当前位置:文档之家› 地源热泵空调系统设计毕业设计

地源热泵空调系统设计毕业设计

地源热泵空调系统设计毕业设计
地源热泵空调系统设计毕业设计

地源热泵空调系统设计毕业设计

目录

1.文献综述 (1)

1.1 课题背景 (1)

1.2 国地源热泵发展简史 (1)

1.3 地源热泵发展趋势 (2)

1.4 国外地源热泵的发展 (3)

1.5 地源热泵技术在中国的发展优势 (3)

1.6 地源热泵技术在中国推广过程中可能遇到的问题 (5)

2. 初步设计方案 (7)

2.1 工程概况及暖通空调设计条件 (7)

2.2 气象和地质资料 (7)

2.3 地源热泵系统简介 (7)

2.4 初步设计 (8)

2.4.1 地源热泵系统地下换热器型式确定 (8)

2.4.2 空气处理方案与设备选择 (9)

2.4.3 系统划分与气流组织 (9)

2.4.4 设备与管路布置 (9)

2.4.5 空调系统控制原理简述 (9)

3. 负荷计算 (11)

3.1 冷负荷计算 (11)

3.1.1 冷负荷计算说明 (11)

3.1.2 夏季室外气象参数 (14)

3.1.3 各房间逐时冷负荷计算 (14)

3.1.4 各房间冷负荷汇总 (17)

3.2 热负荷计算 (17)

3.2.1 热负荷计算说明 (17)

3.2.2 冬季室外气象参数 (19)

3.2.3 热负荷计算结果汇总 (19)

4. 空气处理过程计算及设备选型 (20)

4.1 空气处理过程计算原理 (20)

3.2 室空气处理过程计算 (21)

4.3 风机盘管选型及校核 (26)

5 . 气流组织计算 (27)

5.1 侧送下回设计说明 (27)

5.2 气流组织计算 (28)

5.2.1 酒吧 (28)

5.2.2 客厅 (28)

5.2.3 餐厅 (29)

5.2.4 卧一 (30)

5.2.5 卧二 (30)

5.2.6 卧三 (31)

5.2.7 未命名房间 (32)

6. 空调设备选择及其空调系统设计 (33)

6.1 末端设备选择 (33)

6.1.1 风机盘管及新风机组的选择: (33)

6.1.2 新风机组选择 (34)

6.1.3 设备制冷工况校核 (35)

6.2 空调系统概述 (36)

6.2.1冷热源设备 (36)

6.2.2 地下埋管 (36)

6.2.3 风系统 (36)

6.2.4 水系统 (37)

6.2.5 膨胀水箱 (37)

6.2.6 分水器和集水器的选择 (37)

7. 冷冻水管路的设计及水力计算 (39)

7.1 冷冻水管路的设计 (39)

7.2 空调冷冻水系统管径的确定 (40)

7.3 冷冻水最不利环路水力计算 (41)

7.4 室冷冻水环路水泵选型 (43)

7.5 冷冻水系统的膨胀水箱选型 (43)

8. 地下埋管设计与计算 (44)

8.1 确定地下换热器的埋管形式 (44)

8.2 确定管路连接方式 (44)

8.3 选择地下换热器管材及竖埋管直径 (44)

8.4 地下换热器尺寸的确定及布置 (45)

8.4.1 确定地下换热器型号 (45)

8.4.2 确定地下换热器换热量 (46)

8.4.3 确定钻孔总长度,孔深及孔数 (46)

8.4.4 地下换热器阻力计算 (47)

8.4.5 地下换热器环路水泵选型 (49)

8.4.6地下换热器水管承压能力校核 (49)

9. 地板辐射设计 (51)

9.1 低温热水地板辐射简介 (51)

9.2 低温热水地板辐射采暖的特点 (51)

9.3 低温热水地板辐射采暖管材及布置形式 (52)

9.4 低温热水地板辐射设计 (52)

9.4.1 供暖热负荷计算 (52)

9.4.2 埋管面积计算 (53)

10. 消声与防振设计 (55)

10.1 噪声控制措施 (55)

10.2 系统隔振措施 (55)

11. 空调自控及全年运行要求 (57)

11.1 空调自控 (57)

11.2 风机盘管空调系统的全年运行调节 (57)

12. 主要设计技术经济指标分析 (58)

12.1经济比较分析 (58)

12.1.1 末端设备造价与运行造价 (58)

12.1.2 风冷热泵机组选型及造价和运行费用 (58)

12.1.3 地源热泵机组造价和运行费用 (58)

12.1.4 水泵造价和运行费用 (59)

12.1.5 地下埋管造价 (59)

12.1.6 初投资比较 (59)

12.1.7 运行费用比较 (59)

12.2方案设计技术经济分析 (60)

12.2.1 技术分析 (60)

12.2.2 经济性分析 (61)

13. 结语 (62)

致谢 (64)

参考文献 (65)

附录A 热负荷计算表 (67)

附录B 英文翻译 (74)

1.文献综述

1.1 课题背景

地热是一种可再生的自然能源。尽管目前它的应用还不能像传统能源(煤、石油、天然气、水力能和核能)那样广泛,但由于地壳里蕴藏着丰富的地热能,特别是在传统能源越来越缺乏的今天,地热能利用在许多国家已得到了相当的重视。地源热泵中央空调系统是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。地表浅层地热资源可以称之为地源,是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能,比人类每年利用能量的500倍还多。它不受地域、资源等限制,真正是量大面广、无处不在。这种储存于地表浅层近乎无限的可再生能源,使得地源也成为清洁的可再生能源一种形式。

地源热泵中央空调系统是利用水与地源(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地源中的热量“取”出来,供给室采暖,此时地源为“热泵”;夏季把室热量“取”出来,释放到地下水、土壤或地表水中,此时地源为“冷源”。地源热泵中央空调系统通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70—90%的燃料能转化为热量供用户使用,因此地源热泵中央空调系统要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;由于地源热泵中央空调系统的热源温度全年较为稳定,一般为9—16℃,其制冷、制热系数可达3.5—6.3,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50—60%。

地源热泵中央空调系统的污染物排放,与空气源热泵相比,相当于减少40%以上,与常规电供暖相比,相当于减少70%以上,如果结合其他节能措施减排会更明显。虽然也采用制冷剂,但比常规空调装置减少25%的充灌量。该装置的运行没有任何污染,可以建造在居民区,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。

1.2 国地源热泵发展简史

地源热泵并不是一种新的空调系统,早在20世纪30年代,欧洲就已经出现了工程的应用,当时主要用于冬季的供暖。20世纪70年代,出现能源危机,地源热泵

系统的工程应用形成高潮,技术日趋成熟。由于中国空调技术应用较晚,地源热泵作为传统空调的一个分枝,对大多数人说,确实较为陌生。

我国在地源热泵领域的研究始于20世纪80年代初的天津大学和天津商学院。自此,其他少数单位也先后在地热供暖方面进行了一系列的理论和试验研究,但是,由于我国能源价格的特殊性,以及其他一些因素的影响,地源热泵的应用推广非常缓慢。20世纪90年代以后,由于受国际大环境的影响以及地源热泵自身所具备的节能和环保优势,这项技术日益受到人们的重视,越来越多的技术人员开始投身于此项研究。

