当前位置:文档之家› 大体积混凝土温度计算..

大体积混凝土温度计算..

大体积混凝土温度计算..
大体积混凝土温度计算..

10-7-2-1 大体积混凝土温度计算公式

1.最大绝热温升(二式取其一)

(1)T h=(m c+k·F)Q/c·ρ

(2)T h=m c·Q/c·ρ(1-e-mt)(10-43)式中T h——混凝土最大绝热温升(℃);

m c——混凝土中水泥(包括膨胀剂)用量(kg/m3);

F——混凝土活性掺合料用量(kg/m3);

K——掺合料折减系数。粉煤灰取0.25~0.30;

Q——水泥28d水化热(kJ/kg)查表10-81;

不同品种、强度等级水泥的水化热表10-81

水泥品种水泥强度等级

水化热Q(kJ/kg)

3d 7d 28d

硅酸盐水泥42.5 314 354 375 32.5 250 271 334

矿渣水泥32.5 180 256 334 c——混凝土比热、取0.97[kJ/(kg·K)];

ρ——混凝土密度、取2400(kg/m3);

e——为常数,取2.718;

t——混凝土的龄期(d);

m——系数、随浇筑温度改变。查表10-82。

系数m 表10-82

浇筑温度(℃) 5 10 15 20 25 30 m(l/d)0.295 0.318 0.340 0.362 0.384 0.406 2.混凝土中心计算温度

T1(t)=T j+T h·ξ(t)

式中T1

(t)

——t龄期混凝土中心计算温度(℃);

T j——混凝土浇筑温度(℃);

ξ

(t)

——t龄期降温系数、查表10-83。

降温系数ξ表10-83

浇筑层厚

龄期t(d)

3 6 9 12 15 18 21 2

4 27 30

(m)

1.0 0.36 0.29 0.17 0.09 0.05 0.03 0.01

1.25 0.42 0.31 0.19 0.11 0.07 0.04 0.03

1.50 0.49 0.46 0.38 0.29 0.21 0.15 0.12 0.08 0.05 0.04

2.50 0.65 0.62 0.57 0.48 0.38 0.29 0.23 0.19 0.16 0.15

3.00 0.68 0.67 0.63 0.57 0.45 0.36 0.30 0.25 0.21 0.19

4.00 0.74 0.73 0.72 0.65 0.55 0.46 0.37 0.30 0.25 0.24

3.混凝土表层(表面下50~100mm处)温度

1)保温材料厚度(或蓄水养护深度)

δ=0.5h·λx(T2-T q)K b/λ(T max-T2)(10-45)

式中δ——保温材料厚度(m);

λx——所选保温材料导热系数[W/(m·K)]查表10-84;

几种保温材料导热系数表10-84

材料名称密度(kg/m3)

导热系数λ

[W/(m·K)]

材料名称密度(kg/m3)

导热系数λ

[W/(m·K)]

建筑钢材7800 58 矿棉、岩棉110~200 0.031~0.06 钢筋混凝土2400 2.33 沥青矿棉毡100~160 0.033~0.052 水0.58 泡沫塑料20~50 0.035~0.047 木模板500~700 0.23 膨胀珍珠岩40~300 0.019~0.065 木屑0.17 油毡0.05 草袋150 0.14 膨胀聚苯板15~25 0.042

沥青蛭石板350~400 0.081~0.105 空气0.03

膨胀蛭石80~200 0.047~0.07 泡沫混凝土0.10 T2——混凝土表面温度(℃);

T q——施工期大气平均温度(℃);

λ——混凝土导热系数,取2.33W/(m·K);

T max——计算得混凝土最高温度(℃);

计算时可取T2-T q=15~20℃

T max=T2=20~25℃

K b——传热系数修正值,取1.3~2.0,查表10-85。

传热系数修正值表10-85

保温层种类K1K2 1纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子) 2.6 3.0 2由易透风材料组成,但在混凝土面层上再铺一层不透风材料 2.0 2.3 3在易透风保温材料上铺一层不易透风材料 1.6 1.9 4在易透风保温材料上下各铺一层不易透风材料 1.3 1.5

5纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板) 1.3 1.5 注:1.K1值为一般刮风情况(风速<4m/s,结构位置>25m);

2.K2值为刮大风情况。

2)如采用蓄水养护,蓄水养护深度

h w=x·M(T max-T2)K b·λw/(700T j+0.28m c·Q)(10-46)式中h w——养护水深度(m);

x——混凝土维持到指定温度的延续时间,即蓄水养护时间(h);

M——混凝土结构表面系数(1/m),M=F/V;

F——与大气接触的表面积(m2);

V——混凝土体积(m3);

T max-T2——一般取20~25(℃);

K b——传热系数修正值;

700——折算系数[kJ/(m3·K)];

λw——水的导热系数,取0.58[W/(m·K)]。

3)混凝土表面模板及保温层的传热系数

β=1/[Σδi/δi+1/βq] (10-47)

式中β——混凝土表面模板及保温层等的传热系数[W/(m2·K)];

δi——各保温材料厚度(m);

λi——各保温材料导热系数[W/(m·K)];

βq——空气层的传热系数,取23[W/(m2·K)]。

4)混凝土虚厚度

h'=k·λ/β(10-48)

式中h'——混凝土虚厚度(m);

k——折减系数,取2/3;

λ——混凝土导热系数,取2.33[W/(m·K)]。

5)混凝土计算厚度

H=h+2h'(10-49)

式中H——混凝土计算厚度(m);

h——混凝土实际厚度(m)。

6)混凝土表层温度

T2(t)=T q+4·h'(H-h')[T1(t)-T q]/H2(10-50)

——混凝土表面温度(℃);

式中T2

(t)

T q——施工期大气平均温度(℃);

h'——混凝土虚厚度(m);

H——混凝土计算厚度(m);

T1(t)——混凝土中心温度(℃)。

4.混凝土内平均温度

Tm(t)=[T1(t)+T2(t)]/2(10-51)

10-7-2-2 应力计算公式

1.地基约束系数

(1)单纯地基阻力系数C x1(N/mm3),查附表10-86

单纯地基阻力系数C x1(N/mm3)表10-86

土质名称承载力(kN/m2)C x1推荐值

软粘土80~150 0.01~0.03

砂质粘土250~400 0.03~0.06

坚硬粘土500~800 0.06~0.10 风化岩石和低强度素混凝土5000~10000 0.60~1.00 C10以上配筋混凝土5000~10000 1.00~1.50 (2)桩的阻力系数

C x2=Q/F(10-52)

式中C x2——桩的阻力系数(N/mm3);

Q——桩产生单位位移所需水平力(N/mm);

当桩与结构铰接时Q=2E·I〔K n D/(4E·I)]3/4

当桩与结构固接时Q=4E·I[K n D/(4E·I)]3/4 E——桩混凝土的弹性模量(N/mm2);

