当前位置:文档之家› Ensembl查找基因启动子(promoter)、内含子、外显子序列

Ensembl查找基因启动子(promoter)、内含子、外显子序列

Ensembl查找基因启动子(promoter)、内含子、外显子序列
Ensembl查找基因启动子(promoter)、内含子、外显子序列

基因启动子分析基本流程

“螺旋讲堂”2008 年第十一课----“基因启动子分析基本流程”
“螺旋讲堂”2008年第十一课----“基因启动子分析基本流程”
螺旋 亲爱的螺友们,大家好!欢迎光临螺旋讲堂,很高兴有机会和大家相聚螺旋网,让 我们一同在讨论中学习,在交流中成长! 分子生物学发展迅猛,新方法新技术新发现层出不穷,但是我想,我们的基础研究从 某种意义上来说,可以简单的分为两大部分,一个是基因的表达,另一个是基因的功能。当 然,这个基因的概念现在已经不仅仅是指编码蛋白的 DNA 序列了。 我们这期主要探讨基因的表达。而转录调控在基因表达中占有很重要的地位。基因 的转录调控机制非常复杂,这些理论有机会我们再详细探讨,这里就不多介绍了,我们主要 谈一下对于一个新的基因,如何开始他的转录调控研究,第一步到底该怎么做呢? 这里提供一些简单的入门级别的方法,希望对大家有用。相信还有更多更好更实用 的方法,也希望螺友们能够拿出来和大家分享,共同进步! 本次讲座共分为五个部分主要是讲第一部分,因为这个一般的文献和书籍都很少有 详细说明.
一:克隆目的基因基本启动子序列 我们都知道, 基因的基本启动子一般是在基因转录起始位点上游, 当一个基因在没有 确定其转录起始位点的时候,我们假定 NCBI 上提交的序列就是他的完整转录本,那么他的 第一个碱基就是他的转录起始位点。而基因的基本启动子一般就是在转录起始位点的上游 2000bp 左右和下游200bp 左右,当然,这个是一般情况,具体问题还要具体分析.尤其现在发 现一般的基因都是有几个转录起始位点的. 我们通过该基因 mRNA 序列和基因组序列 BLAST, 就能够在染色体上找到这段基因 组序列。我这里用 human 的 AGGF1基因做个例子给大家具体演示一下.
https://www.doczj.com/doc/742547072.html,

DNA启动子概述

启动子概述 启动子是DNA链上一段能与RNA聚合酶结合并能起始mRNA合成的序列,它是基因表达不可缺少的重要调控序列。启动子是一段位于结构基因5’-端上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合,并具有转录起始的特异性。基因的特异性转录取决于酶与启动子能否有效地形成二元复合物。启动子分三类:启动子Ⅰ、启动子Ⅱ、启动子Ⅲ.只有启动子Ⅱ指导mRNA的转录。真核生物启动子Ⅱ由两大部分组成:上游元件(upstream element)和启动子核心(core promoter)。上游元件与转录的效率有关;启动子核心包括3部分:TATA 盒、起始子(initinator)及下游元件(downstream element)。TATA盒为转录调控因子包括各种调节蛋白的结合区,与转录起始位点的精确选择及转录有关,起始子是转录起始所必须,下游元件作用尚不清楚。原核生物启动子区范围较小,包括TATAAT区(Pribnow区)及其上游的TTGACA区。 启动子是一段提供RNA聚合酶识别和结合位点的DNA序列,位于基因上游。启动子具有如下特征: 1序列特异性。在启动子的DNA序列中,通常含有几个保守的序列框,序列框中碱基的变化会导致转录启动活性的改变。 2方向性。启动子是一种有方向性的顺式调控元件,有单向启动子和双向启动子两类。 3位置特性。启动子一般位于所启动转录基因的上游或基因内的前端。处于基因的下4种属特异性。原核生物的不同种、属,真核生物的不同组织都具有不同类型的启动 没有启动子,基因就不能转录。原核生物启动子是由两段彼此分开且又高度保守的核苷酸序列组成,对mRNA的合成极为重要。启动子区域:(1)Pribnow盒,位于转录起始位点上游5—10bp,一般由6~8个碱基组成,富含A和T, 故又称为TATA盒或—10区。启动子来源不同,Pribnow盒的碱基顺序稍有变化。(2)—35区,位于转录起始位点上游35bp处,故称—35区,一般由10个碱基组成。 质粒设计时都需要加入启动子序列,以保证目的基因的表达。启动子可分为诱导型启动子和组成型启动子两大类,后者包括CMV,SV40,T7,pMC1,PGK启动子等。一下介绍几个常见的启动子。 (1)U6启动子 U6是二型启动子,一般发现是启动小片段,不带PolyA尾的序列。由Ⅲ类RNA聚合酶启动子U6启动子转录产生shRNA,经剪切后产生成熟siRNA,产生干扰效果。这一类 启动子在腺病毒和慢病毒干扰载体的构建中应用很多。U6更多的是用在shRNA的启动,来达到敲低一个基因的作用。