1995年,中国国家科技部与美国能源部共同签署了《中华人民国国家科学技术委员会和美利坚合众国能源部效率和可再生能源技术的发展与利用领域合作协议书》,并于1997年又签署了该合作协议书的附件六--《中华人民国国家科学技术委员会与美利坚合众国能源部地热开发利用的合作协议书》。其中,两国政府将地源热泵空调技术纳人了两国能源效率和可再生能源的合作项目,这一举措极大地促进了该技术的国际合作和推广应用。

1998年是我国在·该领域的一个里程碑,从这一年开始,国数家大学纷纷建立了地源热泵的实验台。其中,1998年建工学院建设了包括浅埋竖管换热器和水平埋管换热器在的实验装置;1998年建工学院建设了聚乙烯垂直地源热泵装置;1998年大学建设了水平埋管地源热泵实验装置;1999年同济大学建设了垂直地源热泵装置等。同时,我国也成立了一些专门的生产厂家,开始批量生产相关产品。这些科研单位和企业互相合作,在开发利用地源热泵技术方面取得了很大的进展,做了许多实验研究和工程示,产生了很多有效数据,这些宝贵的经验教训势必将大大加快我国发展地源热泵的步伐。

1.3 地源热泵发展趋势

地源热泵与中央空调相连接的供热/制冷系统是目前的发展趋势。综合利用低品位热能、高效率利用热能、简单化和一体化的地源热泵系统等都是目前地源热泵系统技术的前沿课题。根据地源热泵20年来的发展趋势,其系统技术的发展大致有如下三个方向:

(1)综合利用热能的趋势。将来的地源热泵系统不仅用于一般住宅、办公用户的供热和制冷,更趋向于将供热的废弃能量(冷能)和制冷的废弃能量(热能)综合利用,比如用供热的废弃冷能运转冷藏库、自动售货机等,用制冷的废弃热能供应温室养殖、种植和生活热水等。

(2)一体化趋势。随着新材料和新工艺的开发,将来的地源热泵系统可能将热泵的转换系统与地上散热系统一体化,使采热和传热的效率更高。

(3)实地建造的趋势。随着人们对居住和生活环境要求的不断提高,越来越多的建筑物需要常年供暖、制冷、热水和冷藏的功能。因此,充分利用建筑物的空间和周边的自然环境和自然能源,因地制宜地设计、制造和配套安装相应的地源热泵系统也将是一个发展方向。

1.4 国外地源热泵的发展

地能热泵系统在北美和欧洲都应用的比较普及,根据国际地热联合会( The geothermal heat pump consortium )的统计,到 2003 年底,采用地能热泵技术制冷供热的建筑面积美国为 3720万平方米,瑞典为 2000万平米,德国为 560万平米,加拿大为 435万平米。但北美的应用与欧洲的应用存在明显的差异。

北美的应用,地能热泵更多地偏重于解决建筑的空调制冷问题。在美国,政府投入很多的力量来支持地能热泵系统的推广,政府和学校经过多年的努力,建立了全国各地地质参数资料库,并在各州确立了经过认可的地能热泵推荐的工程商, ASHERE 也针对系统特殊要求在机组设计上建立了标准,同时政府支持在大地换热器设计以及工程施工方面的研究,而在不同的州,又有各自的政策来鼓励地能热泵系统的推广,如专门的补贴、政府推广等。从系统设计的角度看,虽然北美也有小型的水水热泵机组,但北美地能热泵系统更多地采用的是水环热泵系统,尤其对于一些大型的工商建筑,采用水环热泵正成为设计的主流趋势。美国著名的地能热泵制造商有CLIAMTMASTER 、 WATER FURNACE 等,他们提供符合 ARI 的专门用于地能系统的标准系列产品。而对于大地换热器,北美采用的多是单 U 型的垂直埋管方式和水平埋管的方式,钻孔深度为 50 -160 米。

在欧洲,由于环保和节能的要求,目前,在欧洲,地能热泵系统在供热方面积累了丰富的经验,从系统设计的角度看,欧洲多采用水系统,欧洲的水水热泵机组更多偏重于制热,但没有专门的地能热泵机组标准和专门的地能热泵设备制造商。而对于大地换热器,欧洲采用的多是双U 型的垂直埋管方式。

1.5 地源热泵技术在中国的发展优势

1)初期投资费用少。随着改革开放的不断深入,人们生活水症的不断提高,持续的高速经济增长导致人们对舒适生活的追求,从而使地源热泵这项崭新的技术在中国具有巨大的市场潜力。同时我们也要注意到,我国城市的建设步伐正在加快,每年

城镇新建住宅2.4亿平方米。而在建设新建筑之前并入集中地源热泵系统,其成本要远远低于旧建筑的改造(甚至可以低于一般空调系统!),这对我们这个“严寒”与“寒冷”采暖区几乎占了国土面积的70%和全国总建筑面积的50%的国家而言,节省的费用的巨大的。在美国,由于能源相对的便宜(与中国相近),而人工费用很高,一般一个家庭的安装费用在3000美元左右,地源热泵仍然具很强的市场竞争力。而我国由于人工费用比较低,与西方发达国家相比,我国的基建费用低。基建费用是地源热泵最主要的成本增加部分。由此可见,我国与国外发达国家相比,初期投资相对要少一些。

2)能够提高城市环境质量。随着人们生活水平的提高,对生活质的要求越来越高,环保意识增强,人们开始认识到高品质的空气是人类健康的保障。目前居民对空气污染的关注程度越来越高,城市(包括室)对人们生活以及身体的影响日益受到重视,在碰到身体不适的时候,很多居民开始考虑空气因素的影响。根据《1997年中国环境状况公报》,我国城市空气质量仍处于较重的污染水平。据统计,世界大气污染最严重的10座城市中,中国就占了7席,这也从一个侧面反映出我国城市空气质量不容乐观,加强空气治理,已经到了刻不容缓的时候。目前我国的能源结构中有一个最为不利的因素,即长期以来在能源的生产和消费中煤炭的比例占70%左右。为了彻底整治环境,减少温室气体排放,我国政府正在规划改变以煤为主的能源结构,以实现可持续发展战略。北京等城市正在考虑以电代煤的方法来解决城市污染的问题。每千瓦电能带来3至4千瓦热量的地源热泵将是极具竞争力的技术。由于电力是地源热泵的唯一动力,因此没有燃料分散燃烧所造成的大气污染。与此同时由于厂家密封制剂。使用过程中不泄露,不补充,减少了对臭氧层的破坏。分析和调查表明,地源热泵的应用对降低温室效应起了积极作用。可见,这项技术应用于中国将缓解城市空气污染问题。

3)能够缓解能源紧问题。进入新世纪,在生产力高速发展的条件下,人们越来越认识到地球上的资源和能源日益匣乏。我国能源短缺是一个不争的事实,与此同时,我国又存在能源利用率低的矛盾。据统计,我国总的能源利用率约为30%,这仅相当于发达国家90年代的水平。我国建筑耗能约占总耗能的25%,其中供热采暖能耗约占一半。能源短缺导致中国的能源价格越来越接近发达国家的水平。我国要在能源每年增长率仅为3%—5%的条件下满足国民经济持续每年增长8%—9%,就必须重视节能技术和节能产品的开发利用,这决定了我国必须在空调和取暖这一耗能大项上

(整理)地源热泵与传统空调运行费用比较.

