当前位置:文档之家› 狭义相对论浅谈---李天祥

狭义相对论浅谈---李天祥

狭义相对论浅谈---李天祥
狭义相对论浅谈---李天祥

狭义相对论浅谈

作者:李天祥

爱因斯坦,德裔美国物理学家(拥有瑞瑞士国籍),思想家及哲学家家,犹太人人,现代物理学学的开创者和奠基人,相对论论——“质能关系”的提出者,“决定论量子力学诠释”的捍卫者(振动的粒子)——不掷骰子的上帝。 1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。

中文名:阿尔伯特·爱因斯坦

外文名: Albert Einstein

国籍:美国、瑞士双重国籍

民族:犹太族

出生地:德国乌尔姆市

出生日期: 1879年3月14日

逝世日期: 1955年4月18日

毕业院校:苏黎世联邦理工学院

主要成就:提出相对论及质能方程

解释光电效应

推动量子力学的发展

代表作品:《论动体的电动力学》《广义相对论的基础》

狭义相对论

基本原理:

1、爱因斯坦相对性原理:物理定律在所有的惯性系中都具有相同的表达形式,即所有的惯

性参考系对运动的描述都是等效的。

2、光速不变原理:真空中的光速是常量,它与光源或观测者的运动无关,即不依赖于惯性

系的选择。

质能公式E=mc2

在狭义相对论中,爱因斯坦提出了著名的质能公式式:E=mc^2 (这里的E代表能量,m代表减少质量,c代表光的速度。)

惯性系和洛伦兹变换

使牛顿力学第一定律(惯性定律)成立的那类参考系称为惯性系。狭义相对论的公式和结论只在惯性系中有效。两个惯性系K和K'之间的坐标变换是洛伦兹变换:

也可以写成洛伦兹群形式,这里不给出具体证明可根据群的定义验证洛伦兹变换,或者查找一本群论的教材。

式中(c就是一个单纯的数学数据,假定三维空间中时钟光子匀速直线运动1米,就是时间坐标数据“1秒/c”)为光在真空中传播的速度,为SSSSSSSsssssSSS 系相对于SSSS 系的速度。洛伦兹变换是线性变换,把其中的时空坐标换成任意坐标间隔其形式不变。所以,洛伦兹变换中的时空坐标也可当成

是任意坐标间隔。这里K系和K'系被选成坐标轴互相平行且在初始时刻两系统的坐标原点重合,因而这里给出的变换是无空间转动的特殊洛伦兹变换。更一般的变换是把K'系统的坐标轴相对于K系做一任意的空间转动,相应的变换称为一般洛伦兹变换。另外,如果在初始时刻不使两系统的原点重合,则相应的变换就是在洛伦兹变换中每个公式的右边各加上一个常数(称为时空平移)使之成为非齐次的线性变换,它们称为彭加勒变换。

洛伦兹变换是狭义相对论中最基本的关系式,反映了时间和空间是不可分割的,要确定一个事件,必须同时使用三个空间坐标和一个时间坐标,这四个坐标(数据)所组成的空间称为四维空间(四维时空)。

在低速情况下,被观察的物质的速度也远比光速小,洛伦兹变换率约为“1",退化为近似伽利略变换。相对论力学是由相对性原理(牛顿力学)和洛伦兹变换建立起来的,牛顿力学是狭义相对论的一种特殊形式(洛伦兹变换率约为“1"的情况下),在低速情况下狭义相对论性力学近似于牛顿力学。

时钟佯谬

时间膨胀效应表明,运动时,钟的速率将变慢。由于惯性系之间没有哪一个更特殊,

对于K和K'这两个彼此作相对运动的惯性系来说,哪一个在运动,这完全是相对的。因而,似乎出现了这样一个问题:K系中的观察者认为K'系中的时钟变慢了,而K'系中的观察者又会认为K系中的时钟变慢了,即两个观察者得到的是互相矛盾的结论。这就是所谓的“时钟佯谬”问题。如果把这个问题应用于假想的宇宙航行,就会给出这样一个结果:有两个孪生子,一个乘高速飞船到远方宇宙空间去旅行,另一个则留在地球上。经过若干年,飞船重新返回到地球之后,地球上的那个孪生子认为乘飞船航行的孪生兄弟比他年轻;而从飞船上那个孪生子的观点看,又好像地球上的孪生兄弟年轻了。这显然是互相矛盾的。所以,这种现象通常又称为“孪生子佯谬”或“孪生子悖论”。在解释这种佯谬时候,为了突出问题的实质,可以这样来比较两只钟,一只钟固定在一个惯性系中,另一只钟则相对于这个惯性系作往返航行,如同在“孪生子佯谬”中乘宇宙飞船的孪生兄弟那样。通过研究在往返航行的钟回来的时候,它的指针所显示的经历时间(也就是这个钟所经历的固有时间间隔)和固定钟的指针所显示的经历时间(也就是固定钟所经历的固有时间间隔)相比,到底哪一个更长,显然,经历的固有时间间隔小的钟,相当于年龄增长慢的那一个孪生子。可以发现,不能简单地套用前面写出的那个洛伦兹变换,因为往返航行的钟并不是始终静止于同一个惯性系之中,而是先静止在一个惯性系(向远处飞去),后来又经历加速(或减速)转而静止在另一个惯性系(远处归来),而它的“孪生兄弟”即另外那一只钟则始终静止在一个惯性系中。由此可见,往返航行的钟和静止的钟的地位并不是等价的。其深层原因是两个孪生兄弟在闵可夫斯基时空图中的世界线是不相同的,这就反驳了“孪生子佯谬”。具体地说,哪一只走得更慢一些,有人认为,要解决这个问题,必须应用广义相对论,因为有加速或减速过程。但是,实际上这个问题可以在狭义相对论范围内圆满解决。如果加速过程对时钟速率不产生影响(实验证明加速或减速过程对时钟的速率没有影响),考虑到作往返运动的时钟经历了不同的惯性系,因而还必须考虑到不同地点的同时性问题,那么,不论在哪个惯性系中计算,狭义相对论都给出同样的结果,即往返航行的时钟变慢了。也就是说,在“孪生子佯谬”问题中,宇宙航行的孪生子比留在地球上的孪生兄弟年轻。