找一个基因的启动子

1、UCSC (1)网址:https://www.doczj.com/doc/742547072.html,/cgi-bin/hgNear 在Genome里选择物种,比如human,search里输入你的基因名PTEN,点击Go (2)出现新的页面,看到“Known Gene Names”下面的PTEN了吧,点它 (3)又回到了和(1)类似的页面,此时,点击sequence (4)出现一个新的页面,选中promoter,同时可以输入数值修改具体的序列区域,比如Promoter including 2000 bases upstream and 100 downstream,即表示启动子-2000~+100区域 (5)点击“get sequence”,出现页面中最上面的序列“>uc001kfb.1 (promoter 2000 100) PTEN - phosphatase and tensin homolog”就是你要的人PTEN启动子-2000~+100区域的序列了 2、Ensembl (1)网址:https://www.doczj.com/doc/742547072.html,/index.html 在“Search Ensembl“标题下search后的下拉框中选中物种名homo sapiens(人),for框中输入基因名PTEN,点击Go (2)出现的新页面中比较乱,但不要管它,直接寻找“Ensembl protein coding gene ”字样的,对,也就是第二个,点击它 (3)新出现的页面也很乱,不过依然不用管它,看到左侧有点肉色(实在不知道怎么描述了)的那些选项了吗,对,就是“Your Ensembl”下面那一堆,在里面找“Genomic sequence”,点它 (4)现在的界面就一目了然了,在“5' Flanking sequence”中输入数值确定启动子长度(默认为600),比如1000,点击update; (5)出现的序列中,标为红色的就是基因的外显子,红色之间黑色的序列就是内含子,而第一个红色自然就是第一外显子了,那么从开始的碱基一直到第一个红色的碱基间自然就是启动子-1000~+1的序列啦 这样,你不仅查到了启动子,连它的外显子、内含子序列也全部搞定了

怎么查找一个基因的启动子序列

定义:启动子是参与特定基因转录及其调控的DNA序列。包含核心启动子区域和调控区域。核心启动子区域产生基础水平的转录,调控区域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。 区域:启动子的范围非常大,可以包含转录起始位点上游2000bp,有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。 8票 票数 Do One Thing, And Do It Well. mybbff edited on 2005-07-22 08:41 举报 ?超级细菌耐药性基因多重PCR检测 ?【原创】ensembl 改版后如何查找启动子 ?【原创】使用UCSC查找一个基因的启动子序列(终) ?【共享】如何查找基因启动子,外显子,内含子序列-最新的资料 Revelation 2005-05-07 11:23 消息引用收藏分享 分享到哪里? ?复制网址 ?新浪微博

?34 积分 ?12 得票 ?246 丁当加关注 ?豆瓣社区 ?腾讯微博 ?开心网 ?人人网 下面以BCL-2基因为例,查找查找该基因的启动子区域,首先要找到该基因的基因组序列。去NCBI吧,在Search的下拉菜单里找到Gene,在检索项里输入Bcl-2,检索第一项就是bcl-2 for human,点进去看看啥样。。。 0票 票数 Do One Thing, And Do It Well. 举报

?? 【消息】ACEI + ARB,你给血透患者用这样的组合吗? Revelation ?34 积分 ?12 得票 ?246 丁当加关注2005-05-07 11:29 消息引用收藏分享 分享到哪里? ?复制网址 ?新浪微博 ?豆瓣社区 ?腾讯微博 ?开心网 ?人人网 首先你可以看到该基因的参考序列(reference sequence),然后看到bcl-2的位置和基因组背景。bcl-2上游是PHLPP,下游是FVT1基因。在这个长长的网页的最后是已经注册的Bcl-2基因的信息。

如何查找一个基因的启动子序列

如何查找一个基因的启动子序列 发表者:刘小丰 (访问人次:6102) 刘小丰收集整理 定义:启动子是参与特定基因转录及其调控的DNA序列。包含核心启动子区域和调控区域。核心启动子区域产生基础水平的转录,调控区域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。 区域:启动子的范围非常大,可以包含转录起始位点上游2000bp,有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。 这项搜寻要从UCSC基因组浏览器开始,网址为 https://www.doczj.com/doc/742547072.html,/cgi-bin/hgGateway。以编码pendrin (PDS)的基因为例来说明上述问题。PDS与耳蜗的异常发育、感觉神经性听力下降以及弥散性甲状腺增大(甲状腺肿)有关。 进入UCSC的主页后,在Organism的下拉菜单中选择Human,然后点击Browser。使用者现在到了人类基因组浏览器入口。本例的搜寻很简单:在assembly的下拉菜单中选择Dec. 2001,在position框中键入pendrin,然后点击Submit。返回的页面结果显示一个已知的基因和两个mRNA序列。继续点击mRNA序列的登录号AF030880,出现包含这个mRNA区域的图解概要。为了获得这个区域更清晰的图像,点击紧靠zoom out的1.5X按钮。最后点击页面中部的reset all按钮,使各个路径的设置恢复默认状态。 然而,对于本例的搜寻目的来说,默认设置不是理想的设置。按照视图利用页面底部的Track Controls按纽,将一些路径设置为hide模式(即不显示),其他设置为dense模式(所有资料密集在一条直线上);另一些路径设置为full模式(每个特征有一个分开的线条,最多达300)。在考虑这些路径内究竟存在那些资料之前,对这些路径的内容和表现做一个简要的讨论是必要的,许多这些讨论是由外界提供给UCSC的。下面是对基因预测方法的更进一步讨论,这些信息也可以在其他地方找到。 对于Known Genes(已知基因)和预测的基因路径来说,一般的惯例是以一个高的垂直线或块状表示每个编码外显子,以短的垂直线或块状表示5′端和3′端非翻译区。 起连接作用的内含子以非常细的线条表示。翻译的方向由沿着细线的箭头指示。 Known Genes来自LocusLink内的mRNA参照序列,已经利用BLAT程序将这些序列与基因组序列进行比对排列。 Acembly Gene Predictions With Alt-splicing路径是利用Acembly程序将人类mRNA 和EST序列数据与人类基因组序列进行比对排列而来的。Acembly程序试图找到mRNA与基因组序列的最好的比对排列以及判断选择性剪接模型。假如有多于1个的基因模型具有统计学意义,则它们都全部显示出来。有关Acembly的更多信息可以在NCBI的网站找到(https://www.doczj.com/doc/742547072.html,/IEB/Research/Acembly/)。 Ensembl Gene Predictions路径由Ensembl提供。Ensembl基因通过许多方法来预测,包括与已知mRNA和蛋白质进行同源性比较,ab initio基因预测使用GENSCAN和基因预测HMMs。 https://www.doczj.com/doc/742547072.html,/ensembl/ Fgenesh++ Gene Predictions路径通过寻找基因的结构特征来预测基因内部的外显子,例如剪接位点的给位和受位的结构特征,利用一