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、夏季制冷90天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。 ·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、冬季制热120天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 冬季运行费用: 120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。 B、水冷冷水机组和燃油锅炉 选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243KW。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 冷却塔循环泵功率(估算):30KW(一用一备) ·夏季各设备的配电功率 · a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台 · b.空调侧循环泵:37kW/台。 · c.冷却塔循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.冷却水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·冷水水冷工程运行费用如下:

暖通空调设计中地源热泵的运用刘冬青

暖通空调设计中地源热泵的运用刘冬青 发表时间:2018-07-26T10:31:26.413Z 来源:《建筑学研究前沿》2018年第7期作者:刘冬青[导读] 在建筑行业飞速发展的带动下,暖通空调设计成为建筑设计的重要组成部分,直接影响着室内环境的舒适度 刘冬青 天润热电设计院有限公司山东济南 250000 摘要:在建筑行业飞速发展的带动下,暖通空调设计成为建筑设计的重要组成部分,直接影响着室内环境的舒适度。对此,相关设计人员应该充分重视起来,顺应节能减排的号召,在暖通空调设计中应用地源热泵系统,在保证系统功能正常发挥的基础上,尽量减少对于环境的污染和影响,推动我国建筑行业的健康发展。本文探讨了暖通空调设计中地源热泵的应用。关键词:暖通空调设计;地源热泵;应用在建筑行业不断发展的过程中,暖通空调设计也在不断创新、不断发展,在未来,地缘热泵技术是暖通空调设计发展的必然趋势之一,这种技术在暖通空调设计中的运用不仅可以保证室内环境的温度、湿度以及舒适程度,为人们提供更高品质的居住环境,同时可以实现节能减排的目标,减少对环境的污染。 1 地源热泵在暖通空调设计中的应用优势 1.1 系统稳定性好 北方地区温度较低,使用暖通空调的频率比较高,由于低温天气的影响,暴露在建筑外部的保温系统很容易损伤,但是地源热泵却是深埋在地下的,因此受到低温天气的影响较小,系统的稳定性和耐久性也比较强,同时,深埋在地下的地源热泵也不会影响建筑的美观性。 1.2 节能环保 地源热泵的热能主要依靠大地,通过热交换来调节建筑的内部温度,将这种技术应用到暖通空调设计中一方面可以大大减少废水、废气的排放,减少对环境的破坏,一方面可以降低资源消耗,响应国家节能减排的号召。 1.3 能源的利用率高 大地具有储存热能和冷能的功能,与其他环境介质相比,大地的温度变化是比较小的,因此在夏季,大地可以将热能存储在大地中供冬季使用,在冬季时,又可以将冷能量存储在大地中供夏季使用。地源热泵充分利用了大地的这个功能,通过与大地进行热交换来调节室内温度,这样的方式不仅可以减少环境污染,还能够提高能源的利用率。 2 暖通空调设计中地源热泵的应用 2.1 大地耦合热泵 它的热源、热汇是以地表浅层土壤为主,对比传统空气热泵具有如下优点:①与地表水与空气而言,土壤深入地下时,全年的温度波动相对较小,土壤影响地表的空气、温度,具有衰减、延迟作用。所以,多数条件下,热源、热汇宜作为热泵装置,确保系统高效率、稳定运行;②土壤作为热泵的热汇、热源,可取代传统空调的锅炉、冷却塔,减少空气污染,降低环境热污染;③同空气热泵比较,大地耦合热泵无除霜问题,无需风机回收土壤热量,可降低系统噪声等级;④土壤自身属于蓄冷体和蓄热体,所以,大地耦合热泵能结合太阳能集热装置,利用土壤放热功能、蓄热共鞥,获取最佳制冷效果、供热效果;⑤土壤传热性能较差,需提供较大传热面积,所需占地面积过大;⑥埋设地下管道时,其成本较高,运行故障检修难度较大;⑦当土壤干燥,降低其导热性能,在夏季时,向外排热难度大,呈不可逆运行状态。 2.2 地表水热泵 地表水热泵系统和地下水热泵技术的原理大致相同,区别之处是,地表水热泵系统是由地表水面下方的塑料管道构成的,塑料管道通过多重并联的形式,把地表水运行过程当中产生的热量通过热交换器进行交换,这样地表水热泵系统就可以在一定情况下代替土壤热能源交换系统。 2.3 地下水热泵 地下水热泵技术是地源热泵技术的重点研究对象。地下水热泵技术之所以能够被广泛应用,其原因有以下几点:第一,地下水热泵技术具有占地的面积小,并且布局严谨的特点。地下水热泵技术对于水井的占地面积要求不是很高,因此,抽取上来的地下水和地下水的回灌不会受到水井所占面积大小的影响。另外,较为严谨的水井系统布局也促进了地下水在抽取和回灌上的效率。第二,地下水热泵技术具有运行成本低的特点。地下水热泵系统所需单位容量的成本非常低,整个暖通空调系统的运行只需要有一口流量很高的井就能实现运行。第三,地下水热泵技术具有系统维护成本低和对环境影响小的特点。地下水热泵循环系统的设计当中合理有效的地下水热泵循环系统设计不仅能够提高系统的运行效率和稳定系统的运行而且还可以忽略对地下水热泵系统的日常维护,从而节约大量的维护成本,与此同时,在地下水的回灌下,地层的含水量基本不会发生变动,这就保证了地下水热泵循环系统在运行当中不会对环境造成破坏。 2.4 污水源热泵 污水源热泵,主要是从工业污水、城市污水中提取低品位热源热量,将其转化为高品质能源,直接向住宅用户提供热、冷负荷的热泵系统。使用污水源热泵,是指利用水质稳定、温度变化小的特点,以污水作为热源进行制冷、制热循环的一种空洞装置。它具有如下优点:①污水源热泵是利用污水处理厂出水量大,水质稳定,常年温度在13~25℃等特点,以污水作为热源进行制冷、制热循环的一种空调装置。污水源热泵具有热量输出稳定、COP 值高、换热效果好、机组结构紧凑等优点,是实现污水资源化的有效途径。②污水源热泵比燃煤锅炉环保,污染物的排放比空气源热泵减少40%以上,比电供热减少70%以上。它节省能源,比电锅炉加热节省2/3 以上的电能,比燃煤锅炉节省1/2 以上的燃料。由于污水源热泵的热源温度全年较为稳定,其制冷、制热系数比传统的空气源热泵高出40%左右,其运行费用仅为普通中央空调的50~60%。同时,它也存在一定缺陷,污垢还常常使流道表面的粗糙程度增加,引起摩擦系数和局部阻力系数的增加,这必然要引起整个换热器的流动阻力压降增大,故泵消耗的功率增加。所以在污水源热泵系统中换热器的设计、使用中,如何防垢、抑垢、除垢是非常重要的。 3 地源热泵应用的注意事项

