:分层教学,主体合作 本学期复习完了3-1,请回顾一下这本书我们学了哪些知识? 电场恒定电流磁场 各章重点知识有哪些? 电功电阻定律、欧姆定律、闭合电路欧姆定律焦耳定律传感器的应用电流与磁场的关系——安培定则,磁场对运动电荷的作用力(安培

力、洛伦兹力)的方向判断——左手定则:。 一、生活用电题 1、如上图所示是楼梯电灯照明电路图,电键 K 1和K 2分别是装在楼上和楼下两个位置的双 联开关,拨动其中任何一个开关,都能使楼梯 电灯发光或熄灭,试问这四种接法中,那一种 接法是正确的?( ) 2、家用电热灭蚊器中电热部分的主要元件是PTC ,PTC 元件是由钛 等半导体材料制成的电阻器,其电阻率与温度的关系如所示,由于这种特性,因此,PTC 元件具有发热、控温双重功能,对此,以下判断中正确的组合是( ) ①通电后,其电功率先增大后减小 ②通电后,其电功率先减小后增大 ③当其产生的热量与散发的热量相等时,温度保持在t1 或t2不变 ④当其产生的热量与散发的热量相等时,温度保持在 t1~t2的某一值不变 A 、①② B 、②④ C 、①④ D 、②③ 本题要点:①会读图;②电热灭蚊器属于纯电阻用电器,电功等于电热。 3、下表为一双桶洗衣机铭牌上所标电动机的工作参数. 由上表回答:该洗衣机洗涤一次衣服共耗电多少?(洗涤一次衣服洗涤时间 为15min ,脱水时间为2min ).用欧姆定律R U I 求出的电流强度与电动机中的实际工作电流是否相同?为什么?

电磁的应用

电磁的应用 电磁学是研究电和磁的相互作用现象,及其规律和应用的物理学分支学科。广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。下面就来谈一谈电磁学在在我们生活中的应用。 电磁炉的原理是电磁感应现象,即利用交变电流通过线圈产生方向不断改变的交变磁场,处于交变磁场中的导体的内部将会出现涡旋电流,涡旋电流的焦耳热效应使导体升温,从而实现加热。电磁炉的炉面是耐热陶瓷板,炉面下边装有高频感应加热线圈、高频电力转换装置及相应的控制系统,炉面的上面放有平底烹饪锅。其工作过程如下:电流电压经过整流器转换为直流电,又经高频电力转换装置使直流电变为超过音频的高频交流电,将高频交流电加在扁平空心螺旋状的感应加热线圈上,由此产生高频交变磁场,其磁力线穿透灶台的陶瓷台板而作用于金属锅。在烹饪锅体内因电磁感应就有强大的涡流产生,涡流克服锅体的内阻流动时完成电能向热能的转换,所产生的焦耳热就是烹调的热源。由于电磁炉无需明火或传导式加热而让热直接在锅底产生,因此热效率极高,十分环保。 与电磁炉类似的还有工业上用于炼铁的感应电炉,也是利用电磁感应中的涡流原理。工作时,高频强电流通过环状加热线圈,由此在线圈内产生极性瞬间变化的强磁束,将金属等被加热物体放置在线圈内,磁束就会贯通整个被加热物体,在被加热物体的内部与加热电流相反的方向,便会产生相对应的很大涡电流。由于被加热物体内存在电阻,所以会产生很多