启动子分析流程

“螺旋课堂”2008 年第十一课----“基因启动子分析基本流程”
“螺旋课堂”2008年第十一课----“基因启动子分析基本流程”
螺旋 亲爱的螺友们好,大家好!欢迎光临螺旋讲堂,很高兴有机会和大家相聚螺旋网, 让我们一同在讨论中学习,在交流中成长! 分子生物学发展迅猛,新方法新技术新发现层出不穷,但是我想,我们的基础研究从 某种意义上来说,可以简单的分为两大部分,一个是基因的表达,另一个是基因的功能。当 然,这个基因的概念现在已经不仅仅是指编码蛋白的 DNA 序列了。 我们这期主要探讨基因的表达。而转录调控在基因表达中占有很重要的地位。基因 的转录调控机制非常复杂,这些理论有机会我们再详细探讨,这里就不多介绍了,我们主要 谈一下对于一个新的基因,如何开始他的转录调控研究,第一步到底该怎么做呢? 这里提供一些简单的入门级别的方法,希望对大家有用。相信还有更多更好更实用 的方法,也希望螺友们能够拿出来和大家分享,共同进步! 本次讲座共分为五个部分主要是讲第一部分,因为这个一般的文献和书籍都很少有 详细说明.
一:克隆目的基因基本启动子序列 我们都知道, 基因的基本启动子一般是在基因转录起始位点上游, 当一个基因在没有 确定其转录起始位点的时候,我们假定 NCBI 上提交的序列就是他的完整转录本,那么他的 第一个碱基就是他的转录起始位点。而基因的基本启动子一般就是在转录起始位点的上游 2000bp 左右和下游200bp 左右,当然,这个是一般情况,具体问题还要具体分析.尤其现在发 现一般的基因都是有几个转录起始位点的. 我们通过该基因 mRNA 序列和基因组序列 BLAST, 就能够在染色体上找到这段基因 组序列。我这里用 human 的 AGGF1基因做个例子给大家具体演示一下.
https://www.doczj.com/doc/742547072.html,

基因启动子分析

基因启动子分析 一:克隆目的基因基本启动子序列 我们都知道,基因的基本启动子一般是在基因转录起始位点上游,当一个基因在没有确定其转录起始位点的时候,我们假定NCBI上提交的序列就是他的完整转录本,那么他的第一个碱基就是他的转录起始位点。而基因的基本启动子一般就是在转录起始位点的上游2000bp左右和下游200bp左右,当然,这个是一般情况,具体问题还要具体分析.尤其现在发现一般的基因都是有几个转录起始位点的. 我们通过该基因mRNA序列和基因组序列BLAST,就能够在染色体上找到这段基因组序列。我这里用human的AGGF1基因做个例子给大家具体演示一下. 1 首先需要在NCBI里面查找到AGGF1基因的mRNA序列,这个我想大家都应该很清楚,如下图.

2 然后就是用这段mRNA序列和人类的基因组序列BLAST 3 BLAST得到了很多结果,我们往往选择最上面那个最匹配的结果。

4 点击之后就可以看到下图,这个基因的14个外显子和13个内含子在5号染色体上的位置一目了然,第一个外显子在上面,说明这个基因在染色体上是正向的,基本启动子就应该在第一外显子上面,我用红色的方框标明了。 5 大家有没有注意到左上方有个数据框,我把数值改为76,360K 到 76,362.200 ,刚好2200BP,包括了第一个外显子的前200BP左右. 然后点击红色框标明的Download/view sequence.

6 然后就到了这个界面, Sequence Format 选择GenBank, 然后点击 Display. 就得到我们所需要的序列了. 7 这里我们可以看到1989到2201是AGGF1的mRNA序列,说明我们的确找到了该基因5'非翻译区的上游启动子序列.建议将这2200bp都克隆下来. 以上的步骤就是基因基本启动子的查找,其实还有很多调控序列是在基因内含子区域或者是基因的3'非翻译区等,序列查找的步骤和上面是一样的.