I——桩的惯性矩(mm4);

K n——地基水平侧移刚度,取1×10-2(N/mm3);

D——桩的直径或边长(mm);

F——每根桩分担的地基面积(mm2)。

(3)大体积混凝土瞬时弹性模量

E(t)=E0(1-e-0.09t)(10-53)

式中E

(t)

——龄期混凝土弹性模量(N/mm2);

E0——28d混凝土弹性模量(N/mm2),查附表10-87;

混凝土常用数据表10-87

强度等级

弹性模量E

(×104N/mm2)

强度标准值(N/mm2)强度设计值(N/mm2)

轴心抗压f ck抗拉f tk轴心抗压f c抗拉f t

C7.5 1.45 5 0.75 3.7 0.55 C10 1.75 6.7 0.90 5 0.65 C15 2.20 10 1.20 7.5 0.90 C20 2.55 13.5 1.50 10 1.10 C25 2.80 17 1.75 12.5 1.30 C30 3.00 20 2.00 15 1.50 C35 3.15 23.5 2.25 17.5 1.65 C40 3.25 27 2.45 19.5 1.80 C45 3.35 29.5 2.60 21.5 1.90 C50 3.45 32 2.75 23.5 2.00 C55 3.55 34 2.85 25 2.10 C60 3.60 36 2.95 26.5 2.20 e——常数,取2.718;

t——龄期(d)。

(4)地基约束系数

β(t)=(C x1+C x2)/h·E(t)(10-54)

式中β

(t)

——t龄期地基约束系数(1/mm);

h——混凝土实际厚度(mm);

C x1——单纯地基阻力系数(N/mm3),查表10-86;

C x2——桩的阻力系数(N/mm3);

E(t)——t龄期混凝土弹性模量(N/mm2)。

2.混凝土干缩率和收缩当量温差

(1)混凝土干缩率

εY(t)=ε0Y(l-e-0.01t)M1·M2…M10(10-55)

式中εY

(t)

——t龄期混凝土干缩率;

ε0Y——标准状态下混凝土极限收缩值,取3.24×10-4;

M1·M2…M10——各修正系数,查表10-88。

修正系数M1-M10 表10-88

水泥品种M1 水泥细度

(cm2/g)

M2

骨料品

M3 W/C M4

水泥浆

量(%)

M5

普通水泥 1.00 1500 0.92 花岗岩 1.00 0.2 0.65 15 0.90 矿渣水泥 1.25 2000 0.93 玄武岩 1.00 0.3 0.85 20 1.00 快硬水泥 1.12 3000 1.00 石灰岩 1.00 0.4 1.00 25 1.20 低热水泥 1.10 4000 1.13 砾岩 1.00 0.5 1.21 30 1.45 石灰矿渣水泥 1.00 5000 1.35 无粗骨

1.00 0.6 1.42 35 1.75 火山灰水泥 1.00 6000 1.68 石英岩0.80 0.7 1.62 40

2.10 抗硫酸盐水泥0.78 7000 2.05 白云岩0.95 0.8 1.80 45 2.55 矾土水泥0.52 8000 2.42 砂岩0.90 - - 50

3.03 初期养

护时值(d)M6

相对湿

度W

(%)

M7 L/F M8 操作方法M9

配筋率

E a

F a/E b F b

M10

1~2 1.11 25 1.25 0 0.54 机械振捣 1.00 0.00 1.00

3 1.09 30 1.18 0.1 0.76 人工振捣 1.10 0.05 0.86

4 1.07 40 1.10 0.2 1.00 蒸汽养护0.8

5 0.10 0.76

5 1.04 50 1.00 0.3 1.03 高压釜处理0.54 0.15 0.68

7 1.00 60 0.88 0.4 1.20 0.20 0.61

10 0.96 70 0.77 0.5 1.31 0.25 0.55 14~18 0.93 80 0.70 0.6 1.40

40~90 0.93 90 0.54 0.7 1.43

≥90 0.93 0.8 1.44

注:L——底板混凝土截面周长;F——底板混凝土截面面积;

E a、

F a——钢筋的弹性模量、截面积;E b、F b——混凝土弹性模量、截面积。

(2)收缩当量温差

T Y(t)=εY(t)/α(10-56)

式中T Y

(t)

——t龄期混凝土收缩当量温差(℃);

α——混凝土线膨胀系数,1×10-5(1/`C)。

3.结构计算温差(一般3d划分一区段)

ΔT i=T m(i)―T m(i+3)+T Y(i+3)―T Y(i)(10-57)

式中ΔT i——i区段结构计算温差(℃);

T m(i)——i区段平均温度起始值(℃);

T m(i+3)——i区段平均温度终止值(℃);

T Y(i+3)——i区段收缩当量温差终止值(℃);

T Y(t)——i区段收缩当量温差始始值(℃)。

4.各区段拉应力

(10-58)

式中σi——i区段混凝土内拉应力(N/mm2);

——i区段平均弹性模量(N/mm2);

——i区段平均应力松弛系数,查表10-89;

松弛系数S(t)表10-89

龄期t(d) 3 6 9 12 15 18 21 24 27 30 S(t)0.57 0.52 0.48 0.44 0.41 0.386 0.368 0.352 0.339 0.327

——i区段平均地基约束系数;

L——混凝土最大尺寸(mm);

ch——双曲余弦函数。

5.到指定期混凝土内最大应力

(10-59)

式中σmax——到指定期混凝土内最大应力(N/mm2);

ν——泊桑比,取0.15。

6.安全系数

K=f t/σmax(10-60)

式中K——大体积混凝土抗裂安全系数,应≥1.15;

f t——到指定期混凝土抗拉强度设计值(N/mm2),查表10-87。

10-7-2-3 平均整浇长度(伸缩缝间距)

1.混凝土极限拉伸值

εp=7.5f t(0.1+μ/d)10-4(lnt/ln28)(10-61)

式中εp——混凝土极限拉伸值;

f t——混凝土抗拉强度设计值(N/mm2);

μ——配筋率(%),μ=F a/F c;

d——钢筋直径(mm);

ln——以e为底的对数;

t——指定期龄期(d);

F a——钢筋截面积(rn2);

F c——混凝土截面积(m2)。

2.平均整浇长度(伸缩缝间距)

(10-62)式中[L cp]——平均整浇长度(伸缩缝间距)(mm);

h——混凝土厚度(mm);

E(t)——指定时刻混凝土弹性模量(N/mm2);

C x——地基阻力系数(N/mm3),C x=C x1+C x2;

arch——反双曲余弦函数;

△T——指定时刻的累计结构计算温差(℃)。

10-7-3 大体积混凝土控制温度和收缩裂缝的技术措施

为了有效地控制有害裂缝的出现和发展,必须从控制混凝土的水化升温、延缓降温速率、减小混凝土收缩、提高混凝土的极限拉伸强度、改善约束条件和设计构造等方面全面考虑,结合实际采取措施。