某学校地源热泵系统的设计方案

某学校地源热泵系统的设计方案 [摘要] 随着我国建筑业持续发展,对建筑节能的要求越来越高,而供热系统和空调系统是建筑能耗的主要组成部分,因此,设法减小这两部分能耗意义非常显著。地源热泵供热空调系统是一种使用可再生能源的高效节能、环保型的系统。冬季通过吸收大地的能量,包括土壤、井水、湖泊等天然能源,向建筑物供热;夏季向大地释放热量,给建筑物供冷。与长久以来使用的煤、气、油等常规能源供热、制冷方式相比,具有清洁、高效、节能经济的特点。因地制宜的发展地源热泵系统,有利于优化能源结构,促进多能互补,提高能源利用效率,保护环境。本文对位于北京市海淀区某学校地源热泵设计方案进行介绍,并把地源热泵系统与传统采暖制冷方式从技术及经济方面的对比。选定采用地源热泵系统对建筑物采暖制冷。 [关键字] 地源热泵 项目简介 项目位于北京市海淀区清河龙岗路,总建筑面积43098.80平方米,其中地上部分34193.20平方米,地下部分8905.6平方米,整个校区包括4栋独立建筑(1号楼教学办公楼、2号楼培训楼、3号楼宿舍楼和4号楼食堂、篮球馆)。 一、地源热泵设计方案 各建筑面积及冷热负荷一览表(见表1) 根据表1所述冷、热负荷的计算,需设计配备3台地能热泵机组进行冷热水的制备,机组型号为2台YSSR-1100A/2和1台YSSR-700A/2。制热量为3224kW,制冷量为2896kW。冬季机组向末端提供50/45℃的热水,夏季机组向末端提供7/12℃的冷冻水。 根据本工程的特点、工程所在地的地质、水文条件及北京的环境条件,本工程设计采用地埋管式地源热泵。竖孔设计深度为80m,系统所需地埋管约674孔,竖孔开孔直径为150mm。孔内设置双“U” 型竖直地埋换热器,换热管采用PE100、管径DN32的HDPE管材。各孔间距约在4.5米,水平环路集管主干管采用异程布置,分支管采用同程布置。每一分支管带10~14个竖孔,每一分支管均从集管器或检查井(调节井)引出,所有分支管均可实现控制调节。 二、地源热泵系统与现有主要供暖方式分析 北京市目前可实行的供暖方式主要为市政热力(燃煤、燃气、燃油)、燃煤供暖、燃气供暖、燃油供暖、直接电采暖。地源热泵供暖属于新兴供热方式,节能环保,这项新技术已经被国家列入大力推广的行列,北京市也将在今后逐步推广该供暖新方式。现对各采暖方式的利弊进行分析与比选。

暖通空调设计毕业设计说明书

摘要 本设计为哈尔滨望江集团办公楼空调系统工程设计。哈尔滨望江集团办公楼属中小型办公建筑,本建筑总建筑面积4138m2,空调面积2833m2。地下一层,地上八层,建筑高度33.9m。全楼冷负荷为191千瓦,全楼采用水冷机组进行集中供给空调方式。 此设计中的建筑主要房间为办公室,大多面积较小,且各房间互不连通,应使所选空调系统能够实现对各个房间的独立控制,综合考虑各方面因素,确定选用风机盘管加新风系统。在房间内布置吊顶的风机盘管,采用暗装的形式。将该集中系统设为风机盘管加独立新风系统,新风机组从室外引入新风处理到室内空气焓值,不承担室内负荷。风机盘管承担室内全部冷负荷及部分的新风湿负荷。风机盘管加独立新风系统由百叶风口下送和侧送。水系统采用闭式双管同程式,冷水泵三台,两用一备;冷却水泵选三台,两用一备。 在冷负荷计算的基础上完成主机和风机盘管的选型,并通过风量、水量的计算确定风管路和水管路的规格,并校核最不利环路的阻力和压头用以确定新风机和水泵。 依据相关的空调设计手册所提供的参数,进一步完成新风机组、水泵、热水机组等的选型,从而将其反应在图纸上,最终完成整个空调系统设计。 关键词:风机盘管加独立新风系统;负荷;管路设计;制冷机组:冷水机组

Abstract The design for the Harbin Wangjiang Design Group office building air conditioning system. Harbin Wangjiang Group is a small and medium-sized office building office buildings, the total floor area of building is 4138m2, air-conditioned area is 2833m2. There are eight floor of the building, building height is 33.9m. Cooling load for the entire floor, 191 kilowatts, the whole floor using Central Cooling Chillers to focus on the way . This design of the main room of the building for office, most of them is very small, and the rooms are not connected, the selected air-conditioning system should be able to achieve independent control of each room, considering the various factors to determine the selection of fan-coil plus fresh air system. Arrangement in the room ceiling fan coil units, using the dark form of equipment. Set the focus on fan-coil system, plus an independent air system, fresh air from the outdoor unit to deal with the introduction of a new wind to the indoor air enthalpy value, do not bear the load of indoor. All bear the indoor fan-coil cooling load and part of its new rheumatoid load. Fan-coil plus an independent air system sent by the Venetian and the under side air delivery. Closed water system with a dual-track program, three cold-water pump, dual-use a prepared; cooling pumps three elections, one prepared by dual-use. In the cooling load calculation based on the completion of the selection of host and fan coil units, and air volume, the calculation of water, the wind pipe and water pipes to determine the specifications of the road and check the resistance to the most disadvantaged and the loop to determine the pressure head new fans and pumps. Based on the relevant manuals provided by air-conditioning design parameters, and further completion of the new air units, water pumps, hot water units, such as the selection, which will be reflected in their drawings, the final design of the entire air-conditioning system Key words: PAU+FCU systems; load; pipeline design; refrigeration machine; Chillers

上海世博轴江水源地源热泵系统设计

上海世博轴江水源地源热泵系统设计

一、世博园区简介

世博园区规划 F 区 文化博览中心 演艺中心世博中心 世博轴 中国馆 主题馆 VIP 生活中心Shangri-La hotel 非洲馆 欧洲馆 美洲馆 澳洲馆 亚洲馆 企业馆 最佳城市试验区