人全外显子组序列捕获及第二代测序

人全外显子组序列捕获及第二代测序 概述 外显子组是指全部外显子区域的集合,该区域包含合成蛋白质所需要的重要信息,涵盖了与个体表型相关的大部分功能性变异。外显子组序列捕获及第二代测序是一种新型的基因组分析技术:外显子序列捕获芯片(或溶液)可在同一张芯片上以高特异性和高覆盖率捕获研究者感兴趣的目标外显子区域,后续利用Solexa/SOLiD/Roche 454测序直接解析数据。 与全基因组重测序相比,外显子组测序只需针对外显子区域的DNA 即可,覆盖度更深、数据准确性更高,更加简便、经济、高效。可用于寻找复杂疾病(如:癌症、糖尿病、肥胖症等)的致病基因和易感基因等的研究。同时,基于大量的公共数据库提供的外显子数据,我们能够结合现有资源更好地解释我们的研究结果。 目前,SBC提供的外显子组序列捕获芯片是NimbleGen Sequence Capture 2.1M Human Exome Array及Agilent SureSelect Target Enrichment System(Human Exome)。 技术路线 以Nimblegen外显子捕获结合Solexa测序为例加以说明:基因组DNA首先被随机打断成500bp左右的片段,随后在DNA片段两端分别连接上接头。经过PCR库检合格后的DNA 片段与NimbleGen 2.1M Human Exome Array芯片进行杂交。去除未与芯片结合的背景DNA 后,将经过富集的外显子区域的DNA片段洗脱下来。这些DNA片段又随机连接成长DNA片段

后,再次被随机打断并在其两端加上测序接头,经过LM-PCR的线性扩增,在经qPCR质量检测合格后即可上机测序。 外显子组测序的实验流程示意图(https://www.doczj.com/doc/742547072.html,) 生物信息学分析流程图 研究内容 1.外显子组捕获与测序 将基因组DNA随机打断成片段,通过与人全外显子捕获芯片杂交富集外显子区域,通过第二代测序技术对捕获的序列进行测序。 2.基本数据分析 数据产出统计:对测序结果进行图像识别(Base calling),去除污染及接头序列;统计结果包括:测定的序列(Reads)长度、Reads数量、数据产量。 3. 高级数据分析 高级数据分析内容包括: (1)Clean reads序列与参考基因组序列比对; (2)目标外显子区域测序深度分析; (3)目标外显子区域一致序列组装;

如何查找一个基因的启动子序列

如何查找一个基因的启动子序列 如何查找一个基因的启动子序列 定义:启动子是参与特定基因转录及其调控的DNA序列。包含核心启动子区域和调控区域。核心启动子区域产生基础水平的转录,调控区域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。 区域:启动子的范围非常大,可以包含转录起始位点上游2000bp,有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。南京妇幼保健院乳腺科刘小丰 这项搜寻要从UCSC基因组浏览器开始,网址为 https://www.doczj.com/doc/742547072.html,/cgi-bin/hgGateway。以编码pendrin (PDS)的基因为例来说明上述问题。PDS与耳蜗的异常发育、感觉神经性听力下降以及弥散性甲状腺增大(甲状腺肿)有关。 进入UCSC的主页后,在Organism的下拉菜单中选择Human,然后点击Browser。使用者现在到了人类基因组浏览器入口。本例的搜寻很简单:在assembly的下拉菜单中选择Dec. 2001,在position框中键入pendrin,然后点击Submit。返回的页面结果显示一个已知的基因和两个mRNA

序列。继续点击mRNA序列的登录号AF030880,出现包含这个mRNA区域的图解概要。为了获得这个区域更清晰的图像,点击紧靠zoom out的1.5X按钮。最后点击页面中部的reset all按钮,使各个路径的设置恢复默认状态。 然而,对于本例的搜寻目的来说,默认设置不是理想的设置。按照视图利用页面底部的Track Controls按纽,将一些路径设置为hide模式(即不显示),其他设置为dense模式(所有资料密集在一条直线上);另一些路径设置为full 模式(每个特征有一个分开的线条,最多达300)。在考虑这些路径内究竟存在那些资料之前,对这些路径的内容和表现做一个简要的讨论是必要的,许多这些讨论是由外界提供给UCSC的。下面是对基因预测方法的更进一步讨论,这些信息也可以在其他地方找到。 对于Known Genes(已知基因)和预测的基因路径来说,一般的惯例是以一个高的垂直线或块状表示每个编码外显子,以短的垂直线或块状表示5′端和3′端非翻译区。 起连接作用的内含子以非常细的线条表示。翻译的方向由沿着细线的箭头指示。 Known Genes来自LocusLink内的mRNA参照序列,已经利用BLAT程序将这些序列与基因组序列进行比对排列。 Acembly Gene Predictions With Alt-splicing路径是利

