当前位置:文档之家› 系统的相对稳定性分析

系统的相对稳定性分析

系统的相对稳定性分析
系统的相对稳定性分析

系统的相对稳定性分析 已知某系统的开环传递函数为200

153.0005.060023)()(+++=

S S S H G S S ,试用Nyquistw 稳定判据判断闭环系统的稳定性,并用阶跃响应曲线验证。

(1)计算系统开环特征方程的根。

p=[0.0005 0.3 15 200];

roots(p)

程序运行结果

ans= 1.0e+002 *

-5.4644

-0.2678 + 0.0385i

-0.2678 - 0.0385i

即三个根均有负实部,都为稳定根。故开环特征方程的不稳定根的个数p=0。

(2)绘制系统的开环Nyquist 图,并用来判断闭环系统的稳定性。 n=600;d=[0.0005 0.3 15 200];

GH=tf(n,d);

nyquist(GH)

程序运行后,绘制出系统的开环Nyquist 曲线如图1所示,由图1可以看出系统的Nyquist 曲线不包围(-1,j0)点。而p=0,根据Nyquist 稳定判据,其闭环系统是稳定的。这还可以用系统的阶跃响应曲线来验证。

图1系统的开环Nyquist 图

(3)用阶跃响应曲线来验证。

syms s GH sys;

GH=600/(0.0005*s^3+0.3*s^2+15*s+200);

sys=factor(GH/(1+GH))

程序运行结果

sys =

1200000/(s^3 + 600*s^2 + 30000*s + 1600000)

即1600000

300006001200000s 23+++=Φs s s )( 下面为使用matlab 绘制系统单位阶跃响应曲线的程序代码:

n=1200000;d=[1 600 30000 1600000];

sys=tf(n,d);

step(sys)

程序运行后,绘制系统单位阶跃响应曲线如图2所示。由图2可知,曲线略微超调后迅速衰减到响应终了值,对应的系统闭环不仅稳定,而且具有优良的性能指标,这就证明了Nyquist 稳定判据的正确性。

图2 系统的单位阶跃响应曲线

系统稳定性意义以及稳定性的几种定义.

系统稳定性意义以及稳定性的几种定义 一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

电厂热控自动化系统运行的稳定性研究

电厂热控自动化系统运行的稳定性研究 发表时间:2018-05-31T09:51:11.717Z 来源:《基层建设》2018年第9期作者:王伟1 李永超2 [导读] 摘要:在电厂热控自动化系统运行的过程中,最重要的就是提高系统的稳定性和安全性。 1东北电力设计院有限公司长春 130021;2北京ABB贝利工程有限公司北京 10010 摘要:在电厂热控自动化系统运行的过程中,最重要的就是提高系统的稳定性和安全性。企业可以通过先进技术的应用,提高系统的性能。企业制定完善的管理制度,加强对系统的管理工作,促进工作更加高效进行,满足社会生产的需要。 关键词:电厂热控自动化系统;运行;稳定性 引言 热控自动化系统的重要性随着国家对电力需求的增加逐渐表现出来,因此我们必须将热控自动化系统的稳定性研究提到重要的高度上来,这就需要我们在对电厂热控自动化系统进行分析时,从起自身特点出发,理性地对待存在的问题。虽然目前电厂热控自动化系统应用技术在我国基本得到完善,但仍旧需要厂家从实际生产状况出发,对出现的问题进行解决,以期达到电厂生稳定生产的目的。 1热控自动化技术 为了适应社会发展的需要,电力企业逐渐将更多的机械系统组合在一起运行,并且机组的容量也有了很大的扩增,对于热控自动化系统的要求也越来越高。目前,电力企业需要做的就是提高热控自动化技术,并且对于热控自动化系统的工作要有严格的要求,提高热控自动化系统的稳定性,保证工作的高效进行。在提高热控自动化系统的性能的同时,也要注意降低系统工作所带来的环境问题,降低系统工作的耗能,实现环境与生产的同步发展。在技术发展的同时,可以利用语言技术来控制系统,从而提高电厂的工作效率和自动化水平。系统工作的稳定性与温度是有关系的,可以通过对温度变化的有效研究,确保热控自动化系统的稳定性。 2电厂热控自动化系统的构成 2.1分散控制系统 分散控制系统通过控制接口、网间通信接口、运行操作接口、开发维护接口来实现系统的分散控制和集中操作,然后分散控制系统再和通信网络相结合,就构成了过程控制系统。模块是过程控制系统中的重要组成部分,可以灵活、合理地对系统进行控制,从而提高系统的工作效率。 2.2辅助控制系统 辅助控制系统是可以在无人控制的模式下进行操作的,对于电厂热控自动化系统的工作发挥着很大的作用。辅助控制系统在工作过程中,可以利用编程控制器设置自动控制指令,系统就可以在数据接口和交换机的作用下稳定运行,从而达到对生产效率的提高。对于传输中的综合数据,在辅助控制系统的集中控制和中央控制室技术的应用下,可以让自动化系统在无人控制的情况下,也达到很好的效果。 2.3实时监控系统 实时监控系统主要是对系统工作过程中工作情况的监控,当系统出现问题时,实时监控系统就可以及时发现问题,可以使问题及时得到解决,减少工作过程中的损失。实时监控系统,对工作过程的监督是动态监督,监控系统一旦发现问题,就会通过厂级实时监控系统和信息管理系统发出警报,以便问题得到有效解决。而且这个系统,还可以实现共享数据资源和互通数据。 2.4视频网络监控系统 视频网络监控系统是电厂热控自动化系统工作的关键,可以帮助实现更好的监控。通过对通信接口和辅助系统的有机结合,可以达到对电厂运行情况进行实时监控的目的,而且也可以对系统的工作程序进行有效监控。在系统工作无人值班的情况下,视频网络监控系统就发挥了极大的作用和更加高效的监控,为系统的稳定工作提供了保障。视频网络监控系统还可以帮助检查系统操作工作的进行,减少工作过程中的失误。 3电厂热控自动化系统运行的问题 3.1热控元件故障 其实我们可以把热控元件故障看做元件信号失真。我们可以设想一下,假如出现问题的元件是FSSS或是ETS,那么就会产生生产系统直接跳闸的现象,如果更严重的话设备可能直接报废,这样就会给电厂造成无法估计的损失。笔者在进行大量的数据分析后得出导致热控元件出现故障的原因不止一个,电厂生产环境的特殊是其中最为主要的因素,热控元件在管理不及时的情况下会受到设备服务时间因素、环境因素、元件安装等因素影响,这时就会出现运行故障。所以要想防止热控元件故障的发生,就要重视相关的影响因素并在此基础上进行分析探讨,找到相应的解决办法。 3.2系统逻辑故障 新投入设备一般会产生系统逻辑故障的问题,其根本原因应是新投入的设备运行时间比较短,容易因为尚不健全的逻辑设计而导致整个系统发生故障,发生的故障主要表现为设备会出现判断失误、信号错误和出现错误动作等。所以人们通常会对新投入工作的机组进行多次的运行操作,在操作过程中一旦出现关于系统逻辑缺陷的问题,工作人员就可以在设备投入正常的使用之前进行解决。因此,新投入的设备在试运行阶段时,工作人员需要对其进行细致的分析,总结设备出现的问题类型,并依据试运行出现的问题确定相关的解决方案,将设备存在的不足之处逐渐进行完善。 4优化电厂热控自动化系统稳定性的措施 4.1优化系统控制单元设计 想要从根本上提高DCS系统运行的智能化和灵敏性,达到完善系统监控能力的目的就必须优化设计热控系统控制单元DCS系统,使单元控制朝着稳定性和智能性方向发展。也就需要电厂员工广泛应用各类新型技术,规划好与电子科技和计算机之间的复杂关系,改进落后的技术体系,进而实现高水平、现代化分散控制系统的目标。与此同时,还要优化处理自动控制过程,以达到增强整个系统抗干扰能力的目的。 4.2完善自动控制过程控制软件的相关功能 在进行设计自动化控制程序模块时,把控制指标以及控制范围进行完善,就能够提高系统的抗干扰性,除此以外也要注重优化自动控制工程软件,这样就利于实现系统运行的全程监控。重视系统监控作用的发挥,将监控软件落实于每一个过程,增强对系统运行监控的关