电磁场基本理论

电磁场基本理论 安培环路定理在恒定电流的磁场中,磁感强度沿任何闭合路径的线积分等于此路径所环绕的电流的代数和的μ0倍。这是非常基本的定律 安培载流导线在磁场中所受的作用力。 毕奥-萨伐尔定律实验指出,一个电流元Idl产生的磁场为 场强叠加原理电场中某点的电场强度等于各个电荷单独在该点产生的电场强度的叠加(矢量和)。主要是积分表达式 磁场叠加原理空间某一点的磁场(以磁感强度示)是各个磁场源(电流或运动电荷)各自在该点产生的磁场的叠加(矢量和)。 磁场能量密度单位磁场体积的能量。 磁场强度是讨论有磁介质时的磁场问题引入的辅助物理量,其定义是 磁场强度的环路定理沿磁场中任一闭合路径的磁场强度的环量(线积分)等于此闭合路径所环绕的传导电流的代数和。 磁畴铁磁质中存在的自发磁化的小区域。一个磁畴中的所有原子的磁矩(铁磁质中起主要作用的是电子的自旋磁矩)可以不靠外磁场而通过一种量子力学效应(交换耦合作用)取得一致方向。 磁化在外磁场作用下磁介质出现磁性或磁性发生变化的现象。 磁化电流(束缚电流) 磁介质磁化后,在磁介质体内和表面上出现的电流,它们分别称作体磁化电流和面磁化电流。 磁化强度单位体积内分子磁矩的矢量和。 磁链穿过一个线圈的各匝线圈的磁通量之和称作穿过整个线圈的磁链,又称"全磁通"。 磁屏蔽闭合的铁磁质壳体可有效地减弱外界磁场对壳内空间的影响的作用称作磁屏蔽。 磁通连续原理(磁场的高斯定理) 在任何磁场中,通过任意封闭曲面的磁通量总为零。 磁通量通过某一面积的磁通量的概念由下式定义 磁滞伸缩铁磁质中磁化方向的改变会引起介质晶格间距的改变,从而使得铁磁质的长度和体积发生改变的现象。 磁滞损耗铁磁质在交变磁场作用下反复磁化时的发热损耗。它是磁畴反复变向时,由磁畴壁的摩擦引起的。 磁滞现象铁磁质工作在反复磁化时,B 的变化落后于H的变化的现象。 D的高斯定理通过任意闭合曲面的电位移通量等于该闭合面所包围的自由电荷的代数和。其表示式是带电体在外电场中的电势能即该带电体和产生外电场的电荷间的相互作用能。 电场能量密度电场中单位体积的能量 电场强度电场中某点的电场强度 ( 简称场强)的大小等于位于该点的单位正电荷(检验电荷)所受的电场力的大小,方向为该正电荷所受电场力的方向。 电场线数密度通过垂直于电场强度的单位面积的电场线的条数。返回页首 电磁波的动量密度单位体积的电磁波具有的动量,表示式为: 电磁波的能量密度电磁波的单位体积的能量,其大小为 电磁波的能流密度(坡印廷矢量) 单位时间内通过与电磁波传播方向垂直的单位面积的电磁波的能量,其表示式为, 电磁场方程组麦克斯韦综合了电磁场的所有规律提出表述电磁场普遍规律的方程组。其积分形式是, (1)电场的高斯定理 (2)磁场的高斯定理 (3)电场的环路定理 (4)磁场的环路定理即全电流定律 电磁单位制的有理化在库仑定律的表示式中引入"4p"因子的作法,称作单位制的有理化。这样作可使

电磁场理论的基本概念

第十三章 电磁场理论的基本概念 历史背景:十九世纪以来,在当时社会生产力发展的推动下,电磁学得到了迅速的发展: 1. 零星的电磁学规律相继问世(经验定律) 2. 理论的发展,促进了社会生产力的发展,特别是电工和通讯技术的发展→提出了建立理论的要求,提 供了必要的物质基础。 3. *(Maxwell,1931~1879)麦克斯韦:数学神童,十岁进入爱丁堡科学院的学校,十四岁获科学院的数 学奖; 1854,毕业于剑桥大学。以后,根据开尔文的建议,开始研究电学,研究法拉第的力线; 1855,“论法拉第的力线”问世,引入δ =???H H ,同年,父逝,据说研究中断; 1856,阿贝丁拉马利亚学院的自然哲学讲座教授,三年; 1860,与法拉第见面; 1861-1862,《论物理力线》分四部分发表;提出涡旋电场与位移电流的假设。 1864,《电磁场的动力理论》向英国皇家协会宣读; 1865,上述论文发表在《哲学杂志》上; 1873,公开出版《电磁学理论》一书,达到顶峰。这是一部几乎包括了库仑以来的全部关于电磁研究信息的经典著作;在数学上证明了方程组解的唯一性定理,从而证明了方程组内在的完备性。 1879,去世,48岁。(同年爱因斯坦诞生) * 法拉第-麦克斯韦电磁场理论,在物理学界只能被逐步接受。它的崭新的思想与数学形式,甚至象赫姆霍兹和波尔兹曼这样有异常才能的人,为了理解消化它也花了几年的时间。 §13-1 位移电流 一. 问题的提出 1. 如图,合上K , 对传I l d H :S =?? 1 对传I l d H :S =?? 2 2. 如图,合上K ,对C 充电: 对传I l d H :S =?? 1 对02=??l d H :S 3. M axwell 的看法:只要有电动力作用在导体上,它就产生一个电流,……作用在电介质上的电动力,使它的组成部分产生一种极化状态,有如铁的颗粒在磁力影响下的极性分布一样。……在一个受到感应的电介质中,我们可以想象,每个分子中的电发生移动,使得一端为正,另一端为负,但是依然和分子束缚在一起,并没有从一个分子到另一个分子上去。这种作用对整个电介质的影响是在一定方向上引起的总的位移。……当电位移不断变化时,就会形成一种电流,其沿正方向还是负方向,由电位移的增大或减小而定。”这就是麦克斯韦定义的位移电流的概念。