10-7-3-1 降低水泥水化热和变形

1.选用低水化热或中水化热的水泥品种配制混凝土,如矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰水泥、复合水泥等。

2.充分利用混凝土的后期强度,减少每立方米混凝土中水泥用量。根据试验每增减10kg水泥,其水化热将使混凝土的温度相应升降1℃。

3.使用粗骨料,尽量选用粒径较大、级配良好的粗细骨料;控制砂石含泥量;掺加粉煤灰等掺合料或掺加相应的减水剂、缓凝剂,改善和易性、降低水灰比,以达到减少水泥用量、降低水化热的目的。

4.在基础内部预埋冷却水管,通入循环冷却水,强制降低混凝土水化热温度。

5.在厚大无筋或少筋的大体积混凝土中,掺加总量不超过20%的大石块,

减少混凝土的用量,以达到节省水泥和降低水化热的目的。

6.在拌合混凝土时,还可掺入适量的微膨胀剂或膨胀水泥,使混凝土得到补偿收缩,减少混凝土的温度应力。

7.改善配筋。为了保证每个浇筑层上下均有温度筋,可建议设计人员将分布筋做适当调整。温度筋宜分布细密,一般用φ8钢筋,双向配筋,间距15cm。这样可以增强抵抗温度应力的能力。上层钢筋的绑扎,应在浇筑完下层混凝土之后进行。

(8)设置后浇缝。当大体积混凝土平面尺寸过大时,可以适当设置后浇缝,以减小外应力和温度应力;同时也有利于散热,降低混凝土的内部温度。

10-7-3-2 降低混凝土温度差

1.选择较适宜的气温浇筑大体积混凝土,尽量避开炎热天气浇筑混凝土。夏季可采用低温水或冰水搅拌混凝土,可对骨料喷冷水雾或冷气进行预冷,或对骨料进行覆盖或设置遮阳装置避免日光直晒,运输工具如具备条件也应搭设避阳设施,以降低混凝土拌合物的入模温度。

2.掺加相应的缓凝型减水剂,如木质素磺酸钙等。

3.在混凝土入模时,采取措施改善和加强模内的通风,加速模内热量的散发。

10-7-3-3 加强施工中的温度控制

1.在混凝土浇筑之后,做好混凝土的保温保湿养护,缓缓降温,充分发挥徐变特性,减低温度应力,夏季应注意避免曝晒,注意保湿,冬期应采取措施保温覆盖,以免发生急剧的温度梯度发生。

2.采取长时间的养护,规定合理的拆模时间,延缓降温时间和速度,充分发挥混凝土的“应力松弛效应”。

3.加强测温和温度监测与管理,实行信息化控制,随时控制混凝土内的温度变化,内外温差控制在25℃以内,基面温差和基底面温差均控制在20℃以内,及时调整保温及养护措施,使混凝土的温度梯度和湿度不至过大,以有效控制有害裂缝的出现。

4.合理安排施工程序,控制混凝土在浇筑过程中均匀上升,避免混凝土拌

合物堆积过大高差。在结构完成后及时回填土,避免其侧面长期暴露。

10-7-3-4 改善约束条件,削减温度应力

1.采取分层或分块浇筑大体积混凝土,合理设置水平或垂直施工缝,或在适当的位置设置施工后浇带,以放松约束程度,减少每次浇筑长度的蓄热量,防止水化热的积聚,减少温度应力。

2.对大体积混凝土基础与岩石地基,或基础与厚大的混凝土垫层之间设置滑动层,如采用平面浇沥青胶铺砂、或刷热沥青或铺卷材。在垂直面、键槽部位设置缓冲层,如铺设30 ~50mm厚沥青木丝板或聚苯乙烯泡沫塑料,以消除嵌固作用,释放约束应力。

10-7-3-5 提高混凝土的极限拉伸强度

1.选择良好级配的粗骨料,严格控制其含泥量,加强混凝土的振捣,提高混凝土密实度和抗拉强度,减小收缩变形,保证施工质量。

2.采取二次投料法,二次振捣法,浇筑后及时排除表面积水,加强早期养护,提高混凝土早期或相应龄期的抗拉强度和弹性模量。

3.在大体积混凝土基础内设置必要的温度配筋,在截面突变和转折处,底、顶板与墙转折处,孔洞转角及周边,增加斜向构造配筋,以改善应力集中,防止裂缝的出现。

(新)混凝土热工计算

混凝土热工计算: 依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。 砼强度为:C40 砼抗渗等级为:P6 砼供应商提供砼配合比为: 水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂 155: 205 : 110 : 10.63 : 110 : 1141 : 727 一、温度控制计算 1、最大绝热温升计算 T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ 式中: T MAX——混凝土的最大绝热温升; W——每m3混凝土的凝胶材料用量; m c——每m3混凝土的水泥用量,取205Kg/m3; FA——每m3混凝土的粉煤灰用量,取110Kg/m3; SL——每m3混凝土的矿粉用量,取110Kg/m3; UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3; K1——粉煤灰折减系数,取0.3; K2——矿粉折减系数,取0.5; Q——每千克水泥28d 水化热,取375KJ/Kg; C——混凝土比热,取0.97[KJ/(Kg·K)]; ρ——混凝土密度,取2400(Kg/m3);

T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400 T MAX=303.63×375/0.97×2400=48.91(℃) 2、各期龄时绝热温升计算 Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt); Th——混凝土的t期龄时绝热温升(℃); е——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。根据商砼厂家提供浇注温度 为20℃,m值取0.362 Th(t)=48.91(1-e-mt) 计算结果如下表: 3、砼内部中心温度计算 T1(t)=T j+Thξ(t) 式中: T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土 温度最高值; T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃; ξ(t)——t 龄期降温系数,取值如下表