关于双生子悖论也不必要如此麻烦,这里告诉读者一个很简单的方法,同样还是运用闵氏几何,做出相应的图像,很容易得到正确的说法,同样可以参考上面提到的三位教授的书。

看法

在狭义相对论中,有运动的时间变长、运动的长度变短、运动的物体质量增加等几个推论。这些推论基于两个最基本的理论:在所有的惯性参考系中,物理定律有相同的表达形式;还有就是光速不变。也就是

说,只要你是匀速运动或静止,也就是不受力或合外力为零的情况下,光速相对于你是不变的。这个根据麦克韦斯推导的公式c=1/√μξ就可以知道,光速是一个定值,也就是一种特定的物理现象。别把光看的太特殊就行。

1.对于狭义相对论,各种书籍上一直说的是“在你看来…”、“我们认为…”、“你觉得…”等语句来描绘我们对于在高速运动(也就是接近光速)的情况下所感觉到的。这里就会有一些问题产生:运动的时间变长、运动的长度变短、运动的物体质量增加等“现象”是真的会这样,还是只是我们看到的,或是感觉到的?对于看到这件事,也就是看到运动的物体长度变短,是我们的眼睛对光的一种感觉而已。举个例子,一根杆比一间屋长,杆高速运动,理论计算变短后的长度和这间屋一样,那么杆进入这间屋的一瞬间,关两扇门,门是否能关上?个人觉得只是一种人眼的错觉,此处能看见杆的两端同时在屋内,但门却不能同时关上。

2.这么说对于解释前两种现象能够说的通,而后一种现象就不能很好的解释了。毕竟质量不是能用眼睛看出来的。目前测各种粒子的质量,一般就是根据F=MA(或FT=MV)来测量(显然不能拿着称或者地磅什么的来测粒子的质量)。也就是给一个粒子一个已知的力,测量其加速度,便可以求出来其质量。给粒子一个力,当其加速到接近光速是时,其加速度明显的减小,所以下结论说其质量增加。但这可能是错误的。假设一种情景:一个空间均匀分布同样的小球(质点),均已相同的速度向同一个方向运动。在这个空间内放进一个物体,那么这个物体就会因为小球的碰撞而产生向前的力,因此产生向前的速度(具体计算此处不探讨)随着物体速度的增加,单位时间内撞到物体的小球逐渐减少,因此物体受到的力减小(传递的动量减少),所以其加速度减小。在回到之前的模型,因为给定的力的大小是之前测好的,或者说是计算出来的。我做了一个假设:物体之间力的传播是靠基本粒子(例如光子)之间的碰撞,也可以说是动量的传递。一个球体朝四面八方均匀的发射,碰撞到另一个物体,是此物体“感觉”到一个推力(其它具体形势及形式,比如引力,此处不做具体讨论)。单位时间内碰到的粒子数决定了力的大小。假设这就是力的作用原理,暂且把这种基本粒子叫做力之子。一个物体均匀的发射力之子,空间均匀分布。然后放上一个物体,咱们就会认为其受到力是一个定值。但根据上面模型,此时,物体受到的力实际会减小,但计算是却还是使用之前给定的力的大小。当物体的速度接近光之子的时候,也就是二者的相对速度很小(这是从第三方的角度看到的),即很长时间才能有粒子撞到物体,并且动量的传递很小。因此造成了随着物体速度增加加速度减小的现象,进而得出速度增加质量增加的结论。

狭义相对论的基本原理

基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了xx的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理: _______________. (2)光速不变原理: ___________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的

D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( )

A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈xx一xx实验得出的结果是: 不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的 A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A 到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( )

狭义相对论尺缩效应的数学推导

狭义相对论之尺缩效应高中数学推导 1首先依据光速不变原理,假设垂直光子钟,在相对于地面以V 速度匀速运行的火车上相对于火车垂直上下运动,推导出钟慢效应公式 22 1C V t T -= 此处T 表示相对运动坐标系观察的时间(数值大) t 表示在相对运动物体静止的时钟观察到的时间(数值小)。 2 假设在该火车上有人自车尾部使用激光测距朝列车运行方向照射测量火车长度,则火车上 人测量的距离 2ct l = ,而地面上的人观察到的测量过程为光子在某一时刻自火车后面追击火车头,飞向前方,列车运行t1时刻后,追上列车头反射,间隔t2时间长度与相向而行的火车尾部的观测仪器相遇。 T t t ct vt L ct vt L =++==+212 21 1 L cT t t 221≠> 由此必须使用时间这唯一能沟通两个参照系的量来测算距离 22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-= +=+=-=

22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-=+=+=-= 最后三个公式可形成等式 2222221212c v c l c v t V C LC V C L V C L T -=-=-=++-= 22 2222222222222222 22221, 1,11,1, 1,1c v l L l c v L c v l C V L c v l C V C L c v l V C LC V v c C c v c l V C LC -==--=--=--=-==-=- 由此可知 运动物体在空间中所占有的的长度 在运动方向上会减少,数值为静止坐标系下

狭义相对论几个公式公式推导

狭义相对论几个公式公式推导 省永春县东关中心小学 金江 运动物体的长度缩率公式和不同点上的时刻公式推导 爱因斯坦曾假设:“在真空中,光的传播速度相对任何参照系都一样:不论发光体的运动速度如何,也不论光接受体的运动速度如何,光波相对它们的传播速度都是一样的。”否则,我们观察到遥远的恒星(特别是双星)将会发生十分混乱的现象。 根据这个假设,可以推导出:运动方向上长度的缩率和另参照系看我参照系同时事件的情况的规律。 设在S 系中看到两条等长线段AB 和A ’B ’,它们分别在S 参照系和S ’参照系。S 和S ’相对运动速度为v 光秒/秒。并且在S 参照系看来:AB=A ’B ’=a 光秒。如图所示: 图1 设A 和A ’相遇时,A 和A ’会发出闪光,或B 和B ’相遇时,B 和B ’也会发出闪光。 V 光秒/秒 A (0秒) B (0秒) Q V 光秒/秒 A B Q S 系 秒) S’系 S 系