外显子捕获结题报告

外显子捕获结题报告2010-11-22

内容 1 项目信息 (1) 2 工作流程介绍 (2) 2.1 Agilent液相捕获平台 (2) 2.2 NimbleGen 液相捕获平台 (3) 2.3 生物信息分析流程 (4) 3 分析报告 (5) 结果 (5) 3.1 标准生物信息分析 (5) 3.1.1 数据产出统计 (5) 3.1.2 目标区域单碱基深度分布图 (6) 3.1.3外显子捕获测序的均一性 (7) 3.1.4一致序列组装和SNP检测 (7) 3.1.5 SNP注释 (8) 3.1.6插入/缺失(indels)检测 (9) 3.1.7插入/缺失(indels)注释 (9) 3.2个性化分析 (9) 3.2.1氨基酸替换预测 (9) 3.2.2群体SNP检测和等位基因频率估计 (12) 3.2.3孟德尔遗传病分析 (13) 3.2.4 NGS-GW AS 分析 (14) 3.2.5正向选择信号的检测 (14) 4 数据分析方法说明 (15) 4.1信息分析软件及常用参数介绍 (15) 4.2参考数据库 (16) 4.3数据文件格式 (17)

1 项目信息 PROJECT NAME CONTRACT NUMBER SAMPLE INFORMATION Species Information Genome Information Additional Information CUSTOMER INFORMATION PI Contact Person Company Name Contact Methods Name Tel E-mail Name Tel E-mail CONTACT INFORMATION (BGI) Sales Information Name Tel E-mail Name Tel E-mail Customer Service Name Tel E-mail Name Tel E-mail PROJECT DIRECTOR APPROVAL THE RESULTS HAVE BEEN APPROVED AND CAN BE SUBMITTED Signature: Date:

如何查找一个基因的启动子序列

如何查找一个基因的启动子序列 关键词:基因启动子序列软 件 定义:启动子是参与特定基因转录及其调控的DNA序列。包含核心启动子区域和调控区域。核心启动子区域产生基础水平的转录,调控区域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。 区域:启动子的范围非常大,可以包含转录起始位点上游2000bp,有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。 这项搜寻要从UCSC基因组浏览器开始,网址为https://www.doczj.com/doc/742547072.html,/。以编码pendrin (PDS)的基因为例来说明上述问题。PDS与耳蜗的异常发育、感觉神经性听力下降以及弥散性甲状腺增大(甲状腺肿)有关。 进入UCSC的主页后,在Organism的下拉菜单中选择Human,然后点击Browser。使用者现在到了人类基因组浏览器入口。本例的搜寻很简单:在assembly的下拉菜单中选择Dec. 2001,在position框中键入pendrin,然后点击Submit。返回的页面结果显示一个已知的基因和两个mRNA序列。继续点击mRNA序列的登录号AF030880,出现包含这个mRNA区域的图解概要。为了获得这个区域更清晰的图像,点击紧靠zoom out的1.5X按钮。最后点击页面中部的reset all按钮,使各个路径的设置恢复默认状态。 然而,对于本例的搜寻目的来说,默认设置不是理想的设置。按照视图利用页面底部的Track Controls按纽,将一些路径设置为hide模式(即不显示),其他设置为dense模式(所有资料密集在一条直线上);另一些路径设置为full 模式(每个特征有一个分开的线条,最多达300)。在考虑这些路径内究竟存在那些资料之前,对这些路径的内容和表现做一个简要的讨论是必要的,许多这些讨论是由外界提供给UCSC的。下面是对基因预测方法的更进一步讨论,这些信息也可以在其他地方找到。 对于Known Genes(已知基因)和预测的基因路径来说,一般的惯例是以一个高的垂直线或块状表示每个编码外显子,以短的垂直线或块状表示5′端和3′端非翻译区。 起连接作用的内含子以非常细的线条表示。翻译的方向由沿着细线的箭头指示。 Known Genes来自LocusLink内的mRNA参照序列,已经利用BLAT程序将这些序列与基因组序列进行比对排列。

基因启动子分析基本流程

2008 年螺旋讲堂第十一课----“基因启动子分析基本流程”
“螺旋课堂”2008年第十一课----“基因启动子分析基本流程”
螺旋 亲爱的螺友们好,大家好!欢迎光临螺旋讲堂,很高兴有机会和大家相聚螺旋网,让我们一 同在讨论中学习,在交流中成长! 分子生物学发展迅猛,新方法新技术新发现层出不穷,但是我想,我们的基础研究从某种意 义上来说,可以简单的分为两大部分,一个是基因的表达,另一个是基因的功能。当然,这 个基因的概念现在已经不仅仅是指编码蛋白的核苷算序列了。 我们这期主要探讨基因的表达。 而转录调控在基因表达中占有很重要的地位。 基因的转录调 控机制非常复杂,这些理论有机会我们再详细探讨,这里就不多介绍了,我们主要谈一下对 于一个新的基因,如何开始他的转录调控研究,第一步到底该怎么做呢? 这里提供一些简单的入门级别的方法,希望对大家有用。相信还有更多更好更实用的方法, 也希望螺友们能够拿出来和大家分享,共同进步! 本次讲座共分为五个部分主要是讲第一部分 , 因为这个一般的文献和书籍都很少有详细说 明.
一:克隆目的基因基本启动子序列 我们都知道, 基因的基本启动子一般是在基因转录起始位点上游, 当一个基因在没有确定其 转录起始位点的时候,我们假定 NCBI 上提交的序列就是他的完整转录本,那么他的第一个 碱基就是他的转录起始位点。而基因的基本启动子一般就是在转录起始位点的上游2000bp 左右和下游200bp 左右, 当然,这个是一般情况,具体问题还要具体分析.尤其现在发现一般的 基因都是有几个转录起始位点的. 我们通过该基因 mRNA 序列和基因组序列 BLAST, 就能够在染色体上找到这段基因组序列。 我这里用 human 的 AGGF1基因做个例子给大家具体演示一下.