大体积混凝土温控及防裂技术

建筑工程 Architecture 114 大体积混凝土温控及防裂技术 王静静杜崇磊 (烟建集团有限公司混凝土分公司) 中图分类号:TU75 文献标识码:B 文章编号1007-6344(2015)02-0114-01 摘要:混凝土结构中,经常会出现由于温度效应产生的裂缝。大体积混凝土施工中,温度变形产生的裂缝成为了最常见以及最严重的质量通病。 关键词:大体积混凝土温控防裂技术 混凝土基础温差的控制是人们过去经常关注的问题,对混凝土的后期保护却没有引起足够重视,以致很多混凝土建筑都有不同程度的裂缝出现。随着科技水平的不断发展,人们逐渐认识到温度变化是造成大体积混凝土开裂的关键因素。 一、大体积混凝土温度变形产生的原因分析 大体积混凝土中主要温度因素是水泥水化热,其温升经常会到达30--50摄氏度。水泥水化作用,使混凝土在硬化过程的最初几天,产生大量的水化热。然而,导热不良的混凝土就会对这种热量进行累积,以致混凝土温度升高、体积增大。大体积混凝土结构的壁越厚,其中心的水化热升温就越大。混凝土未充分硬化部分的弹性模量在升温时很小,壁内累积的压应力数值较小;混凝土已混凝土本结硬,在降温收缩时弹性模量特别大,这种收缩就会产生极大的拉应力。浇筑温度与水化热温度共同构成了最高温度。如果对最高温度值,没有采取适当的方法进行控制,没有对内外温度差通过恰当的保温措施进行减少,没有对温度应力通过改善约束条件进行减少,就会使大体积混凝土结构出现温度裂缝,甚至会出现贯穿性裂缝。 外界气温变化就会引起混凝土内部温度变。尤其在大陆性气候地区或寒冷地区,混凝土温度变形的最主要因素就是外界温度变化。很多事例显示,寒潮期间经常会出现大体积混凝土裂缝。因为气温比较低,混凝土短时间内徐变不能充分发挥,同时温度梯度大,就会形成很大的温度应力。建筑施工期间,混凝土内部经常会产生很大的拉应力。 水化热、浇灌温度以及外界气温变化等各种温度差,以及叠加应力,共同形成了混凝土的内部温度应力。强迫变形引起了温度应力,约束力越大,应力就会越大。而混凝土属于脆性材料,抗拉强度只有抗压强度的10%左右,混凝土内部温度应力大于混凝土抗拉强度时,混凝土自然就会因为温度变形而产生裂缝。受弯断面和孔洞四周应力集中的区域、混凝强度最差的地方、温度变化较大的表面以及应力最大的核心区域是混凝土温度变形最易发生的地方。 二、避免大体积混凝土出现裂缝的措施分析 (一)配制混凝土的材料分析 1、水泥 水化热就会引起混凝土内部大的温差,混凝土内部较大的温差就会产生温度裂缝。因此降低混凝土内部温差以及有效控制水化热,就能预防温度裂缝的产生。只有处理好混凝土的主要材料水泥,就能从整体上降低水化热。低水化热的水泥就能对水化热起到很好的控制作用。通过诸多实验得出,水泥中的主要放热成分铝酸三钙与硅酸三钙占的比例较大,因此,通过向水泥中加入中热硅酸盐、低热矿渣等有效物质,就能够对这两种成分有效的中和,就能降低水泥的水化热。 2、粉煤灰 硅、铝氧化物是构成粉煤灰的主要成分。硅铝氧化物与水泥接触就会发生二次反应,对材料的活性有很好的增强作用,同时,减少了水泥在混凝土中的含量,进而会有效避免混凝土裂缝的出现。粉煤灰颗粒能够在二次反应后均匀的分布在混凝土中,有效的改变与完善混凝土的内部结构,进而使混凝土内部的孔隙率减小,对孔结构起到优化作用,就会很大程度的增强混凝土硬化后的性能。因此,实际施工过程中,经常会在混凝土中加入粉煤灰,对混凝土出现裂缝起到很好防治的作用。 3、骨料 粗骨料:粒径的大小与级配有很大的关系,选择粒径较大的骨料就会降低水泥砂浆及水泥的使用量,进而会降低水化热,就能很好的预防裂缝的形成。细骨料:同样道理,配制混凝土时,应选用中粗沙。同时,应调整沙子的含泥量,这能够有效的防止混凝土出现收缩变化,进而防止混凝土产生裂缝。 4、外加剂 混凝泥土中加入适当的减水剂、缓凝剂以及引气剂等外加剂,也能有效的避免混凝土出现过多的裂缝。其原理是:减水剂对混凝土的融合性有很好的促进作用,进而提高了混凝土的强度,使水灰比降低,水泥含量降低,就能有效防止裂缝的出现。缓凝剂能够延长混凝土放热峰值的时间。引气剂对混凝土的和易性与可泵性具有很好的增强作用,能够充分发挥混凝土的耐久性,就增强了混凝土的抗裂性。应该注意,添加外加剂的混凝土与基准混凝土的收缩比一定保持在35%左右,必须有效控制外加剂的使用量,防止用量过大,改变混凝土的使用性能。 (二)混凝土施工方式的选择分析 1、混凝土的拌制与浇筑 施工过程中,混凝土的拌制非常重要,混凝土材料的使用性能会直接受到混凝土拌制效果的影响。因此,施工中要严格按照标准对混凝土进行拌制,并有效的控制混凝土出机口坍落度。同时,要调整好混凝土拌合物出机口的温度,对温度进行合理控制,可以利用送冷风以及冷却的方式调节。 运用有效的振捣方式,进行混凝土的浇筑,并合理分布振捣的时间,尤其是泛浆与间距的控制。同时,浇筑工作完成后,要适当的压实与抹平浇筑表面,能够很好的控制混凝土的裂缝的产生。另外,使用分层浇筑的方式,能够使下层混凝土在初凝时内凝结良好,对防止裂缝的产生也有很好的预防效果。 2、混凝土隔热保护与日常维护分析 大体积混凝土出现裂缝的主要原因是内外温差大,因此,采取一定的措施对混凝土的温度控制是浇筑结束后非常重要的工作。通过实施隔热保护就能促进混凝土表面快速散热。拆模时,更应注意外部的环境温度,必须实施有效的表面保护,防止因温差形成裂缝。 混凝土浇筑施工结束后,一定要采取日常维护措施。对混凝土的表面进行洒水,保持湿润状态,就能增加混凝土内部的强度。混凝土浇筑结束12--18小时后,就应对其进行实施保护,维护时间应持续20天以上。 三、建议与结语 (一)建议 1、改善混凝土的约束条件 混凝土结构的约束决定了混凝土应力的大小,分缝间距与约束作用有密切关系。合理的分缝不仅能减轻约束作用,而且也能缩小约束范围。通畅分缝间距以12--18米为宜。同时,应考虑后浇缝的宽度,以及应满足同截面钢筋的搭接比度,一般以1米为宜。应选用膨胀水泥配制后浇缝混凝土,整体结构浇筑40天后,就能进行后浇缝。 2、对结构的钢筋进行合理搭配 限制裂缝的出现还与合理的配筋有关。合理的配筋能够减少数目小而宽度大的裂缝,改善数目多而宽度小的裂缝,这样就减轻了裂缝的程度。构造钢筋部位不仅要设置在结构表层,而且在结构薄弱部位也要设置。 3、对混凝土一定要加强保温与养护 为了有效减少混凝土内外温度差及混凝土表面温度梯度,防止表面裂缝,无论是常温还是负温施工,都必须实施混凝土的保温措施。常温保护能够缓冲混凝土受到大气温度变化与雨水侵袭的温度影响。负温保护层一定要使用不透气的材料,才能见效,应根据工程特点、气温以及控制混凝土内外温度差等条件设计负温保护层。保温层还有保湿的作用,同样能够提高混凝土表面抗裂能力。养护期以不低于一个月为宜,较寒冷的地区应该适当延长。 (二)结语 大体积混凝土结构使用性能,会因裂缝受到很大的影响。只有对大体积混凝土的裂缝做好预防措施,发现裂缝并及时采取措施进行修补调整,才能不使其应用受到影响。 参考文献 [1]唐祥胜.大体积混凝土裂缝控制与防止措施[D].合肥工业大学,2005. [2]李树奇.大体积混凝土防裂技术措施的研究[D].天津大学,2004. [3]刘琳莉.桥梁大体积混凝土水化热施工控制研究[D].西南交通大学,2012.