A (0秒) B (t 2 21c v 秒) 我们在S 系看来,由于AB=A ’B ’,所以A 和A ’与B 和B ’是同时相遇的,所以它们同时发出闪光。光波将在AB 中点Q 相遇,在S ’系中光波也必在相应点Q ’相遇(因为光波对S ’系的传播速度和S ’运动无关)。 由于Q ’点不在A ’B ’的中间,所以在S ’系看来,两次闪光不是同时的。因为B ’发出的光波走的距离B ’Q ’比A ’发出的光波走的距离A ’Q ’ 多。因而是B ’先闪光,A ’后闪光。也就是B 和B ’先相遇,A 和A ’后相遇。A ’和B ’的时刻在S ’系看来是不同时的,而是B ’早,A ’迟。 在S ’系中,由于A 、A ’和B 、B ’不同时相遇,所以S ’系看到的两条段AB 和A ’B ’也不相等。因为B 、B ’先相遇,所以必是A ’B ’>AB 。情况如图2所示: t 秒后 A ( 秒) B (0秒) V 光秒/秒 S’系 S 系 A ’(0 V 光秒/秒 A ’ B ’(t 秒) P ’

狭义相对论的基本原理

第五章相对论 第一节狭义相对论的基本原理 基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了牛顿的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理:_____________________________. (2)光速不变原理:_____________________________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的 D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( ) A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈克耳逊一莫雷实验得出的结果是:不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( ) A.电磁波与机械波一样有衍射、干涉现象,所以它们没有本质的区别 B.在一个与光速方向相对运动速度为u的参考系中,电磁波的传播速度为c+u或c-u C电磁场是独立的实体,不依附在任何载体中 D.伽利略相对性原理包括电磁规律和一切其他物理规律 11.一列火车以速度v相对地面运动,如果地面上的人测得,某光源发出的闪光同时到达车厢的前壁和后壁(如图5-1-1).那么按照火车上人的测量,闪光先到达前壁还是后壁?火车上的人怎样解释自己的测量结果? 12.如图5-1-2所示,在地面上M点,固定一光源,在离光源等距的A、B两点上固定有两个光接收器,今使光源发出一闪光,问 (1)在地面参考系中观察,谁先接收到光信号?

物理人教版高二选修互动课堂第十五章狭义相对论的其他结论含解析

互动课堂 疏导引导 1.相对质量 在一定惯性参考系中,质点的质量与质点速率有关.用m 0表示静止时的质量(即静止质量),m 表示以速率v 运动时的质量,则得 2 2 01c v m m -= 这叫做相对论的质量—速率公式.若质点速率远小于光速,则m→m 0质量保持为一常量,又回到经典力学的结论.由上可知,在相对论中不仅同时、时间间隔、空间间隔具有相对性,物体质量也有相对性.当前,由于高能加速器的发展,可以把电子加速至其质量为静止质量的几万倍,更加证实了相对论理论的正确性. 2.质能方程 爱因斯坦质能方程E=mc 2另一种表述形式为ΔE=Δmc 2 它表明物体吸收或放出能量时,必伴随以质量的增加或减少.这里,ΔE 不仅可以表示机械能的改变,也可以代表因物体吸热或放热、吸收或辐射光子等等所引起的能量的变化. 相对论指出,当物体静止时,它本身已蕴藏着一份很大的能量,例如取m 0=1 kg ,其静止能量E 0=9×1016 J ,而我们通常所利用的物体的能量仅仅是mc 2和 m 0c 2之差. 但同学们也不能把质量和能量混为一谈,不能认为质量消灭了,只剩下能量在转化,更不能认为质量和能量可以相互转变.在一切过程中,质量和能量是分别守恒的,只有在微观粒子的裂变和聚变过程中有质量亏损的情况下才会有质能方程的应用. 3.相对论速度变换公式的由来 狭义相对论的两条基本假设光速不变原理和狭义相对性原理使我们看到一幅与传统观念截然不同的物理图景.设想从一点光源发出一光脉冲,如从光源在其中保持静止的参考系中观察,波前为以光源为中心的球面;如从相对于光源做匀速直线运动的另一参考系观察,波前将同样是以光源为中心的球面.从日常经验出发,这种现象似乎难于想象,但它确与迈克尔逊—莫雷的实验结果相符合. 在历史上人们提到的以太,是作为绝对静止的参考系而存在的.既然相对性原理认为一切惯性参考系都是等效的,不存在某一个具有特殊地位的绝对参考系,这等于否定了以太假说,换句话说,企图在某一参考系中进行实验以便求出该参考系相对于以太或绝对参考系的速度,这是不可能的,也是没有意义的. 基于以上论述,我们现需要寻找一组新的时间空间坐标变换关系,该变换关系应当满足两个条件:①满足光速不变原理和狭义相对性原理这两条基本假设;②当质点速率远小于真空中光速时,新的变换关系应能使伽利略变换重新成立.设车对地面的速度为v ,车上的人以速度u′沿着火车前进的方向相对火车运动,那么他相对地面的速度u 为2 1c v u v u u '-+'= ,当v <<c,u′<<c 时,u=u′+v′与牛顿力学规律对应. 活学巧用 1.一观察者测出电子质量为2m 0,其中m 0为电子的静止质量,求电子速度为多少? 思路解析:将m=2m 0代入质量公式2 0)(1c v m m -= 得,2 00)(12c v m m -= c v 2 3 = =0.866c 答案:0.866c 2.已知电子的静能为0.511 MeV ,若电子的动能为0.25 MeV ,则它所增加的质量Δm 与静止质量m e 的比值近似为( ) A.0.1 B.0.2 C.0.5 D.0.9 思路解析:由题意知E 0=0.511 MeV ,E k =0.25 MeV ,由E 0=m 0c 2,E=mc 2,E k =Δmc 2可得出0 0m m E E k ??= ,代入数据得 .5.00 =E E k 答案:C