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,.泊松、.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电

电磁学论文(电磁学在生活中应用)

电磁改变生活 一LC振荡电路应用----校园一卡通: 我们生活离不开货币,但是在校园内随时拿着一把现金很不方便,尤其还要找零,就更繁琐了。但现在我们有了校园一卡通,无论是吃饭打水,还是坐车买东西,只要在校园内有卡就能行!那么,一卡通的原理是什么呢? 其实校园一卡通的结构并不是十分复杂,运用的都是电磁学知识,其实质是以射频识别技术为核心的非接触式IC卡。卡内主体就是一个集成电路芯片(IC)和一个感应线圈(LC振荡器)。但是与其配套的读卡器,也就是我们平时刷卡的机器结构就复杂得多了。内部结构分为射频区和接口区:射频区内含调制解凋器和电源供电电路,直接与天线连接;接口区有与单片机相连的端口,还具有与射频区相连的收/发器、16字节的数据缓冲器、存放64对传输密钥的ROM、存放3套密钥的只写存储器,以及进行3次证实和数据加密的密码机、防碰撞处理的防碰撞模块和控制单元。 读卡器随时都在发着频率和LC振荡器固有频率相同的脉冲,当卡靠近时,产生电磁激励,LC振荡器产生共振,导通芯片工作,读写数据。 一、涡流的应用----电磁炉 科大食堂在冬天就会卖一些煮菜,当你买的时候菜还在电磁炉上

煮着,这样在寒冷的冬天,我们就可以一直有热乎乎的菜吃,这是多么幸福的事! 时至今日,电磁炉在我们的生活中已经必不可少,它无需明火或传导式加热而让热直接在锅底产生,因此热效率得到了极大的提高。它是一种高效节能橱具,完全区别于传统所有的有火或无火传导加热厨具。电磁炉是利用电磁感应加热原理制成的电气烹饪器具。使用时,加热线圈中通入交变电流,线圈周围便产生一交变磁场,交变磁场的磁力线大部分通过金属锅体,在锅底中产生大量涡流,从而产生烹饪所需的热。在加热过程中没有明火,因此安全、卫生。电磁炉的功率一般在700~1800W之间,它的结构主要由外壳、高级耐热晶化陶瓷板、PAN 电磁线盘、加热电路板、控制电路板、显示电路板、风扇组件及电源等组成。电磁炉使我们的生活更加美好舒适! 二、电磁波应用----微波炉 现在人们生活很忙碌,饭不一定能准时吃,经常到工作完成了饭也已经凉了,这时候微波炉就是我们的最好选择,因为只需食物放进去一会就热了,简单方便!在我们学校每个食堂和宿舍门口都有一个微波炉供我们使用! 微波炉里没有火,是靠微波,即高频电磁波,作为微波炉的热源。微波是频率为300兆赫到30万兆赫的电磁波。微波炉实际上就是一台微波发生器, 它产生的微波频率是2450兆赫。这种微波有一个非常有趣的习性,遇到像肉类、禽蛋、蔬菜这些饱含水分的食物,微波会