二、建筑概况 2 1 4 1 1 2 2 1 1 3 2 2 4 3 下 下 7. 3.7. 3.5 5.0 14.0 5.03.515.04. 4.3. 3.516.2 8. 3.5 216 90 1020 50100 0道路红线 228 3.5 16.5 35 4.5 55 25.0 121 38 121 671.0 道路红线 地下室边界 道路红线 道路红线 道路红线 道路红线道路红线地下室边界 800 磁悬浮控制线 上 南 路 上 南 路 路 明浦 路 明 浦 路 环 北 路 环 南 路 野 雪 历 城 路 路 浦 华路 野雪 路 环 南路 环 北 江 黄 浦 云 台 路 路 山 洪 浦明110KV 变电站 演艺中心 公共活动中心 餐饮娱乐广场 世博会期间高架步廊 主题展馆 停车场 广场 磁悬浮车站 中国馆 国家自建馆 国家自建馆 停车场 周家渡通信机房 8.0 围栏区 阳光谷D 阳光谷E 阳光谷A 阳光谷B 玻璃屋顶 滨江庆典广场会后开发高层 56 56 166 261 252 11.1 800 阳光谷C 道路红线 地下通道 接演艺中心地下 接公共活动中心地下 接中国馆 接磁浮车站 通道 地下通道接接轨道交通 通道 华 浦 路 +4.298+4.400 +4.000 +4.000+4.000 +4.500 +4.500 +4.000 下 下 82.1 61.5 85.1 591 75.9 623 83.4 59.5 .5.6 下沉式广场 (2#地块) (1#地块) 120 55地下通道一层通廊主入口(会中) 一层商业主入口(会后)地下一层入口 一层通廊主入口(会中) 一层商业主入口(会后)地下一层入口 一层安检入口(会中) 一层安检入口(会中) 一层商业主入口(会后)下沉式广场入口 下沉式广场入口 一、二层主入口 一层商业主入口(会后) 地下一层入口 地下一层入口 一层通廊主入口(会 中)一层商业主入口(会后) 一层通廊主入口(会中)一层商业主入口(会后)地下一层入口 地下一层入口10.00m 高架平台入口 995 接地铁车站地下通道一层通廊主入口(会 中) 一层商业主入口(会后)餐饮娱乐广场 地下车库出入口地下车库出入口+4.552 +4.600 地铁风口 地铁风口 接地铁广场 接地铁广场 660 9-10 660 X =-6065.3555Y =2039.6836 X =-6045.0653Y =2147.7960 X =-5041.6016Y =1948.5339 X =-5059.9552Y =1850.7413 702.3 22.470 70 150 146 50 150 16.8 800 40 155 10.00m 高架平台入口 南段用地 北段 800 阳光谷A 9.A C H J 1-1 3-31 下+4.200 +4.200 +4.200 +4.200+4.200-1.000+1.800+1.800 -1.000-1.000 下下下下下下 下 下 下 下 下 下 下 下 下 下 -1.000 -1.000-1.000-1.000-1.000-1.000+4.200-1.000-1.000 -1.000 -1.000 168 地下车道接 地块车库地下通道 接联合展馆 地下通道 北段 660 110 225 A C H J 70 70 995 995 X =-5728.1938Y =1976.1541 X =-5682.0769Y =2068.7362 X =-5203.0070Y =1978.8260 X =-5248.7401Y =1886.1718 20.0134 227 用地红线 用地红线 8.9 649.0674.0 22.4 1-1 3-2920.0 2.7 134 244 总平面图

第三章 地源热泵系统的设计及计算.

第三章地源热泵系统的设计及计算 一说到设计,人们往往想到的是工程技术人员的计算和绘图,当然这些都属于设计领域里的工作,而寻找解决问题的途径,也是设计任务之一。设计本身包括寻找解决问题的途径,所以它不限于事先构思,更不排斥实践,而应是思维活动与实践活动的统一。空调设计的任务及目的,就是把现有能效高的设备组织好、使用好、充分发挥它们的作用。 现代空调系统的不断发展使建筑物内的设施日益增多和复杂,这对改善人们的生活和工作环境有着积极作用,但同时也带来了由于系统设计、工程施工和运行管理不当而造成对自然环境和人体健康有害的因素。所以反过来力求解决这些问题就成为一种主要的推动力,促使空调技术更进一步向前发展。目前,建筑节能的重要性越来越引起人们的关注。从建筑设计方面来看,提高隔热保温性能,采用合理的朝向,增设必要的遮阳等可以减少空调负荷,降低能耗。对于确定的空调负荷,提高设备的效率和优化运行过程提供相应的硬件软件,都成为降低能耗的关健。 空调系统的设计一般采用工况设计法,是以夏季和冬季室外空气设计参数为依据的典型工况进行计算,并且是按最不利情况考虑,按照设备的额定工况选择指标。所以,设备选型较大。空调设备经常处于部分负荷状态下运行,必须要求设备在部分负荷运行时也能高效率运行。避免负荷变化了,而设备不能作相应调节,出现大马拉小车的现象;或设备也能调节负荷,但调节性能差,耗能指标落后。

因此,设计的任务就是要用先进的自控技术将空调全工况下的性能调整到最佳程度,这就是所谓的过程设计方法。 一、中央空调设计主要参考以下的规范及标准 1、通用设计规范 1).《采暧通风及空气调节设计规范》(GB50019-2003(2003 年版)); 2).《采暖通风及至气调节制图标准》(GBJ114-88) 3).《建筑设计防火规范》(GBJ116-87) 4).《高层民用建筑设计防火规范》( GBJ0045-95) 5).《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-95)2.专用设计规范: 1).《宿舍建筑设计规范》(JGJ36-87) 2).《住宅设计规范》(GB50096-99) 3).《办公建筑设计规范》(JG67-89) 4).〈旅馆建筑设计规范〉(JGJ67-89) 5).《旅游旅馆建筑热土与空气调节节能设计标准》(GB50189-93) 6).《地源热泵系统工程技术规范》(JGJ142-2004) 7).《地面辐射供暖技术规范》(GB50366-2005) 8).其它专用设计规范 3.专用设计标准图集: 1).《暖通空调标准图集》 2).《暖通空调设计选用手册》(上、下册)