06-重测序、外显子组试卷答案.pdf

一、名词解释 1.比对将测序序列比对到参考基因组序列 2.单核苷酸多态性主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多 态性 3.三体家系样本,父亲,母亲,和孩子家系外显子组中的一组家系样本 4.小的核苷酸的插入缺失 5.拷贝数变异是由基因组发生重排而导致的,一般指长度为1 kb以上的基因组大片段 的拷贝数增加或者减少,主要表现为亚显微水平的缺失和重复 二、填空题 1.bwa GATK 2.1% 3. 全基因组重测序全外显子组区域捕获测序 4. snp indel CNV SV 5. 5 50X 6. 1.5 3.5 7.0.1% 1% 8.液氮冻存-80冰箱冻存 9.血液 10.Agilent SureSelect All Exon V4 (+ UTR), NimbleGen SeqCap EZ Human Exome Library v3.0, Illumina TruSeq Exome Enrichment Kit 51M(71M), 64M, 62M 三、问答题 1. 建库:将基因组DNA经Covaris破碎仪随机打断成长度为180-280bp的片段,末端修复和加A 尾后在片段两端分别连接上接头制备 DNA 文库。 捕获:带有特异index的文库pooling后与多达543,872个生物素标记的探针进行液相杂交,再使用带链霉素的磁珠将20,965个基因的334,378个外显子捕获下来。 扩增及测序:经PCR线性扩增后进行文库质检,合格即可进行测序。 2. 人类85%的疾病位点位于编码区 域外显子组可以提供更深的测序 深度外显子组花费更低 3. 数据质控,比对到参考基因组,去重复重校正,预测个体snp和indel,预测体细胞突变,预测CNV和SV,候选位点注释 4. 常染色体显性遗传 常染色体隐形遗传 伴X 染色体显性遗传 伴X 染色体隐性遗传 伴Y 染色体遗传 找Denovo mutation,只在患病孩子有,不在健康父母里存在的位点 5.

人外显子测序

人外显子测序 药明康德基因中心,陆桂1. 什么是外显子测序(whole exon sequencing)? 外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究基因的SNP、Indel 等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。 2. 外显子捕获试剂盒有哪些? 目前主要有Roche、Illumina和Agilent三家的外显子捕获试剂。Nimblegen和Illumina的捕获试剂盒中的探针是DNA探针,化学性质稳;Agilent的捕获试剂盒是RNA探针,有可能RNA 不是很稳定。 3. 外显子捕获效率是什么? 外显子测序过程中要用到杂交过程。在人的染色体上有许多与外显子有同源性的部分,这些有同源性的部分很可能在杂交过程中也被捕获下来。所以,测到的序列中,有一部分不是外显子序列。我们把测序得是外显子的部分占全部测序序列的比列称为捕获效率。 Nimblegen大约是70% Agilent大约是60% Illumina大约是50% 4. 外显子测序一般建议做多少倍的覆盖? 一般做100X或者150X。较高的覆盖倍数,对于测异质性的遗传变质,可以发现小比例的突变。另外,外显子测序的覆盖不是很均匀,这样较高的平均覆盖率有利于保证大部分的区域有足够的覆盖倍数。 5. 外显子测序能够测出多大的片段缺失? 大致能测出50bp的片段缺失。目前的测序主要还是用Hiseq 2000,单侧的测长就是100bp。由于外显子测序的覆盖很不平均,所以如果有大段的缺失,无法判断是因为杂交没有捕获到,还是因为缺失。目前能够测到的,就是在一个read中发现的缺失。一个read的长度也就是100bp,所以大到50bp以下的片段缺失可以从外显子测序中测出来。 6. 外显子捕获可以做CNV吗? 外显子测序因为有一个杂交捕获的过程,这样就会有一个杂交捕获效率的问题。各个外显子的杂交效率是不同的,其同源竞争的情况也不同,所以不同的外显子的覆盖率的差异就很大。所以一般情况下,外显子测序不能用于CNV的检测。但在癌症研究中,利用癌组织和癌旁组织对照,可以检测CNV。 现在我们有另外两种常规方法来检测CNV,一种是全基因组重测序,另外一种是用Affymetrix SNP6.0的芯片来测。其中Affymetrix SNP6.0的检测费用大约只有全基因测序费用的1/10,是一个相对经济的手段。 7. 外显子测序的优点是什么?