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

大体积混凝土测温记录表61385

大体积混凝土测温记录表

一、测温结果应在以下范围中才使砼不易产生裂缝: ?混凝土浇筑体在入模温度基础上的温升值不宜大于50°C; ?混凝土浇筑块体的里表温差不宜大于25°C; ?混凝土浇筑体的降温速率不宜大于2.0°C/d; ?混凝土浇筑体表面与大气温差不宜大于20°C。 二、根据混凝土浇注时温度变化的特点,系统设备作以下配置,一台DM6902数字温度仪一台,K型电偶(NICR-NIAL)传感器。 三、入模测温,每台班不少于2次。配备专职测温人员,按两班考虑,对测温人员要进行培训和技术交底。测温人员要认真负责,按时按孔测温,前3天每2小时测温1次,每昼夜不得少于4次,不得遗漏或弄虚作假。测温记录要填写清楚、整洁,换班时要进行交底。 四、测温工作应连续进行,持续测温及混凝土强度达到时间,经技术部门同意后方可停止测温,一般宜连续监测15天左右。 五、测温时发现温度异常,应及时通知技术部门和项目技术负责人,以便及时采取相应措施。 六、承台分两次浇筑完成,每层测温组共分6组,每组三个测点,三个测点分别为底:距底部100~150MM;中:在浇筑厚度的中部;表:在距浇筑表面100~150MM部位。具体位置见下面测点平面布置图片。 为了控制砼内外温差不超过25度,因此要做好混凝土测温,方法是:在每个施工区域砼内部埋设测温管,测温管下口封闭(焊铁板),每个测温点埋设3条测温管,混凝土表面、中部、底部各一条。当砼浇筑后强度达到1.2Mpa能够上人,约8小时开始采用普通玻璃温度计测温。8h—24h每2h/次;1d—3d每4h/次;3d—7d每8h/次;7d以上每1d/次。

测温组 测温组 测温组测温组 测温组测温组

大体积混凝土温度计算

10-7-2-1 大体积混凝土温度计算公式 1.最大绝热温升(二式取其一) (1)T h=(m c+k·F)Q/c·ρ (2)T h=m c·Q/c·ρ(1-e-mt)(10-43) 式中T h——混凝土最大绝热温升(℃); m c——混凝土中水泥(包括膨胀剂)用量(kg/m3); F——混凝土活性掺合料用量(kg/m3); K——掺合料折减系数。粉煤灰取~; Q——水泥28d水化热(kJ/kg)查表10-81; 不同品种、强度等级水泥的水化热表10-81 水泥品种水泥强度等级 水化热Q(kJ/kg) 3d 7d 28d 硅酸盐水泥314 354 375 250 271 334 矿渣水泥180 256 334 c——混凝土比热、取[kJ/(kg·K)]; ρ——混凝土密度、取2400(kg/m3); e——为常数,取; t——混凝土的龄期(d); m——系数、随浇筑温度改变。查表10-82。 系数m 表10-82 浇筑温度(℃) 5 10 15 20 25 30 m(l/d) 2.混凝土中心计算温度 T1(t)=T j+T h·ξ(t) 式中T1 (t) ——t龄期混凝土中心计算温度(℃); T j——混凝土浇筑温度(℃); ξ (t) ——t龄期降温系数、查表10-83。 降温系数ξ表10-83 浇筑层厚度(m) 龄期t(d) 3 6 9 12 15 18 21 2 4 27 30

3.混凝土表层(表面下50~100mm处)温度 1)保温材料厚度(或蓄水养护深度) δ=·λx(T2-T q)K b/λ(T max-T2)(10-45)式中δ——保温材料厚度(m); λx——所选保温材料导热系数[W/(m·K)]查表10-84; 几种保温材料导热系数表10-84 材料名称密度(kg/m3) 导热系数λ [W/(m·K)] 材料名称密度(kg/m3) 导热系数λ [W/(m·K)] 建筑钢材7800 58 矿棉、岩棉110~200 ~ 钢筋混凝土2400 沥青矿棉毡100~160 ~ 水泡沫塑料20~50 ~ 木模板500~700 膨胀珍珠岩40~300 ~ 木屑油毡 草袋150 膨胀聚苯板15~25 沥青蛭石板350~400 ~ 空气 膨胀蛭石80~200 ~ 泡沫混凝土 T2——混凝土表面温度(℃); T q——施工期大气平均温度(℃); λ——混凝土导热系数,取(m·K); T max——计算得混凝土最高温度(℃); 计算时可取T2-T q=15~20℃ T max=T2=20~25℃ K b——传热系数修正值,取~,查表10-85。 传热系数修正值表10-85 保温层种类K1K2 1 纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子) 2 由易透风材料组成,但在混凝土面层上再铺一层不透风材料 3 在易透风保温材料上铺一层不易透风材料 4 在易透风保温材料上下各铺一层不易透风材料 5 纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板)

大体积混凝土温控计算书

大体积混凝土温控计算书 1、混凝土的绝热升温 式中:T (t )—混凝土龄期为t 时的绝热温升「C ) m c ——每m 3混凝土胶凝材料用量,取415kg/m 3 Q ——胶凝材料水热化总量,Q=kQ Q o —水泥水热化总量377KJ/kg (查建筑施工计算手册) C —混凝土的比热:取0.96KJ/ (kg.C ) p —混凝土的重力密度,取2400kg/m 3 m ——与水泥品种浇筑强度系有关的系数取 0.3d -1(查建筑施工计算手 册) t ——混凝土龄期(d ) 经计算:Q=kQ=(为+Kr1)Q °=(0.955+0.928-1)X377=332.9KJ/kg 2、混凝土收缩变形的当量温度 (1)混凝土收缩的相对变形值计算 0 (A A-0.01t\ 皿 §(t )= § (1-e ) m 1m 2m 3..…mu 式中:勺(t )——龄期为t 时混凝土收缩引起的相对变形值 『 -- 在标准试验状态下混凝土最终收缩的相对变形值取 3.24X104 m 〔m 2m 3..…mu ——考虑各种非标准条件的修正系数 m 1=1.0 m 2=1.0 m 3=1.0 m 4=1.2 m 5=0.93 m 6=1.0 m 7=0.57 m 8=0.835 m 9=1.0 m 10=0.89 mn=1.01 m 1m 2m3 ... m 11=0.447 T (t )二 m c Q c ? -mt 、 (1-e )