电磁学在工程技术中的应用

电磁学原理在工程技术中的应用 尚永军(11) (黑龙江科技学院电气与信息工程学院电气10-6班) 摘要:电磁学在我们的生活中应用的十分广泛,电磁学在磁悬浮列车(MAGLEV)上的应用是电磁在工程技术上达到了一个新的高潮。磁悬浮列车是一种新型的高速有轨地面运输系统,开创了铁路运输史上的新时代。论述磁悬浮列车应用电磁学的基本原理,探讨一些有待进一步完善的方面,并给出相关建议,最终对其发展前景作出评价。 关键词:磁悬浮,超导,摩擦,常导型,超导型 The principle of electromagnetism applications in engineering Shang Yongjun(11) Heilongjiang Insitute of Science and Technology Institute of electrical and information engineering electrical(6)class Abstract:Electromagnetism in our life application is very extensive, electromagnetism in MAGLEV train(磁悬浮列车)application in engineering technologies are electromagnetic met a new high. Maglev train is a new high-speed rail ground transportation system, pioneered the railway transport in the history of new era. Discusses maglev train, the basic principle of application electromagnetism about some of the aspects should be further improved, and gives corresponding Suggestions finally the development prospect is evaluated. Key words:Maglev, superconducting, friction,normal conduction,supperconduction 0引言:磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。磁悬浮列车是目前陆地上最快的交通工具,它被认为是

电磁学中三个定则的应用与区别

龙源期刊网 https://www.doczj.com/doc/718646758.html, 电磁学中三个定则的应用与区别 作者:冉守廷 来源:《中学物理·初中》2016年第12期 北师大版九年级物理第十四章《电磁现象》中第三节电流的磁场安排了安培定则(即右手螺旋定则),第六节磁场对电流的作用力中,又安排了“左手定则”,第八节电磁感应及发电机中安排了“右手定则”,学到这里很多同学就会对这三个定则开始混淆,此时就需要教师进行及时的梳理比较,才能让学生正确应用这三个定则.笔者依据教学实践认为,应该从以下六个方 面来比较: 1要明确三个定则分别用的是哪只手 “左手定则”用的是左手,而“安培定则”和“右手定则”用的是右手 2要理解三个定则的作用 “安培定则”主要是用来判断电流周围及轴线上的磁场方向的,也可以用来判断导线中的电流方向.“左手定则”主要用来判断安培力的方向,也可以用来判断磁场中导体棒中电流的方向、导体的运动方向以及磁场的方向. “右手定则”主要是用来判断导体切割磁感线时产生感应电流的方向. 3要记住三个定则的能的转化 “安培定则”适用于电场力转化为磁场力;“左手定则”适用于电能转化为机械能,应用是电动机;“右手定则”适用于机械能转化为电能,应用是发电机. 4要记住三个定则要求的手的姿势 “左手定则”和“右手定则”都是要求伸开手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;而“安培定则”的要求是其余四个手指弯曲并与拇指垂直. 5要清楚三个定则中拇指和其余四个手指所指的方向 “安培定则”中弯曲四指指向磁感线环绕的方向(或者环形电流的方向),拇指所指的方向就是直导线中电流的方向(或者环形导线轴线上磁感线的方向). “左手定则”中四指指向电流的方向(或者正电荷在磁场中运动的方向),拇指所指的方向就是通电导线在磁场中所受安培力的方向.

Ulaby应用电磁学基础答案01

Chapter 1: Introduction: Waves and Phasors Lesson #1 Chapter — Section: Chapter 1 Topics: EM history and how it relates to other fields Highlights: ?EM in Classical era: 1000 BC to 1900 ?Examples of Modern Era Technology timelines ?Concept of “fields” (gravitational, electric, magnetic) ?Static vs. dynamic fields ?The EM Spectrum Special Illustrations: ?Timelines from CD-ROM Timeline for Electromagnetics in the Classical Era ca. 900 Legend has it that while walking BC across a field in northern Greece, a shepherd named Magnus experiences a pull on the iron nails in his sandals by the black rock he was standing on. The region was later named Magnesia and the rock became known as magnetite [a form of iron with permanent magnetism]. ca. 600 Greek philosopher Thales BC describes how amber, after being rubbed with cat fur, can pick up feathers [static electricity]. ca. 1000 Magnetic compass used as a navigational device. 1752 Benjamin Franklin (American) invents the lightning rod and demonstrates that lightning is electricity. 1785Charles-Augustin de Coulomb (French) demonstrates that the electrical force between charges is proportional to the inverse of the square of the distance between them. 1800 Alessandro Volta (Italian) develops the first electric battery. 1820 Hans Christian Oersted (Danish) demonstrates the interconnection between electricity and magnetism through his discovery that an electric current in a wire causes a compass needle to orient itself perpendicular to the wire.

相关主题
文本预览
相关文档 最新文档