华大智造外显子捕获测序解决方案

华大智造外显子捕获测序解决方案 概述 随着测序技术发展和成本降低,临床外显子组测序(cWES)和全外显子测序(WES)在遗传病检测领域崭露头角。外显子测序借助捕获探针(DNA或RNA)对人基因组约1-2%的区域测序,可覆盖绝大多数基因的编码序列和>99%(临床基因组资源库,ClinGen)疾病相关区域。华大智造基于自有的探针合成平台和高通量测序仪(MGISEQ/BGISEQ 系列),能为客户提供外显子测序一站式解决方案。 图1 外显子测序示意图(以MGI测序平台为例)

MGIEasy 外显子组捕获V5探针试剂套装 MGIEasy 外显子组捕获V5探针试剂套装除了涵盖传统外显子探针覆盖的区域,还有针对性的做了探针优化,保证了生育健康、新生儿、心脑血管、遗传性肿瘤、单基因病、安全用药、个人基因组、遗传性耳聋、免疫缺陷、线粒体缺陷等致病基因的全覆盖。 产品亮点 ●探针区域69Mb ●更多的疾病致病位点 ●更优的数据利用率 ●稳定而高效的捕获效率 技术优势 数据库覆盖情况 MGI V5与竞品(Vendor A6/N3/I)比,有更多的独有区域,涵盖了华大自主研发的 图2 CCDS、GENCODE、UCSC、miRBase和RefSeq数据库基因数量覆盖情况 基因覆盖更全面

MGI V5能100%覆盖的基因数达到455个,远高于A5 (125个)、N3 (33个)和I (357个),其独有100%覆盖基因数达到160个,是A5和N3之和。 BBS10基因是巴比二氏综合征的致病基因,MGI V5完整涵盖了基因区和内含子区,其中包括ClinVar数据库中报道的已知临床突变位点。 基因覆盖均一性更优 MGI V5在测序深度达到100x时,96%的区域覆盖度均能达到20X以上。与竞品N3和I共有的区域,MGI V5显示了更优秀的覆盖均一性。 性能比较 图3 100%覆盖的基因数和BBS10基因覆盖情况 图4 >96%区域达到20X覆盖图5 共有区域的覆盖更均一

基因启动子分析基本流程

基因启动子分析基本流程


分子生物学发展迅猛,新方法新技术新发现层出不穷,但是我想,我们的基础研究从 某种意义上来说,可以简单的分为两大部分,一个是基因的表达,另一个是基因的功能。当 然,这个基因的概念现在已经不仅仅是指编码蛋白的 DNA 序列了。 我们这期主要探讨基因的表达。而转录调控在基因表达中占有很重要的地位。基因 的转录调控机制非常复杂,这些理论有机会我们再详细探讨,这里就不多介绍了,我们主要 谈一下对于一个新的基因,如何开始他的转录调控研究,第一步到底该怎么做呢? 这里提供一些简单的入门级别的方法,希望对大家有用。相信还有更多更好更实用 的方法,也希望螺友们能够拿出来和大家分享,共同进步! 本次讲座共分为五个部分主要是讲第一部分 因为这个一般的文献和书籍都很少有 详细说明.
一:克隆目的基因基本启动子序列 我们都知道, 基因的基本启动子一般是在基因转录起始位点上游, 当一个基因在没有 确定其转录起始位点的时候,我们假定 NCBI 上提交的序列就是他的完整转录本,那么他的 第一个碱基就是他的转录起始位点。而基因的基本启动子一般就是在转录起始位点的上游 2000bp 左右和下游200bp 左右,当然,这个是一般情况,具体问题还要具体分析.尤其现在发 现一般的基因都是有几个转录起始位点的. 我们通过该基因 mRNA 序列和基因组序列 BLAST, 就能够在染色体上找到这段基因 组序列。我这里用 human 的 AGGF1基因做个例子给大家具体演示一下.

1 首先需要在 NCBI 里面查找到 AGGF1基因的 mRNA 序列,这个我想大家都应该很清楚,如 下图.