(2)混凝土收缩相对变形值的当量温度计算 T y(t)=啊a 式中:T y(t)——龄期为t时,混凝土的收缩当量温度 5 a——混凝土的线膨胀系数,取 1.0X10- 3、混凝土的弹性模量 E t)=^E o(1-e为 式中:E t)——混凝土龄期为t时,混凝土弹性模量(N/mm2) E o——混凝土的弹性模量近似取标准条件下28d的弹性模量:C40 E o=3.25X1(fN/mm2 ?——系数,近似取0.09 混凝土中掺和材料对弹性模量修正系数,=1.005 4、各龄期温差 (1 )、内部温差 T nax=T+ &)T(t) 式中:T m ax——混凝土内部的最高温度 T——混凝土的浇筑温度,因搅拌砼无降温措施,取浇筑时的大气平均温度,取15C T t)—在龄期t时混凝土的绝热温升 &)—在龄期t时的降温系数

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

大体积混凝土水化热计算

10.3 球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取0.25~0.30 Q----水泥28d水化热(kJ/kg)见下表 ρ—混凝土密度,取2400(kg/m3) e----为常数,取2.718 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.49计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.362; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃ 代入(2)得: T3=69.3*0.662=45.88℃; T4=69.3*0.765=53.01℃; T5=69.3*0.836=57.93℃; T7=69.3*0.92=63.76℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

混凝土温度计算

混凝土温度计算 This model paper was revised by the Standardization Office on December 10, 2020

1、混凝土温度控制计算 混凝土最大绝热温度 Th =mc ·Q/c ·ρ(1-e -mt ) 式中 Th ——混凝土最大绝热温升(℃); mc ——混凝土中水泥(包括膨胀剂)用量(kg/m3),300kg ; Q ——水泥28d 水化热(kJ/kg ),查建筑施工手册得375 kJ/kg ; c ——混凝土比热、取[kJ/(kg ·K )]; ρ——混凝土密度、取2400(kg/m3); e ——为常数,取; t ——混凝土的龄期(d ),3天; m ——系数、随浇筑温度改变,选择浇筑温度20℃,m 值为。 混凝土中心计算温度 T1(t )=Tj +Th ·ξ(t ) 式中 T1(t )——t 龄期混凝土中心计算温度(℃); Tj ——混凝土浇筑温度(℃),20℃; ξ(t )——t 龄期降温系数、查表建筑施工手册表得 降温系数ξ 混凝土表层(表面以下50 ~100mm 处)温度计算 T2(t )=Tq +4·h'(H -h')[T1(t )-Tq]/H 2

式中 T2 (t) ——混凝土表面温度(℃); Tq——施工期大气平均温度(℃),5℃; h'——混凝土虚厚度(m); h'=k·λ/β =2/3×/ ≈ k——折减系数,取2/3; λ——混凝土导热系数,取[W/(m·K)]; β——混凝土表面模板及保温层等的传热系数[W/(m2·K)];β=1/[Σδi/λi+1/βq] =1/(+1/23) = δi——保温材料厚度(m),0.04m; λi——保温材料导热系数[W/(m·K)],土工布(黑心棉)选择;βq——空气层的传热系数,取23[W/(m2·K)] H——混凝土计算厚度(m); H=h+2h' =3+2× = h——混凝土实际厚度(m)。 T1 (t) ——混凝土中心温度(℃)。 T1 (t)-T2 (t) =-=≤25℃ 混凝土平均温度 Tm(t)=[T1(t)+T2(t)]/2 结论:混凝土中心T1 (t)=64.18℃与其表面温度T2 (t) =46.8℃之差为17.38℃,小于 25℃;

大体积混凝土测温记录表

大体积混凝土测温记录表 Final revision by standardization team on December 10, 2020.

大体积混凝土测温记录表

一、测温结果应在以下范围中才使砼不易产生裂缝: 混凝土浇筑体在入模温度基础上的温升值不宜大于50°C; 混凝土浇筑块体的里表温差不宜大于25°C; 混凝土浇筑体的降温速率不宜大于2.0°C/d; 混凝土浇筑体表面与大气温差不宜大于20°C。 二、根据混凝土浇注时温度变化的特点,系统设备作以下配置,一台 DM6902数字温度仪一台,K型电偶(NICR-NIAL)传感器。 三、入模测温,每台班不少于2次。配备专职测温人员,按两班考虑,对测温人员要进行培训和技术交底。测温人员要认真负责,按时按孔测温,前3天每2小时测温1次,每昼夜不得少于4次,不得遗漏或弄虚作假。测温记录要填写清楚、整洁,换班时要进行交底。 四、测温工作应连续进行,持续测温及混凝土强度达到时间,经技术部门同意后方可停止测温,一般宜连续监测15天左右。 五、测温时发现温度异常,应及时通知技术部门和项目技术负责人,以便及时采取相应措施。 六、承台分两次浇筑完成,每层测温组共分6组,每组三个测点,三个测点分别为底:距底部100~150MM;中:在浇筑厚度的中部;表:在距浇筑表面100~150MM部位。具体位置见下面测点平面布置图片。 为了控制砼内外温差不超过25度,因此要做好混凝土测温,方法是:在每个施工区域砼内部埋设测温管,测温管下口封闭(焊铁板),每个测温点埋设3条测温管,混凝土表面、中部、底部各一条。当砼浇筑后强度达到能够上人,约8小时开始采用普通玻璃温度计测温。8h—24h每2h/次;1d—3d每4h/次;3d—7d每8h/次;7d以上每1d/次。 大体积混凝土结构测温记录表 工程名称裕溪河埃塔斜拉桥 承台( #墩) 结构部位混凝土筏板基础 砼强度等级配合比编号砼数量(m3)1200 砼浇灌日期砼浇灌温度 (℃) 开始养护温度 (℃) 测温时间 气 温 (℃ ) 各测点温度(℃) 备注 年/月/日时、 分 测温点A组测温点B组测温点C组测温点D组测温点E组 底中表底中表底中表底中表底中表