中央空调系统毕业设计

中央空调系统毕业设计 篇一:某办公楼中央空调系统毕业设计全文 第一章工程概况 1.1 建筑说明 湖北科技学院办公楼位于湖北省咸宁市,地处夏热冬冷区,总建筑面积为10012㎡,其中空调面积为5114.7㎡。建筑总高度为12米,地上三层为办公用房以及会议室,每层层高均为4米。工程设计范围为1—3层空调与采暖设计,空调系统的设计满足室内工作人员对温度,湿度和新风的要求即可,为舒适性空调。 1.2 维护结构性能参数 外墙类型(自内至外):370mm页岩烧结多孔承重砖:K370=1.191W/(m·℃)取2%的销键作用的影响,则:K370=1.191W/(m2·℃)×1.02=1.22 W/(m2·℃); 内墙类型:20 mm水泥砂浆+240mm砖墙+20mm水泥砂浆,K=1.974W/(m2.K); 屋面类型:内粉刷(20mm)+钢筋混凝土(35mm)+水泥砂浆(20mm)+隔气层(5mm)+水泥膨胀珍珠岩350(200mm)+水泥砂浆(20mm)+卷材防水(5mm)+砾砂外表层(5mm),K=0.49W/(m2.K)。 楼板材料:7mm五夹板+370mm热流向下(水平、倾斜)60mm以上+80mm钢筋混凝土+25mm水泥砂浆+25mm大理石,

K=0.508 W/(m2·K); 外窗类型:PVC框+Low-E中空玻璃6+12A+6遮阳型,传热系数2.444 W/(m2.K)自身遮阳系数0.55,内遮阳系数0.60,有外遮阳;. 外门系列:节能外门,传热系数3.02 W/(m2.K);内门系列:木框夹板门,传热系数2.504 W/(m2.K);另外卫生间门窗玻璃均采用磨砂玻璃。窗高1800mm,窗台高900mm。维护结构热工性能参数如下表: 2 表1-1 维护结构热工性能参数 第二章空调负荷计算 2.1 设计参数 2.1.1 室外设计计算参数 台站位置:北纬 30°37′东经114°08′海拔高度:23.3m 大气透明度的等级为4 2.1.2 室内设计计算参数 参考《公共建筑节能设计标准》,确定各房间的设计参数如下表: 表2-2 室内设计计算参数 注:室内空气压力稍高于室外大气压。 2.2 冷负荷的计算

热能与动力工程热泵毕业设计

前言 我国每年大约有20亿平方米的建筑总量,接近全球年建筑总量的一半,建筑能耗约占全国社会终端总能耗的27.6%,因此建筑节能势在必行。可再生能源在建筑中的应用是建筑节能工作的重要组成部分。地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。 在大型商业建筑和公用建筑中,合理空调方案的确定是个至关重要的问题。按负担室内空调负荷所用介质分类,空调系统可分为全空气系统、全水系统、空气-水系统和冷剂系统。每种空调系统都有各自的适用性,对于建筑空间大,易于布置风道且对室内温、湿度洁净度控制要求严格的场合,适合用全空气系统。全水系统适合用于建筑空间小,不易于布置风道的场合。空气-水系统适用于室内温、湿度控制要求一般且层高较低,冷、湿负荷也较小的场合。对于空调房间布置分散,要求灵活控制空调使用时间且无法设置集中式冷、热源的场合适合用冷剂系统。 通过毕业设计消化和巩固大学四年学习的本专业全部理论知识和实际知识,并将它应用到工程实践中去解决工程的实际问题,熟悉有关的技术法规内容,培养施工设计的思维能力和制图技巧及对工程技术的认真态度。

第1章概述 1.1建筑概况 1.1.1设计地点 山东省青岛市。 1.1.2建筑物土建资料 见土建资料图纸。 1.1.3 建筑物使用功能 本次设计为商住两用建筑,一到五号楼。本次设计不考虑住宅部分。总占地面积约为8000㎡,空调面积为约18807㎡。楼底部作沿街店铺,小区配套服务设施,及设备用房。台湛路一层二层做商场,延安三路一层二层作沿街商铺。工程地下室作为地下车库。 1.1.4 建筑物的周围环境 本设计建筑物位于青岛市市北区,延安三路与台湛路交界处。 1.1.5 建筑物所在地区土质资料 根据勘探井的资料得知设计地点土质为粉质粘土,轻微潮湿,土壤导热系数为1.8 W/(m.K)左右,且地下八十米以上是非岩层地带,土壤导热情况良好,适合于作为热泵系统的冷热源。 1.2土壤源热泵 1.2.1 热泵系统的特点 a. 热泵空调系统是利用低位再生能的热泵技术,其特点如下: (1)用能遵循了能量的循环利用原则,避免了常规空调系统用能的单向性。所谓用能的单向性是指“热源消耗高位能(电、燃气、油与煤等)——向建筑物内提供低温的热量——向环境排放废物(废热、废气、废渣等)”的单向性用能

地源热泵系统方案

目录 一、项目概况 (1) 二、设计参考标准及规范 (1) 三、设计参数 (1) 1.室外气象参数 (1) 2.室内设计参数 (1) 四、中央空调设计 (2) 1.室内冷热负荷确定 (1) 2.末端系统确定 (2) 3.热泵机房的设计 (2) 4.地埋管设计 (3) 五、初投资分析 (3) 1.机房部分报价表 (3) 2.地埋部分报价表 (4) 3.地暖部分报价表 (4) 4.空调末端部分报价表 (5) 六、运行费用经济性分析 (6) 七、热泵中央空调 (7) 八、地埋管换热器施工工艺 (10)

一、项目概况 该项目为某某地源热泵中央空调工程,建筑分四层,地下一层、地上三层,建筑面积约为1071.3㎡,其中地下179.2㎡,地上892.1㎡,拟采用地源热泵中央空调系统。 二、设计参考标准及规范 三、设计参数 1.室外气象参数 1.室内冷热负荷确定 根据《民用建筑采暖通风与空气调节技术措施》,其空调负荷概算值为:

1)夏季采用风机盘管的形式 地板采暖的全称,低温地板辐射采暖,低温辐射地板采暖是通过埋设于地板下的加热管——地暖专用管或发热电缆,把地板加热到表面温度18至32℃,均匀地向室内辐射热量地板采暖而达到采暖效果。与传统的采暖方式相比,可以说有以下几个优势:房间温度分布均匀的采用采暖方式,由于是整个地板均匀散热,因此房间里的温差极小。而且室内温度是由下而上逐渐降低,地面温度高于人的呼吸系统温度,给人以脚暖头凉的舒适感觉。有利于营造健康的室内环境采用散热片取暖。高效节能由于采暖的辐射面大,节省空间。 3.热泵机房的设计 机房设备清单:

每个孔内埋设一个U型地耦管,所有的地耦管通过水平集、分管汇集,通过循环水泵进入热泵机组,形成一个闭式系统。地耦管内充注中间介质水作为冷热载体,中间介质在埋于土壤内部的封闭环路中循环流动,夏季通过土壤热交换器向土壤散热,冬季通过土壤热交换器从土壤中吸热,从而实现与土壤进行热交换的目的。该系统充分利用了地下土壤常年温度保持恒定的特点,是目前所有空调系统当中最节能的系统,也是环保、节能、“零”污染、“零”排放的一种空调系统。 地埋系统包括埋地换热器及附件,循环水泵、定压装置、过滤器、回填材料等设备。地埋管采用DN32规格的专用聚乙烯塑料管材。 孔间距不得小于垂直埋管最大负荷换热时在该区域内形成的温阶扩散直径。 地源热泵中央空调系统地下换热器系统孔间距布置可根据布置的空间的大小及换热负荷值取3-6m。本工程项目孔间距取4m。(施工时应现场可以做相应的调整)。 具体数据如下表: 五、初投资分析 1.机房部分报价表

水源热泵设计方案

水源热泵热水机组 设 计 方 案 方案目录 方案概述......................... 第一章水源热泵中央空调介绍.............. 第二章水源热泵中央空调相关政策依据........... 第三章方案设计..................... 第四章工程概算..................... 第五章水源热泵系统技术特点............... 第六章公司简介..................... 第七章工程清单目录...................