外显子组测序

技术参数 样品要求捕获平台测序策略 测序深度 项目周期 外显子组测序 37天 1. 单基因病/复杂疾病有效测序深度50X以上 2. 肿瘤有效测序深度100X以上 注:可根据老师研究目的进行更高深度测序 HiSeq PE150 Agilent SureselectXT Custom Kit 样品总量:≥1.0 μg DNA (提取自新鲜及冻存样本) ≥1.5 μg DNA (提取自FFPE样本)样品浓度:≥20 ng/μl 参考文献 外显子组测序(Whole Exome Sequencing,WES)是利用探针杂交富集外显子区域的DNA序列,通过高通量测序,发现与蛋白质功能变异相关遗传突 变的技术手段。相比于全基因组测序,外显子组测序更加经济、高效。 1. 直接对蛋白编码序列进行测序,找出影响蛋白结构的变异 2. 高深度测序,可发现常见变异及频率低于1%的罕见变异 3. 针对外显子组区域测序,约占基因组的1%,有效降低费用,周期和工作量 技术优势 生物信息分析 基本信息分析 1. 数据质控:去除接头污染和低质量数据 2. 与参考序列进行比对、统计测序深度及覆盖度 3. SNP/InDel检测、注释及统计 4. Somatic SNV/InDel检测、注释及统计(成对样本) 高级信息分析(单基因病) 高级信息分析(复杂疾病) 高级信息分析(癌症) 1. 突变位点过滤 2. 显/隐性遗传模式分析(需老师提供家系信息) 2.1. 显性遗传模式分析 2.2. 隐性遗传模式分析 3. 候选基因功能注释 4. 新生突变筛选及分析(成三/成四家系) 4.1. de novo mutation 筛选 4.2. 新生突变速率计算 5. 候选基因功能富集 6. 蛋白互作网络分析(PPI) 7. 基因显著性分析 (推荐20对Case/Control or trios样本) 1. 突变位点过滤 2. 显/隐性遗传模式分析(需老师提供家系信息) 2.1. 显性遗传模式分析 2.2. 隐性遗传模式分析 3. 候选基因功能注释 4. 基因功能及通路分析 5. 家系连锁分析 6. 纯合子区域(ROH)分析 1. 易感基因筛查 2. NMF突变特征及突变频谱分析 3. 已知驱动基因筛选 4. 高频突变基因统计及通路富集分析 5. MRT高频突变基因相关性分析 6. OncodriveCLUST驱动基因预测 7. 高频CNV分布及重现性分析 8. 肿瘤纯度/倍性分析 9. 异质性/克隆结构分析 10. NovoDrug高频突变基因靶向用药预测11. NovoDR耐药突变筛选12. 基因组变异Circos图展示 案例解析 [案例一] 单基因病研究:外显子测序解析卵巢早衰的遗传因素[12] 卵巢早衰通常是指女性40岁之前闭经,1%的妇女患有此病,病因复杂,被认为受到遗传因素的影响。这项研究利用外显子测序技术首次在中东家系1(MO1DA)的卵巢早衰病人中发现了减数分裂基因中的STAG3基因突变可以导致隐性遗传卵巢早衰,也在小鼠动物模型和卵巢早衰病患中得到了证实。为探索卵巢早衰或卵巢功能不全的发生机理,以及阐明该病的临床高度异质性和遗传病因复杂性开辟了一个新的研究途径。 [案例二] 复杂疾病研究:外显子测序鉴定肌萎缩性脊髓侧索硬化症(ALS)的致病 基因[13] 肌萎缩性脊髓侧索硬化症(ALS),又称为渐冻症,是一种成年型的神经退行性疾病。本研究选取了47个父母+患病儿的ALS家系,利用全外显子测序寻找De novo mutatio n 。发现了25个de novo突变基因,进行功能聚类分析,锁定了1个与染色质包装、神经树突生长相关的基因CREST,后期通过细胞试验验证了该基因突变会影响神经元的伸展,证实CREST突变与ALS相关。 [案例三] 癌症研究:外显子测序研究局限性肺腺癌瘤内异质性[14] 本研究采用多区域取样分析瘤内异质性的研究思路,对11位患者的局限性肺腺癌的48个肿瘤样品进行了外显子测序。共鉴定出7269个体突变,其中21个是已知的与癌症相关的基因突变,76% 的体突变及21个已知癌症基因突变中的20个都可以在同一肿瘤的所有区域样品中检测到,表明对肿瘤的某一区域进行单次活检,以适当的深度对其测序,可以鉴别出绝大多数突变。而前期关于肾透明细胞癌的研究结果表明,肿瘤不同区域样品的共有突变仅占突变总数的31%~37%,说明肿瘤异质性在不同癌种间存在差异。 [1] Krawitz PM, Schweiger MR, R?delsperger C, et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome[J]. Nature Genetics, 2010, 42(10): 827-829.[2] Liu Y, Gao M, Lv YM, et al. Confirmation by exome sequencing of the pathogenic role of NCSTN mutations in acne inversa (hidradenitis suppurativa) [J]. Journal of Investigative Dermatology,2011, 131(7): 1570-1572. [3] Wei A H, Zang D J, Zhang Z, et al. Exome sequencing identifies SLC24A5 as a candidate gene for nonsyndromic oculocutaneous albinism[J]. Journal of Investigative Dermatology, 2013, 133(7): 1834-1840. [4] Sanna-Cherchi S, Sampogna R V, Papeta N, et al. Mutations in DSTYK and dominant urinary tract malformations[J]. New England Journal of Medicine, 2013, 369(7): 621-629.[5] Musunuru K, Pirruccello J P , Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia[J]. New England Journal of Medicine, 2010, 363(23): 2220-2227. [6] O'Roak B J, Deriziotis P , Lee C, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations[J]. Nature genetics, 2011, 43(6): 585-589. [7] Jones S, Wang T L, Shih I M, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma[J]. Science, 2010, 330(6001): 228-231. [8] Yan X J, Xu J, Gu Z H, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia[J]. Nature Genetics, 2011, 43(4): 309-315. [9] Rudin C M, Durinck S, Stawiski E W, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer[J]. Nature Genetics, 2012, 44(10): 1111-1116. [10] Yi X, Liang Y, Huerta-Sanchez E, et al. Sequencing of 50 human exomes reveals adaptation to high altitude[J]. Science, 2010, 329(5987): 75-78. [11] Tennessen J A, Bigham A W, O’Connor T D, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes[J]. Science, 2012, 337(6090): 64-69. [12] Caburet S, Arboleda V A, Llano E, et al. Mutant cohesin in premature ovarian failure[J]. New England Journal of Medicine, 2014, 370(10): 943-949.[13] Chesi A, Staahl B T, Jovicic A, et al. Exome sequencing to identify de novo mutations in sporadic ALS trios[J]. Nature Neuroscience, 2013, 16(7): 851-855.[14] Zhang J, Fujimoto J, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multi region sequencing[J]. Science, 2014, 346: 256-259. 群体研究 藏族人高原适应性研究[10];深度解析人类罕见遗传变异[11];…… 图1 STAG3 基因结构图 (红色箭头为 STAG3 基因突变位置) 图2 ALS家系图及CREST突变功能验证 图3 产生化疗抗性的个体样本中体突变的数量及频率

相关主题
文本预览
相关文档 最新文档