解释相对论

数学仅仅涉及概念间的相互关系,而不考虑它们与经验之间的关系。物理学也涉及到数学概念,但是,只有当清楚地确定了它们与经验对象的关系之后,这些概念才获得物理内涵。这一点在运动、空间、时间概念上表现得尤为明显。 相对论正是建立在对以上这三个概念前后一贯的解释基础之上。“相对论”这个名称是与如下事实相关的,即:从可能的经验观点来看,运动总是表现为一个物体对于另一个物体的相对运动(比如汽车相对于地面的运动,地球相对于太阳和恒星的运动)。运动绝不会作为“相对于空间的运动”——或者,像有人所表述的——“绝对运动”而被加以观察。“相对性原理”在其最广泛的意义上为如下一句论断所蕴含:所有的物理现象都有这样一个特点,它们未给“绝对运动”概念的引进提供任何依据;或较为简洁却不怎么精确的表述:不存在绝对运动。 从这样一个否定的论断中,我们似乎看不到什么洞见。但事实上,它却是对(可以想象的)自然规律的一个严格限制。在这种意义上,相对论与热力学有着某种类似之处。后者也是基于“不存在永动机”这一否定性论断之上。 相对论的发展历经了“狭义相对论”和“广义相对论”两个阶段。后者假定了前者作为一种极限情形的有效性,它是前者的连贯一致的延续。 A.狭义相对论 经典力学中对空间和时间的物理解释 从物理的观点来看,几何学是一些定律的总和,由这些定律能把相互静止的刚体置于彼此相对的位置上(比如,一个三角形由三条端点永远连接的杆组成)。人们设定用这种解释,欧几里得定律是有效的。在这种解释中,“空间”原则上是一个无限的刚体(或框架),其他的物体是与之相关联的(参照系)。解析几何(笛卡尔)用三个相互正交的刚性杆作为参照体表现空间,在这些刚性杆上通过垂直投影这一熟悉的办法(利用刚体的单位尺度),便测得空间点的“坐标”(x,y,z)。 物理学研究空间和时间中的“事件”。每一个事件不仅有自己的空间坐标x,y,z,还有一个时间值t。后者被认为可利用一个其空间大小可以忽略(作理想周期循环)的钟来测得,这个钟C被看作在坐标系中一点,例如在坐标原点(x=y=z=0)处是静止的,在空间点P(x,y,z)上发生的事件的时刻便被规定为与事件同时的钟C所显示的时刻。在这里,假定“同时”的概念无需专门的定义就有物理上的意义。这种精确性的缺乏似乎是无害的,只因光(其速度在我们日常经验看来几乎是无限的)使得空间上分开的事件的同时性看起来能被立即加以确定。 通过利用光信号来从物理上定义同时性,狭义相对论消除了这个精确性的缺乏。在P点发生事件的时间t就是从该事件发出的光信号到达时钟C时从C上读的时间。考虑到光信号通过这一距离所需事件,对这一时刻进行了修正。在做这种修正时,(假定)光速为常数。 这个定义把空间上分开的两个事件的同时性概念归化为在同一地点发生的两个事件(即光信

大学物理期中论文——浅谈狭义相对论

《大学物理》期中论文 ——浅谈狭义相对论 系别: 班级: 姓名: 学号:

【摘要】狭义相对论是由爱因斯坦在洛仑兹和庞加莱等人的工作基础上创立的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦以光速不变原理出发,建立了新的时空观。进一步,闵科夫斯基为了狭义相对论提供了严格的数学基础,从而将该理论纳入到带有闵科夫斯基度量的四维空间之几何结构中。 【关键词】狭义相对论、时空观 一、历史背景 牛顿力学是狭义相对论在低速情况下的近似,伽利略变换与电磁学理论的不自洽。到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程狭义相对论基本原理组在经典力学的伽利略变换下不具有协变性,而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。在这样的背景下,才有了狭义相对论。 二、狭义相对论基本思想 1.相对性原理:物理定律在所有惯性系中都具有相同的数学形式。 2.光速不变原理:真空中的光速是与惯性系无关的常数。 3.洛仑兹坐标变换(沿z轴方向): X=γ(x-ut) Y=y Z=z T=γ(t-ux/c^2) 4.速度变换: V(x)=(v(x)-u)/(1-v(x)u/c^2) V(y)=v(y)/(γ(1-v(x)u/c^2)) V(z)=v(z)/(γ(1-v(x)u/c^2)) 5.尺缩效应:△L=△l/γ或dL=dl/γ 6.钟慢效应:△t=γ△τ或dt=dτ/γ 7.光的多普勒效应: ν(a)=sqr((1-β)/(1+β))ν(b)(光源与探测器在一条直线上运动) 8.动量表达式:P=Mv=γmv,即M=γm 9.相对论力学基本方程:F=dP/dt 10.质能方程:E=Mc^2 11.能量动量关系:E^2=(E0)^2+P^2c^2 三、诞生与发展 19世纪末期物理学家汤姆逊在一次国际会议上讲到“物理学大厦已经建成,以后的工作仅仅是内部的装修和粉刷”。但是,他话锋一转又说:“大厦上空还漂浮着两朵‘乌云’,麦克尔逊-莫雷试验结果和黑体辐射的紫外灾难。”正是为了解决上述两问题,物理学发生了一场深刻的革命导致了相对论和量子力学的诞生。 早在电动力学麦克斯韦方程建立之日,人们就发现它没有涉及参照系问题。人们利用经典力学的时空理论讨论电动力学方程,发现在伽利略变换下麦克斯韦方程及其导出的方程(如亥姆霍兹,达朗贝尔等方程)在不同惯性系下形式不同,这一现象应当怎样解释?经过几十年的探索,在1905年终于由爱因斯坦创建了狭义相对论。相对论是一个时空理论,要理解狭义相对论时空理论先要了解经典时空理论的内容。 爱因斯坦于1922年12月有4日,在日本京都大学作的题为《我是怎样创立相对论的?》的演讲中,说明了他关于相对论想法的产生和发展过程。他说:“关