方案概述 本方案采用水源热泵中央空调新技术,水源热泵中央空调是二十世纪七十年代以来欧美发达国家大力推广的空调新技术。它是利用地下浅层水中低品位能源制冷和制热,空调运行成本比传统电制冷空调节约 50%以上。 第一章水源热泵中央空调介绍 一、水源热泵现状及政策依据 水源热泵最早源于 1912 年瑞士的一项发明专利,二十世纪七十年代能源危机以后,这一节能、环保的空调技术受到西方国家的重视。水源热泵技术在美国、加拿大和北欧国家和地区已得到广泛地应用。瑞士的普及率达到 50%以上,美国推广速度以每年 20%的速度递增。 1995 年中美签署了《中华人民共和国国家科学委员会和美利坚合众国能源部效率和再生能源技术的发展与利用领域合作协议书》,并与 1997 年又签署了该合作协议书的附件六——《中华人民共和国国家科学技术委员会与美利坚合众国能源部地能开发利用的合作协议》。其中,两国政府将地源热泵空调技术列为能源效率和再生能源的合作项目。建设部 2000 年第 76号令也将地热、可再生能源以及空调节能技术列入建设部推广项目。2004年9月 14日国 家发改委高技术处颁发了《关于组织实施“节能和新能源关键技术”的通知》,将地热、热泵列为重点开发内容。 2005年 2月28日第十届全国人民代表大会常务委员会第十届会议通过了《中华人民共和国可再生能源法》鼓励大力推广应用太阳能、地热能、水能等可再生能源。 与此同时,适合推广水源热泵的北京市、山东、河南、辽宁、河北等地政府对推广水源热泵空调制定了优惠政策。这一举措极大的促进了我国地源热泵技术的发展。 北京市第一个地温空调工程——蓟门饭店(两会代表驻地)已运行七年。运行成本低于原燃煤锅炉和单冷机组,比改造前每年可节约数十万运行费用。 二、水源热泵工作原理水源热泵技术利用地球表面浅层水源(如地下水、河流和湖泊)中低品位热能资源,通过逆卡诺循环实现低品位热能向高品位热能转移的一种技术。它以水为工作介质将地下土壤中的低品位热能提取出来,经高效的热泵机组,利用少量的高品位电能,将水中的低品位能量输送到空调场所,完成热交换的地下水又重新回灌到地下去。井水是在金属管路中闭路循环的,水不与大气接触,不消耗水,也不污染水,只提取水中的热能。地温空调省去了锅炉和冷却塔,夏天用地下水作冷却水,同时将冷量搬运到地下,冷却效果优于冷却塔;冬天,

暖通空调毕业设计(论文)任务书

毕业设计(论文)任务书 毕业设计(论文)题目:某市某综合楼空调系统设计 系别能源与动力学院班级建环本121/122 学生姓名学号 指导教师职称 毕业设计(论文)进行地点:校内 任务下达时间: 2015年 12 月 24 日 起止日期:2016年 3 月1日起——至 2016年 6 月日止 教研室主任年月日批准 1、论文的原始资料及依据:

(一)题目来源:某市某综合楼建筑结构图 (二)设计主要技术参数 (1)土建资料 详见建筑图纸。 (2) 气象参数:根据本市的气象资料确定; (3)建筑参数: 外墙体结构:根据地区自行选定,如δ=370 m m红砖,内外抹灰20mm 屋面:根据地区自行选定,如200mm厚混凝土板加12.5mm厚加气混凝土保温层。 外窗:根据地区自行选定,如标准玻璃的单层钢窗,全部挂淡色窗帘,(4)室内空调设计参数:温度t n=26℃; 湿度φn=60%; 风速不大于0.3 m/s。 (5)照明容量: 40W/m2 (6)房间人数:0.5人/m2,群集系数0.92 (三)设计主要技术关键 正确进行空调负荷和新风量的计算,确定出冷气方案,合理地布置管道,并进行水力计算,合理选择及布置设备,做好气流组织。 2、设计(论文)主要内容及要求 通过本次设计使学生系统地掌握空调系统设计的主要方法和步骤,能根据实际情况合理确定空调方案,会计算空调系统的负荷量和新风负荷量,能合理布置管道和设备,了解空调设备的型式及用途,会进行设备的选型,合理进行气流组织,会计算水管、风道的阻力,选取水泵、风机等。使学生能把所学知识灵活运用到实际当中去,让理论与实际相结合,为学生毕业以后的工作打下坚实基础。 主要内容: 空调系统的设计 (1)、由建筑物所在地区确定室内外气象参数; 夏季室内外设计计算参数;室内温度、湿度、风速、新风量等参数。

地源热泵毕业设计

1.绪论 随着国民经济的增长城市建设的发展和人民生活水平的提高及房地产业的升温,我国空调业己得到空前的发展。空调己成为季节性能源消耗的大户,并成为建筑节能的关注问题。大力发展新能源与可再生能源,已成为我国21世纪发展国民经济的刻不容缓的战略目标。 热泵技术是应用低位可再生能源的重要技术措施之一。热泵系统是利用低温热源进行制热,制冷的新型能源利用方式。与使用常规能源供热方式相比,具有许多不可替代的特点。因地制宜的发展地源热泵系统,有利于优化能源结构,促进多种资源的有效利用,提高能源利用率。 目前常规使用的热泵系统多为空气源,它受环境温度影响很大。夏季不利于冷凝器的散热,冬季蒸发器得热难,犹其是冬季融霜难。地源热泵几乎不受环境气候影响,可以产生良好的节能效益,且不用除霜。主要内容包括:地源热泵的形式与基本原理,地源热泵机组,新乡本地工程应用实例,对传统地源热泵的改进设想等。