大体积混凝土温度计算.doc

10-7-2-1大体积混凝土温度计算公式 1.最大绝热温升(二式取其一) (1)T h=( m c+ k· F) Q/c·ρ (2)T h=m c·Q/c·ρ(1-e-mt)(10-43) 式中T h——混凝土最大绝热温升(℃); m c——混凝土中水泥(包括膨胀剂)用量(kg/m 3); F——混凝土活性掺合料用量(kg/m3); K ——掺合料折减系数。粉煤灰取~; Q——水泥 28d 水化热( kJ/kg)查表 10-81; 不同品种、强度等级水泥的水化热表 10-81 水泥品种 水化热 Q( kJ/kg ) 水泥强度等级 7d 28d 3d 硅酸盐水泥 314 354 375 250 271 334 矿渣水泥180 256 334 c——混凝土比热、取[ kJ/( kg·K )]; ρ——混凝土密度、取2400(kg/m3); e——为常数,取; t——混凝土的龄期( d); m——系数、随浇筑温度改变。查表10-82。 系数 m表10-82 浇筑温度(℃) 5 10 15 20 25 30 m(l/d ) 2.混凝土中心计算温度 T1(t)=T j+T h·ξ(t) 式中T1(t)—— t 龄期混凝土中心计算温度(℃); T j——混凝土浇筑温度(℃); ξ( t)——t龄期降温系数、查表10-83。 降温系数ξ表 10-83 浇筑层厚度龄期 t( d) ( m)3691215 1821242730

3.混凝土表层(表面下50~100mm 处)温度 1)保温材料厚度(或蓄水养护深度) δ=·λx(T2-T q)K b/λ(T max-T2)(10-45)式中δ——保温材料厚度( m); λx——所选保温材料导热系数 [W/ (m· K )]查表 10-84; 几种保温材料导热系数表 10-84 材料名称密度( kg/m 3) 导热系数λ 材料名称密度( kg/m3) 导热系数λ[ W/( m·K )][ W/( m·K)] 建筑钢材7800 58 矿棉、岩棉110~200 ~ 钢筋混凝土2400 沥青矿棉毡100~160 ~ 水泡沫塑料20~50 ~ 木模板500~700 膨胀珍珠岩40~300 ~ 木屑油毡 草袋150 膨胀聚苯板15~25 沥青蛭石板350~400 ~ 空气 膨胀蛭石80~200 ~ 泡沫混凝土 T2——混凝土表面温度(℃); T q——施工期大气平均温度(℃); λ——混凝土导热系数,取(m· K ); T max——计算得混凝土最高温度(℃); 计算时可取 T2-T q=15~20℃ T max=T2=20~25℃ K b——传热系数修正值,取~,查表 10-85。 传热系数修正值表 10-85 保温层种类K 1 K2 1纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子) 2由易透风材料组成,但在混凝土面层上再铺一层不透风材料 3在易透风保温材料上铺一层不易透风材料 4在易透风保温材料上下各铺一层不易透风材料 5纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板)

大体积砼温度计算

5.1.4热工计算如下: 1)混凝土绝热温升 T h(t)=[m c×Q/(c×p)](1-e-mt) 其中t为龄期 m c――混凝土中水泥 (含膨胀剂) 用量(kg/ m3); Q――水泥28天水化热; 不同品种、强度等级水泥的水化热表 c――混凝土比热,一般为—,计算时一般取(kJ/ p――混凝土密度,一般取2400(Kg/m3) e――常数,为 t――混凝土的龄期(天); m――系数,随浇筑温度改变,查表可得。 系数 m 本工程C35S8混凝土拟采用配合比(经验配合比,根据实际配

合比在制定实施方案时重新计算): 经计算得出不同龄期下的混凝土绝热升温T h,见下表: 2)t龄期混凝土中心计算温度 混凝土中心计算温度按下式计算: T1(t)= T j+ T h(t)×ξ(t) T1(t)―― t龄期混凝土中心计算温度 T h(t)―― t龄期混凝土绝热升温温 T j――混凝土浇筑温度,取值根据浇筑时的大气温度确定,根据预计浇筑时的气候条件,取T j=30℃ ξ(t)―― t 龄期降温系数 ξ(t)取值表

本工程ST1、ST2及裙楼底板厚度分别为4m、3.5m、1.5m,分别经计算T1(t)取值见下表: T1(t)取值表 3)保温材料计算厚度 保温材料计算厚度按下式计算: δ=×λx(T2-T q)×K b/λ(T max-T2) h――筏板厚度 λx ――所选保温材料的导热系数[W/()] T2――混凝土表面温度 T q――施工期大气平均温度,取30℃ λ――混凝土导热系数,取[W/()] T max――计算得混凝土最高温度 计算时取:T2-T q = 15--20oC,

大体积砼养护测温记录

精心整理大体积砼养护测温记录 0 0 1 工程名称莱钢建设·凯旋新城东区配套商 业楼 施工单位山东莱钢建设有限公司 测温部位基础底板混凝土测温方 式 温度计养护方式浇水、薄膜 测温时间大气 温度 (℃ ) 入摸 温度 (℃ ) 孔 号 各测孔 温度 (℃) t 中 -t 上 (℃) t 中 -t 下 (℃) t 气 -t 上 (℃) 内外最 大温差 记录 (℃) 裂缝 宽度 (mm) 月日时 5 7 07:3 19 25 1 上28 8 3 9 13 无 中36 下39 5 7 07:3 19 24 2 上30 8 1 11 无 中38 下37 5 7 07:3 19 22 3 上29 10 1 10 无 中39 下38 5 7 07:3 19 23 4 上28 8 1 9 无 中36 下35 5 7 07:3 19 23 5 上26 9 1 7 无 中35 下34 5 7 11:3 22 25 1 上30 6 1 8 无 中36 下35 5 7 11:3 22 24 2 上31 7 3 11 无 中38 下35 5 7 11:3 22 22 3 上31 3 2 11 无 中38 下36 审核意见: 砼测温点布置正确,测温措施控制严格,经测温计算各项数据符合设计及规范要求。 施工单位山东莱钢建设有限公司 鲁JJ—050

项目(专业)技术负责人专业工长测温员 注:1.本表由施工单位填写并保存。 2.附测温点布置图,t 气 表示大气温度。 山东省建设工程质量监督总站监制 大体积砼养护测温记录 0 0 2 工程名称莱钢建设·凯旋新城东区配套商 业楼 施工单位山东莱钢建设有限公司 测温部位基础底板混凝土测温方 式 温度计养护方式浇水、薄膜 测温时间大气 温度 (℃ ) 入摸 温度 (℃ ) 孔 号 各测孔 温度 (℃) t 中 -t 上 (℃) t 中 -t 下 (℃) t 气 -t 上 (℃) 内外最 大温差 记录 (℃) 裂缝 宽度 (mm) 月日时 5 7 11:3 22 23 4 上30 5 3 8 11 无 中35 下32 5 7 11:3 22 23 5 上31 5 2 11 无 中36 下34 5 7 15:3 21 25 1 上30 4 3 9 无 中34 下31 5 7 15:3 21 24 2 上31 5 1 10 无 中36 下35 5 7 15:3 21 22 3 上31 4 2 10 无 中35 下33 5 7 15:3 21 23 4 上33 4 3 12 无 中37 下34 5 7 15:3 21 23 5 上33 5 3 12 无 中38 下35 5 7 19:3 16 20 1 上31 9 1 15 无 中40 鲁JJ—050