15.03狭义相对论的其他结论

人教版《高中物理选修3-4》学案《相对论》 第三节 狭义相对论的其他结论 共1课时 课型:三三四 主备人: 闫保松 审核人: 使用时间 2012年 月 日 第 周 第 个 总第 个 第1页 共2页 第2页 共2页 第十五章 第三节:狭义相对论的其他结论 【本章课标转述】 知道狭义相对论的实验基础、基本原理和主要结论;了解经典时空观与相对论时空观的主要区别,体会相对论的建立对人类认识世界的影响。初步了解广义相对论的几个主要观点以及主要观测数据。关注宇宙学研究的新进展。 教学重点、难点 重点:三个公式 难点:运动速度的相对性变换 【学习目标】 (1)运动速度的相对论变换(2)相对论质量(3)质能方程 【学习过程】 一、相对论的速度变换公式 通过狭义相对论两个原理的学习,知道光对任何物体的运动速度都一样,物体运动的极限速度都不可能越过真空中的光速。在宏观低速运动条件下,伽利略的速度叠加原理简单有效。但对高速运动的物体及微观高速粒子,速度的叠加原理与传统经典观念矛盾,必须要考虑相对论效应。 车对地的速度为v ,人对车的速度为u / 地面上的人看到车上人相对地面的速度为u 2' ' 1c v u v u u + += 如果车上人运动方向与火车运动方向相同,u ’取正值 如果车上人运动方向与火车运动方向相反,u ’取负值 学生通过计算和推导知道相对论的自洽性 注意:相对论速度变换公式,是根据相对论理论中的洛伦兹变换推出的结论,只适用于同一直线运动物体速度的叠加。对于更复杂的速度的叠加, 此公式不适用。 二、相对论质量。 物体的运动速度不能无限增加,那么物体的质量是否随着速度而变化? 严格的论证表明,物体高速(与光速相比)运动时的质量与它静止时的质量之间有下面的关 系:2 01? ? ? ??-= c v m m m 运动质量 > m 0静止质量 微观粒子的速度很高,它的质量明显的大于静止质量.在研究制造回旋加速器时必须考虑相对论效应的影响. 介绍:1988年,中国第一座高能粒子加速器——北京正负电子对撞机首次对撞成功 三、质能方程 引入:物体的能量和质量之间存在密切的联系 让学生知道根据狭义相对论原理及洛伦兹变换,经过高等数学推导,可得到相对论动力学的一个著名结论: 质能方程 2mc E = 质能方程表达了物体的质量和它所具有的能量之间的关系. 0E E E k -= E k 是物体的动能,E 是物体运动时的能量 E 0是物体静止时的能量 在v < < c 时 2 021v m E ≈ 这就是我们过去熟悉的动能表达式,这也能让我们看出,牛顿力学是相对论力学在低速情况下的特例.

狭义相对论新的延伸推导、纵质量、横质量

关于爱因斯坦狭义相对论中02 1m m v c = ??- ??? 的证明,探讨洛伦兹的纵质量与横质 量与爱因斯坦狭义相对论的联系 作者:王逸源 单位:华北电力大学 摘要:本文通过运用,动量守恒定律,和其相关的一个实验,联系相似性原理,通过数学推导,证明了,狭义相对论的质量关系式。再深入探讨,结合爱因斯坦相对论中,其它关系式,进一步推导出,与相对论相有关的另一个新的质量关系式。 关键词:相似性原理、新的质量关系式、纵质量、横质量 著名的爱因斯坦狭义相对论中,已经通过数学的方法证明了两个公式,一个公式为: 2 1v t t c ?? ?=?- ??? ,另一个公式为:2 1v l l c ?? =- ??? ,而著名的2 1v m m c ??=- ??? 公式,爱因斯坦并没有给出数学证明,下面通过爱因斯坦的狭义相对论,动量守恒定律等来证明。 全日制普通高中教材的第二册物理书中,学生实验部分有验证动量守恒定律的实验。这个实验的实验原理是:1、质量分别为1m 和2m 的两个小球,发生正碰,若碰前1m 运动,2m 静止,根据动量守恒有:**111122m v m v m v =+;2、若能测出1m 、2m 及1v 、*1v 、* 2v 代入上式,则可验证碰撞中动量守恒;3、1m 、2m 用天平测出,1v 、* 1v 、* 2v ,用小球碰撞后运动的水平距离代替,(让各小球在同一高度做平抛运动,其水平速度等于水平位移和运动的比值,而各小球运动时间相同,则它们的水平位移之比等于他们的水平速度之比),则动量守恒时112m op m om m on =+(如下图)。 从这个实验,联系相似性原理,在不受其它任何场的影响下,即真空状态下,一个单独小球,小球静止不动时,测出它的质量为0m (静止质量);当这个小球在真空状态下,以恒定速度v 运动时,有加速过程,取无限远处(不会受到加速过程中,外部条件干扰的地方),不考虑相对论的情况下,则这个单独小球的动量守恒,即:000=-v m v m ,若这个

狭义相对论的诞生和意义

狭义相对论的诞生和意义 姓名:王祚恩学号:1120100190 班级:01311002 【摘要】在科学史上,爱因斯坦创立相对论的过程艰辛而充满质疑,然而当我们真正认识和了解到相对论时,我们知道爱因斯坦为什么能够称之为伟大。几十年来的历史发展证明,狭义相对论大大推动了科学进程,成为现代物理学的基本理论之一。 【关键词】爱因斯坦,狭义相对论,意义 一.时代的召唤。 在世界科学史上,爱因斯坦所处的时代是一个呼唤巨人,也创造出了大批巨匠的时代。在伯尔尼专利局工作的岁月,是爱因斯坦在科学研究方面大丰收的几年。在这期间,他解决了布朗运动的问题,创立了光子论和狭义相对论。他的划时代的发现,表明对立统一规律不仅适用于人类社会,而且适用于自然界,是最普遍的规律,彻底改变了人们关于时间、空间、质量、能量等旧有的观念,为辩证唯物主义时空观的基本原理的正确性提供了最有利的科学依据,开始引起了科学界和思想界的普遍重视。 二.狭义相对论建立的历史背景。 一门新理论的诞生有其外在条件,也有其内在因素。就外在条件而言:18世纪欧洲工业革命兴起,经过一个多世纪,到19世纪末,工业生产、科学技术有了长足的进步。电力应用逐渐推广,内燃机、蒸汽机被采用,交通运输不断扩展……,所有这些对物理学的发展都有着直接的影响。生产的发展需要科学;反过来,生产的发展又进一步推动了科学的进步。相对论理论同其他任何一门科学理论一样,是生产水平和科学技术发展到一定阶段的必然产物。 牛顿力学是狭义相对论在低速情况下的近似。经典物理学经过近300年的发展,到19世纪末已经建立起比较完整的理论体系 到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组在经典力学的伽利略变换下不具有协变性。而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。在这样的背景下,才有了狭义相对论。 解开以太之谜,是爱因斯坦在相对论建立的道路上走出的第一步。其实,爱伊斯坦在对以太的长期思索中早就对以太的存在产生了怀疑。也就是在这些不断的怀疑中,爱因斯坦一步步的建立的属于自己的观点——狭义相对论,当然之后也被科学界认可。 三.狭义相对论的建立。 1905年,爱因斯坦在《论运动物体的电动力学》一文中正式提出了他的狭义相对论。他首先提出了两条假设: [1]相对性原理。在伽利略力学相对性原理的基础上,爱因斯坦提出一切惯性系对于描述物理现象来说都是等价的,物理定律对于一切惯性系都应采取相同的数学形式。 [2]光速不变原理。在迈克尔逊-莫雷的基础上,爱因斯坦提出,光在真空中的传播速度是c,与光源的运动状态无关。这就是说,在一切惯性系(都是匀速直线运动)中所测得