2.地源热泵简介 2.1地源热泵的发展 地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备。地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方,通常热泵都是用来做为空调制冷或者采暖用的。地源热泵还利用了地下土壤巨大的蓄热蓄冷能力冬季地源把热量从地下土壤中转移到建筑物内夏季再把地下的冷量转移到建筑物内一个年度形成一个冷热循环。 地源热泵的起源 地源一词是从英文“ground source”翻译而来,汉语的内涵则十分广泛,应包括所有地下资源的含义。但在空调业内,目前仅指地壳表层(小于400米)范围内的低温热资源,它的热源主要来自太阳能,极少能量来自地球内部的地热能。 "地源热泵"的概念,最早于1912年由瑞士的专家提出,而该技术的提出始于英、美两国。 1946年美国在俄勒冈州的波兰特市中心区建成第一个地源热泵系统。但是这种能源的利用方式没有引起当时社会各界的广泛注意,无论是在技术、理论上都没有太大的发展。 20世纪50年代,欧洲开始了研究地源热泵的第一次高潮,但由于当时的能源价格低,这种系统并不经济,因而未得到推广。直到20世纪70

全套进口地源热泵-GSHP-中央空调地暖及热水系统方案解析

?简介:地源热泵是地下土壤层为冷(热)源对建筑物进行供暖、供热水和空调供应的技术。 ?关键字:地源热泵,GSHP,中央空调,地暖,热水系统 一、地源热泵简介 1.1地源热泵技术简介 地源热泵是地下土壤层为冷(热)源对建筑物进行供暖、供热水和空调供应的技术。众所周知,地层之下一年四季均保持一个相对稳定的温度。在夏季,地下的温度要比地面空气温度低,在冬季却比地面空气温度高。地源热泵正是利用大地的这个特点,通过埋藏在地下的换热器,与土壤或岩石交换热量。地源热泵全年运行工况稳定,不需要其它辅助热源及冷却设备即可实现冬季供热、夏季供冷。所以,地源热泵是一项高效节能型、环保型并能实现可持续发展的新技术,它既不会污染地下水,又不会影响地面沉降。在冬天,管道内的液体将地下的热量抽出,然后通过系统导入建筑物内,同时蓄存冷量,以备夏用;在夏天,热量从建筑物内抽出,通过系统排入地下,同时蓄存热量,以备冬用。地源热泵一年四季均能可靠的提供高品质的冷暖空气,为我们营造一个非常舒适的室内环境。 随着社会的发展,能源危机、环境问题已经越来越为人们所关注,而地源热泵系统恰恰能够同时解决这两项问题,所以今年来地源热泵空调系统被广泛重视和使用。

着人们生活水平的提高,人均能耗的增长,一次性矿物能源的日益衰竭以及环境的日趋恶化, 地源热泵技术已越来越引起人们的重 视。据统计,仅在北京2004年施工并投入运行的地源热泵系统的空调工程占全年空调工程总量的2/3以上。可以预见,随着经济的发展,人们节能、环保意识的日益提高,地源热泵作为一种节能、环保的绿色空调设备适应能源可持续发展战略要求,在中国必将有广阔的应用 和发展前景。 1.3地源热泵工作原理 地源热泵系统工作原理如图所示,夏季制冷时,大地作为排热场所,把室内热量以及压缩机耗能加热生活热水,多余的热能通过埋地盘管排入大地中,再通过土壤的导热和土壤中水分的迁移把热量扩散出去。冬季供热时,大地作为热泵机组的低温热源,通过埋地盘管获取土壤中热量为室内供热及供应热水。两个换热器都即可作冷凝器又可作蒸发器,只因季节不同而功能不同。在地源热泵系统中,由于冬季从大地中取出的热量可在夏季得到补偿,因而可使大地 的热量基本维持平衡。 1.4政府对地源热泵系统的政策 地源热泵作为一项节能、环保的技术,国家给予了大力的支持。目前,政府出台了一份文件,对北京地区使用地源热泵机组的用户,给予50元/M2的补助,另外在去年9月沈阳市也被国家建设部正式确定为全国地源热泵技术推广试点城市。除此以外,国内还有许多城市也有 相关的鼓励、优惠政策。 二、选择NOBO地源热泵的原因 (一)NOBO地源热泵机组与其他机组比较的优势

医院地源热泵空调系统介绍

医院暖通空调系统之 地源热泵空调系统介绍及设计前必要条件 目录........................................... 错误!未定义书签。 一、空调系统介绍 (2) 二、地源空调发展概况 (2) 三、地源空调系统的特点: (3) 四、地源空调系统的社会效益 (4) 五、设计前必要条件参见附件(《地源热泵系统工程技术规范》2009年版本) (5)

一、地源热泵空调系统介绍 (1)地下水源空调系统是从水井中抽取的地下水。这种空调在应用上受到许多限制,需要有丰富和稳定的地下水资源作为先决条件。虽然在理论上抽取的地下水能够回灌到地下水层,但是目前国内地下水回灌技术还不成熟,很容易造成地下水资源的流失。目前由于对使用地下水的规定和立法越来越严格,这种空调系统的应用已逐渐减少。 (2)土壤热交换器地源空调系统。地源热泵是一种利用地下土壤中的地热资源,既可供热又可制冷的高效节能空调系统。这种空调系统是把热交换器埋于地下,通过水在由高强度塑料管组成的封闭环路中循环流动,从而实现与大地土壤进行冷热交换的目的。夏季通过机组将房间内的热量转移到地下,对房间进行降温。同时储存热量,以备冬用。冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,大地土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。通常机组消耗1kW的电量,用户可以得到4kW-5KW左右的热量或冷量。与锅炉供热系统相比,地源空调系统要比电锅炉节省三分之一以上的电能,比燃煤、燃油锅炉节省约二分之一的能量;由于地下土壤的温度全年较为稳定,一般为15~20℃,在夏季远远低于室外空气温度,在冬季远远高于室外空气温度,机组运行工况稳定,无论在制冷还是制热都一直处于高效率运转状态,制冷、制热的性能与传统的空气源热泵相比,要高出30%左右,因此其运行费用为普通中央空调的系统的60~70%。因此,近十几年来,地源热泵空调系统在北美北欧等国家取得了很快的发展,中国的地源热泵市场在最近五年来也非常活跃,可以预计,该项技术将会成为21世纪最有效的高效、环保、节能的供热和供冷空调技术。 二、地源空调发展概况 地源热泵的概念最早出现在1912年瑞士的一份专利文现中。20世纪50年代,欧洲和美国开始了研究地源热泵的第一次高潮。但在当时能源价格低,这种系统并不经济,因而未得到推广。直到上世纪70年代,石油危机和日益恶化的环境把人们的注意力集中到节能、高效益用能和环境保护上时,使地源热泵的研究进入了又一次高潮,最近20年在欧美等工业发达国家取得了迅速的发展,已成为一项成熟的应用技术。 在我国由于能源价格的特殊性以及人们节能、环保的认识程度等原因以及其它一些因素的影响,地源热泵空调技术应用和发展比较缓慢,人们对之尚不十分了解,推广较困难,然而随着人们生活水平的提高,人均能耗的增长,一次性矿物能源的日益衰竭以及环境的日趋恶化,地源热泵技术已越来越引起人们的重视。

相关主题
文本预览
相关文档 最新文档