大体积混凝土温度计算

10-7-2-1大体积混凝土温度计算公式 1 .最大绝热温升(二式取其 一) (1) T h =( m c + k ? F ) Q/c - p (2) T h = m c ? Q/C -9( 1-e -mt ) (10-43) 式中T h ――混凝土最大绝热温升(C ); m ――混凝土中水泥(包括膨胀剂)用量(kg/m 3 ); F ――混凝土活性掺合料用量(kg/m3); K ——掺合料折减系数。粉煤灰取 Q ――水泥28d 水化热(kJ/kg )查表10-81 ; 水泥品种 不同品种、强度等级水泥的水化热 表10-81 水化热Q (kJ/kg ) 水泥强度等级 c -混凝土比热、取[kJ/ (kg ? K ); p -混凝土密度、取2400 (kg/m 3 ); e -为常数,取; t -混凝土的龄期(d ); m — 系数、随浇筑温度改变。查表 10-82。 系数m 表10-82 浇筑温度 (C ) 5 10 15 20 25 30 m (l/d ) 硅酸盐水泥 矿渣水泥 2.混凝土中心计算温度 3d 314 250 180 7d 354 271 256 28d 375 334 334 T 1 (t) =T +T h ? 式中T 1(t ) ――t 龄期混凝土中心计算温度(C ); T j ――混凝土浇筑温度「C ) ; E (t ) ――t 龄期降温系数、查表10-83。 降温系数E 表10-83 浇筑层厚度 龄期t (d ) (m 3 6 9 12 15 18 21 24 27 30

5 S= ?入 x (T 2 -T q ) K b / X( T m ax — T 2) 所选保温材料导热系数[W/ (m- K )]查表10-84 ; 几种保温材料导热系数 表10-84 混凝土导热系数,取(m- K ); 计算时可取T 2-T q = 15~20C T ma 尸 T 2 = 20~25C K.――传热系数修正值,取查表10-85。 传热系数修正值表10-85 保温层种类 纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子) 由易透风材料组成,但在混凝土面层上再铺一层不透风材料 在易透风保温材料上铺一层不易透风材料 在易透风保温材料上下各铺一层不易透风材料 纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板) 3. 混凝土表层(表面下50~100mn 处)温度 1) 保温材料厚度(或蓄水养护深 度) T max 计算得混凝土最高温度 (C ) (10-45) 式中 S ——保温材料厚度(m ; 材料名称 密度(kg/m 3 ) 建筑钢材 钢筋混凝土 水 木模板 木屑 草袋 沥青蛭石板 膨胀蛭石 7800 2400 500-700 150 350-400 80~200 T 2 T q 导热系数入 :W/(m- K : 58 材料名称 矿棉、岩棉 沥青矿棉毡 泡沫塑料 膨胀珍珠岩 油毡 膨胀聚苯板 空气 泡沫混凝土 密度(kg/m 3 ) 110~200 100~160 20~50 40~300 15-25 混凝土表面温度「C ); 施工期大气平均温度(C ) 导热系数入 :W/( m- K 1 K 2

大体积混凝土温度应力计算

大体积混凝土温度应力 计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

大体积混凝土温控

一般为一次浇筑量大于1000 m3或混凝土结构实体最小尺寸等于或大于2 m,且混凝土浇筑需研究温度控制措施的混凝土。 所属学科: 电力(一级学科);水工建筑(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 日本建筑学会标准(JASS5)规定:“结构断面最小厚度在80cm以上,同时水化热引起混凝土内部的最高温度与外界气温之差预计超过25℃的混凝土,称为大体积混凝土”。 无明确定义 美国混凝土学会(ACI)规定:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要求解决水化热及随之引起的体积变形问题,以最大限度减少开裂”。 大体积混凝土一般在水工建筑物里常见,类似混凝土重力坝等。 大体积混凝土特点是:结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。大体混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。[1] 在建筑施工中常碰到大体积砼,为帮助项目部施工技术人员学习了解大体积砼防裂和温度控制方面的问题,加强施工技术方面的交流,本人根据自己的认识所及,参考了一些相关书籍,文章以问答的形式,先提出问题,再用通俗的语言和科学道理解答,问题解答也侧重于技术要领和做法,主要从实际出发,以实用为主,所提出的问题都是实际施工中常碰到的,目的是使项目部施工技术人员既知道大体积应该如何控制质量,又懂得为什么要进行防裂和温度控制的道理。 遇到对大体积砼防裂和温度控制方面问题不懂的地方,大家可带着问题翻阅,从中找到答案,增长学识,相信对提高实际工作能力有所帮助。1、大体积砼的定义 大体积砼指的是最小断面尺寸大于1m以上的砼结构,其尺寸已经大到必须采用相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的砼结构。(该定义摘录自建筑施工手册缩印版第二版建筑施工手册第三版编写组1999年1月第二版中国建筑工业出版社) 大体积混凝土与普通混凝土的区别表面上看是厚度不同,但其实质的区别是由于混凝土中水泥水化要产生热量,大体积混凝土内部的热量不如表面的热量散失得快,造成内外温差过大,其所产生的温度应力可能会使混凝土开裂。因此判断是否属于大体积混凝土既要考虑厚度这一因素,又要考虑水泥品种、强度等级、每立方米水泥用量等因素,比较准确的方法是通过计算水泥水化热所引起的混凝土的温升值与环境温度的差值大小来判别,一般来说,当其差值小于25℃时,其所产生的温度应力将会小于混凝土本身的抗拉强度,不会造成混凝土的开裂,当差值大于25℃时,其所产生的温度应力有可能大于混凝土本身的抗拉强度,造成混凝土的开裂,此时就可判定该混凝土属大体积混凝土。(摘录自《地下工程防水技术规范》GB50108-2001) 高层建筑的箱形基础或片筏基础都有厚度较大的钢筋砼底板,高层建筑的桩基础则常有厚大的承台,这些基础底板和桩基承台均属大体积钢筋砼结构。还有较常见的一些厚大结构转换层楼板和大梁也属大体积钢筋砼结构。 2、大体积砼与普通砼的区别 不能以截面尺寸来简单判断是否大体积砼,实际施工中,有些砼厚度达到1m,但也不属于大体积砼的范畴,有些砼虽然厚度未达到1m,但水化热却较大,不按大体积砼的技术标准施工,也会造成结构裂缝。 大体积砼与普通砼的区别表面上看是厚度不同,但其实质的区别是由于砼中水泥水化要产生热量,大体积砼内部的热量不如表面的热量散失得快,造成内外温差过大,其所产生的温度应力可能会使砼开裂。因此判断是否属于大体积砼既要考虑厚度这一因素,又要考虑水泥品种、强度等级、每立方米水泥用量等

相关主题
文本预览
相关文档 最新文档