狭义相对论的其他结论学案

狭义相对论的其他结论 【学习目标】 1.了解运动速度的相对论变换,相对论质量 2.理解质能方程,并能进行简单的计算 【自主学习】 一、相对论的速度变换公式 在第一节内容的学习中,遗留一个问题,那就是经典物理中速度叠加原理与光速不变之间的矛盾,显然经典的速度叠加原理在高速情况下是不适用的,下面我们来认识相对论的速度叠加原理 设车对地的速度为v ,人对车的速度为u / 地面上的人看到车上人相对地面的速度为u (说明:1.如果车上人运动方向与火车运动方向相同,u ’取正值 2.如果车上人运动方向与火车运动方向相反,u ’取负值 3.相对论速度变换公式,是根据相对论理论中的洛伦兹变换推出的结 论,只适用于同一直线运动物体速度的叠加。对于更复杂的速度的叠加, 此公式不 适用。) 例题1如图,高速火车对地速度为v ,车上小球相对于车的速度为u ′, 则地上观察者观察到它的速度为u 。下面请大家计算下列三种情况下地 面观察者看到的球速度,并比较u 与u ′+v 以及u 与c 的大小关系 (1)当u ′=2c v =4 3c 时, u = ______,u ′+v =______,可见u <(u ′+v )并且u <c (2)当u ′=c v =c 时, u = ______,u ′+v = ______, (3)当u ′=-c v =2 c 时, u = ______,表示合速度大小仍然为c ,方向与v 相反, 从二、三两个结果可以看出,u ′=c 时,不论v 如何取值,在什么参考系中观察,光速都是c . 二、相对论质量。 物体的运动速度不能无限增加,那么物体的质量是否随着速度而变化? 严格的论证表明,物体高速(与光速相比)运动时的质量与它静止时的质量之间有下面的关系: 20 1??? ??-=c v m m ( m 运动质量,m 0静止质量),微观粒子的速度很高,它的质量明显的大于静止质量. 例题2回旋加速器给带电粒子加速时,不能把粒子的速度无限制地增大,其原因是( ) A .加速器功率有限,不能提供足够大的能量 B .加速器内无法产生磁感强度足够大的磁场 C .加速器内无法产生电场强度足够大的电场 D .速度增大使粒子质量增大,粒子运行的周期与交变电压不再同步,无法再加速 三、质能方程 物体的能量和质量之间存在密切的联系根据狭义相对论原理及洛伦兹变换,经过高等数学推导,可得到相对论动力学的一个著名结论:质能方程2m c E = (质能方程表达了物体的质量和它所具有的能量之间的关系.) 设E k 是物体的动能,E 是物体运动时的能量 E 0是物体静止时的能量,则:0E E E k -= 2''1c v u v u u ++=

狭义相对论的不完全推导及其意义

狭义相对论的不完全推导及其意义 伽利略在他杜撰的乘坐大船(Salviati)的经历中,从假想实验中总结出了一条极为重要的真理:从一艘匀速且没有晃动的船中发生的任何一种现象,你是无法判断船究竟是在匀速运动还是在停着不动。上升为物理学原理就是力学相对性原理,它表明,在一个惯性系内,无论通过什么样的力学实验都无法判断惯性系自身的速度。这里没有匀速且晃动的Salviati大船其实就是一个惯性系。由力学相对性原理及绝对时空观的思想可建立起伽利略变换。 设K,K’系为相对运动的两惯性参考系,K系静止,K’系沿着x轴方向以速度u相对于K系运动,且t=0时两参照系的原点重合(约定后面关于此惯性系统的讨论都基于这种简单模型),则两参照系之间有如下关系: x' = x–ut v’x=v x-u a’x=a x y' = y 对t求导v’y=v y ?a’y=a y ? z' = z ?v’z=v z a’z=a z t' = t 这里第一组公式叫伽利略变换,从上述推导可看出牛顿第二定律F=ma在伽利略变换下保持了数学形式的不变性,于是可知由牛顿三定律导出的经典力学方程在伽利略变换都具有协变性,即伽利略变换是经典力学的一个对称操作,而这一切都建立在一个事实之上,绝对的时间和空间,也即绝对时空。 为了导出狭义相对论的一些结论,我们还需要搞清楚一些物理学上最基本却又极为重要的问题,那就是有关时空的度量问题,如果这些问题没有解决,我们就无从谈起狭义相对论。 什么是时间?什么是空间?又改怎么去度量?在我们的日常生活中,我们时时刻刻都会谈到时间和空间,因为这是两个非常平凡的基本概念,但我们对它们的认识却经历了一段漫长的时间。牛顿和伽利略认为,时空是绝对的,牛顿在他的《自然哲学的数学原理》中指出“空间,就其本性来说,与任何外在情况无关,始终保持相似和不变。”,“绝对的,纯粹的数学的时间,就其本身和本性来说均匀流逝和外在的任何情况无关。”这样的认识,和我们的日常生活经验是一致的。因此,200多年来,物理学家对绝对时空都深信不疑,牛顿的绝对时空观是如此的根深蒂固,统治了物理学多达200多年而不动摇。 以前伽利略曾利用脉搏的跳动次数来观测吊灯的摆动规律,第一次揭示了时间可以用一种周期性现象重现的次数来度量。因此原则上可以说,任何具有重复性的过程都可以当做一种计时的钟,重现的次数即可作为刻画一段时间的长短。现在统一的标准单位时间是:以Se原子基态超精细结构的微波辐射的周期T作为时间单位,1s=9192631770T。 空间度量的基本工具是尺子,因此原则上任何有一定长度的东西都可当作

关于狭义相对论的几个结论

关于狭义相对论的几个结论 北京航空航天大学,程浩 摘要:本文深刻揭示了动量和质量、能量的关系,可作为质能方程的补充和拓展. 关键字:相对论,动量,能量 正文 结论一. ??=m m p tdt du uc 002 (1) 推导:根据420222c m p c E +=及2mc E =得()2220 2p c m m =-即??=m m p tdt du uc 00222两边约去2即得上式. 结论二. dm dp p mc E ==2 (2) 推导:()22202p c m m =-两边对m 求导得dm dp p mc 222=两边约去2即得. 结论三. dv d E p γγ3= (3) 推导:

dv d E dv d d d E dv d E dv c v d c m c v v m p γγγγγγγ3022202201111=???? ??-=???? ??-=???? ??--=-= 结论四. dv dE p 21γ= (4) 推导:由dv d E p γγ3=及0E E γ=得 dv dE dv dE E E dv dE E E E dv E E d E E E dv d E p 22200230030311γγγ===???? ????? ? ??== 结论五. dv dp c E 22γ= (5) 推导:由2201c v m m -=得???? ??-=2202 21m m c v 两边对m 求导得320222m m c dm dv v =进而有v m c m dm dv 32 2 0=,结合dm dp p E =,有 dv dp c dv dp m c m dv dp v m c m p dm dv dv dp p dm dp p E 22222 03220γ===== 结论六. E p c dp dE 2= (6)

人教版物理高二选修3-4 15.3狭义相对论的其他结论同步练习(I)卷

人教版物理高二选修3-4 15.3狭义相对论的其他结论同步练习(I)卷 姓名:________ 班级:________ 成绩:________ 一、多选题 (共15题;共38分) 1. (3分)下列物体的运动服从经典力学规律的是() A . 自行车、汽车、火车、飞机等交通工具的运动 B . 发射导弹、人造卫星、宇宙飞船的运动 C . 物体运动的速率接近真空中的光速 D . 能量的不连续现象 2. (3分)下列说法中正确的是() A . 根据牛顿的万有引力定律可以知道,当星球质量不变、半径变为原来的时,引力将变为原来的4倍 B . 按照广义相对论可以知道,当星球质量不变、半径变为原来的时,引力将大于原来的4倍 C . 在天体的实际半径远大于引力半径时,根据爱因斯坦的引力理论和牛顿的引力理论计算出的力差异很大 D . 在天体的实际半径接近引力半径时,根据爱因斯坦的引力理论和牛顿的引力理论计算出的力差异不大 3. (3分) (2018高一下·西山期中) 爱因斯坦相对论的提出是物理学领域的一场重大革命,主要是因为() A . 否定了经典力学的绝对时空观 B . 揭示了时间、空间并非绝对不变的本质属性 C . 打破了经典力学体系的局限性 D . 使人类对客观世界的认识开始从宏观世界深入到微观世界 4. (2分) (2019高二下·扬州开学考) 如图所示,地面上A、B两处的中点处有一点光源S,甲观察者站在光源旁,乙观察者乘坐速度为v(接近光速)的光火箭沿AB方向飞行.两观察者身边各有一只事先在地面校准了的相同的时钟.下列对相关现象的描述中,正确的是()

A . 甲测得的AB间的距离大于乙测得的AB间的距离 B . 甲认为飞船中的钟变慢了,乙认为甲身边的钟变快了 C . 甲测得光速为c,乙测得的光速为c-v D . 当光源S发生一次闪光后,甲认为A,B两处同时接收到闪光,乙则认为A先接收到闪光 5. (2分)在一惯性系中观测,有两个事件同时不同地,则在其他惯性系中观察,结果是() A . 一定同时 B . 可能同时 C . 不可能同时,但可能同地 D . 不可能同时,也不可能同地 6. (3分)下列说法中正确的是() A . 万有引力可以用狭义相对论做出正确的解释 B . 电磁力可以用狭义相对论做出正确的解释 C . 狭义相对论是惯性参考系之间的理论 D . 万有引力理论无法纳入狭义相对论的框架 7. (2分) (2015高二上·泰州期末) 关于经典物理学和相对论,下列说法正确的是() A . 经典物理学和相对论是各自独立的学说,互不相容 B . 相对论完全否定了经典物理学 C . 相对论和经典物理学是两种不同的学说,二者没有联系

狭义相对论浅谈---李天祥

狭义相对论浅谈 作者:李天祥 爱因斯坦,德裔美国物理学家(拥有瑞瑞士国籍),思想家及哲学家家,犹太人人,现代物理学学的开创者和奠基人,相对论论——“质能关系”的提出者,“决定论量子力学诠释”的捍卫者(振动的粒子)——不掷骰子的上帝。 1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。 中文名:阿尔伯特·爱因斯坦 外文名: Albert Einstein 国籍:美国、瑞士双重国籍 民族:犹太族 出生地:德国乌尔姆市 出生日期: 1879年3月14日 逝世日期: 1955年4月18日 毕业院校:苏黎世联邦理工学院 主要成就:提出相对论及质能方程 解释光电效应 推动量子力学的发展 代表作品:《论动体的电动力学》《广义相对论的基础》 狭义相对论 基本原理: 1、爱因斯坦相对性原理:物理定律在所有的惯性系中都具有相同的表达形式,即所有的惯 性参考系对运动的描述都是等效的。 2、光速不变原理:真空中的光速是常量,它与光源或观测者的运动无关,即不依赖于惯性 系的选择。 质能公式E=mc2 在狭义相对论中,爱因斯坦提出了著名的质能公式式:E=mc^2 (这里的E代表能量,m代表减少质量,c代表光的速度。) 惯性系和洛伦兹变换 使牛顿力学第一定律(惯性定律)成立的那类参考系称为惯性系。狭义相对论的公式和结论只在惯性系中有效。两个惯性系K和K'之间的坐标变换是洛伦兹变换: 也可以写成洛伦兹群形式,这里不给出具体证明可根据群的定义验证洛伦兹变换,或者查找一本群论的教材。 式中(c就是一个单纯的数学数据,假定三维空间中时钟光子匀速直线运动1米,就是时间坐标数据“1秒/c”)为光在真空中传播的速度,为SSSSSSSsssssSSS 系相对于SSSS 系的速度。洛伦兹变换是线性变换,把其中的时空坐标换成任意坐标间隔其形式不变。所以,洛伦兹变换中的时空坐标也可当成

对狭义相对论力学中的几个重要概念和规律的再认识

对狭义相对论力学中的几个重要概念和规律的再认识 摘要:本文在狭义相对论基本原理的基础上,详细阐述了相对论力学中的基本概念与其变换关系和基本规律,并分析了这些概念和规律在经典力学和狭义相对论力学中的区别和联系。通过对基本知识内容的分析对比,能够清楚认识到经典力学向狭义相对论力学在过渡阶段的概念和规律的混淆问题,有助于正确理解和把握狭义相对论的基本原理和内容,便于今后进行相关知识的学习和研究。 关键词:洛伦兹变换;速度;质量;相对性原理;光速不变原理

目录 引言 (1) 1狭义相对论的基本原理 (1) 1.1 相对性原理 (1) 1.2 光速不变性原理 (2) 2基本概念和规律 (2) 2.1 洛仑兹变换 (2) 2.2 速度的合成及其变换 (4) 2.3 质量及其变换 (6) 2.4 力及其变换 (7) 2.5 动量、能量及其变换 (8) 3 小结 (11) 参考文献: (11) 致谢: (11)

引言 在19世纪末期,当时众多的物理学家们都认为经典物理学的框架已经建设完成,只需要填补和装修即可而陶醉时,但是三大发现(黑体辐射、光电效应等)又为物理学提出新的问题。而这些问题正在猛力地冲击着经典力学中的速度、质量、动量和能量等基本物理概念,使经典物理学中包含了质量守恒、能量守恒等守恒定律面临着严酷的考验。同时,光电效应与黑体辐射等实验的结果又不能被经典物理学所解释。 为了解决这些经典力学所不能解释的问题,许多物理学家们已经做了很多的工作。在1905年,爱因斯坦另辟蹊径,运用丰富的科学知识和深刻的哲学思想提出了与众不同的时空理论—狭义相对论。当时,众多的物理学家们都以能读懂相对论原理而自豪。爱因斯坦建立的狭义相对论对物理学的发展提供了理论依据,并且深入到高能粒子物理的范围,成为了研究高速粒子运动的不可或缺的理论依据,并取得了丰硕的研究成果。它成为了近代物理的一大基石。同时,它被广泛应用于宇宙学,天体物理学,量子力学,和其他学科。然而,因为科学技术发展的限制、认知的不足,爱因斯坦的两个原则性的问题被遗留下来,没有得到解决。直到2009年,俄罗斯物理学家和我国物理学家华棣先生先后发表了新的相对论,弥补了百年前爱因斯坦遗留下的问题,完善了相对论原理。1狭义相对论的基本原理 到了十九世纪后期,在实验中证实了著名的物理学家麦克斯韦的“电磁场理论”的真实性。当时,在物理界有两个不同的观点,但后来物理学家们发现这是与实验结论相背的。于是洛伦兹提出一个假设:所有物质在以“以太”的形式运动时,都会发生沿运动方向的收缩现象。但是,爱因斯坦的研究从另一个方向开始,认为:想要解决一切的困难,那么必须完全摒弃牛顿所建立的绝对时空的概念,并提出了两个基本的假设。由于这两条基本假设在理论上是自洽的,并与大量的实验结果相吻合。因此,只能称之为假设。 否认宇宙中存在着特殊的物质“以太”,同时也排除存在着处于特殊优越地位的惯性系。那么,各个惯性系都应该存在平等、等价的地位,这就是狭义相对论的出发点,也是总思想。这一思想就成为了第一条基本原理。同时,以此原理为基础在处理具体问题时,爱因斯坦又假定了在各个惯性系中的真空光速是个不变量,这就是光速不变原理。 1.1 相对性原理 所有惯性参考系统对任何物理规律(力学的、电学的等等)都是等价的。也就是说,在实验室进行任何物理实验都无法确定实验室是“绝对静止”呢,还是“绝对地”

狭义相对论的整个推导过程

狭义相对论的整个推导过程 一、两大假设 1.惯性系的平权 2.光速不变原理 二、洛仑兹变换 令x’=k1(x-ut) x=k2(x’+ut’) 根据假设1,有k1=k2 令k1=k2=γ 所以x’x=γ^2(x-ut)(x’+ut’) 根据假设2,有 x=ct,x’=ct’ 所以c^2tt’=γ^2(c-u)(c+u)tt’ 所以γ=1/sqr(1-u^2/c^2) 所以x’=γ(x-ut) x=γ(x’+ut’) 由x’=γ(x-ut),得 ct’=γ(x-ut) 所以t’=γ(x/c-ut/c) 所以t’=γ(t-ux/c^2) 同理,有t=γ(t’+ux’/c^2) 因为很自然的有 y’=y,z’=z y=y’,z=z’ 所以 x’=γ(x-ut) x=γ(x’+ut’) y’=y y=y’ z’=z z=z’ t’=γ(t-ux/c^2) t=γ(t’+ux’/c^2)

其中:γ=1/sqr(1-u^2/c^2) 三、洛仑兹速度变换 v x’=dx’/dt’=(dx’/dt)*[1/(dt’/dt)]=(v x-u)/(1-uv x/c^2) v y’=dy’/dt’=(dy’/dt)*[1/(dt’/dt)]=v y sqr(1-u^2/c^2)/(1-uv x/c^2) v z’=dz’/dt’=(dz’/dt)*[1/(dt’/dt)]=v z sqr(1-u^2/c^2)/(1-uv x/c^2) 同理,有 v x=(v x’+u)/(1+uv x’/c^2) v y=v y’sqr(1+u^2/c^2)/(1+uv x’/c^2) v z=v z’sqr(1+u^2/c^2)/(1+uv x’/c^2) 所以 v x’=(v x-u)/(1-uv x/c^2) v x=(v x’+u)/(1+uv x’/c^2) v y’= v y sqr(1-u^2/c^2)/(1-uv x/c^2) v y=v y’sqr(1+u^2/c^2)/(1+uv x’/c^2) v z’=v z sqr(1-u^2/c^2)/(1-uv x/c^2) v z=v z’sqr(1+u^2/c^2)/(1+uv x’/c^2)四、 因为t’=γ(t-ux/c^2) 所以t1’=γ(t1-ux1/c^2) t2’=γ(t2-ux2/c^2) 所以t’=t2’-t1’=γ[(t2-t1)-u(x2-x1)/c^2] (x1=x2) 所以t’=γt 又因为x=γ(x’+ut’) 所以 x1=γ(x1’+ut1’) X2=γ(x2’+ut2’) 所以l0=x2-x1=γ[(x2’-x1’)+u(t2’-t1’)] 所以l0=γl 所以l=l0/γ 所以 t’=γt’, l=l0/γ其中:γ=1/sqr(1-u^2/c^2) 五、

相关主题
文本预览
相关文档 最新文档