实验四 控制系统的稳定性分析

西京学院实验教学教案实验课程:现代控制理论基础 课序: 4 教室:工程舫0B-14实验日期:2013-6-3、4、6 教师:万少松 一、实验名称:系统的稳定性及极点配置二、实验目的 1.巩固控制系统稳定性等基础知识;2.掌握利用系统特征根判断系统稳定性的方法;3.掌握利用李雅普诺夫第二法判断系统的稳定性的方法;4. 掌握利用状态反馈完成系统的极点配置;5.通过Matlab 编程,上机调试,掌握和验证所学控制系统的基本理论。三、实验所需设备及应用软件序号 型 号备 注1 计算机2Matlab 软件四、实验内容1. 利用特征根判断稳定性;2. 利用李雅普诺夫第二法判断系统的稳定性;3.状态反馈的极点配置;五、实验方法及步骤1.打开计算机,运行MATLAB 软件。2.将实验内容写入程序编辑窗口并运行。3.分析结果,写出实验报告。 语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器

一、利用特征根判断稳定性 用matlab 求取一个系统的特征根,可以有许多方法,如,,,()eig ()pzmap 2ss zp ,等。下面举例说明。 2tf zp roots 【例题1】已知一个系统传递函数为,试不同的方法分析闭环系统的稳定性。()G s 2(3)()(5)(6)(22)s G s s s s s += ++++解:num=[1,3]den=conv([1,2,2],conv([1,6],[1,5]))sys=tf(num,den)(1)() eig p=eig(sys)显示如下:p = -6.0000 -5.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i 所有的根都具有负的实部,所以系统稳定。(2) ()pzmap pzmap(sys) 从绘出的零极点图可看见,系统的零极点都位于左半平面,系统稳定。(3)2()tf zp [z,p,k]=tf2zp(num,den) (4)()roots roots(den)【例题2】已知线性定常连续系统的状态方程为122122x x x x x ==- 试用特征值判据判断系统的稳定性。 解: A=[0,1;2,-1] eig(A)

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

稳定性分析答案

稳定性分析 2009-10-14 14:18 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ 是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ 能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=S2 δ=δ0+δ/dt2 所以PI=*2PI*f/10t方 t=更号10/50=

劳斯判据判定稳定性

劳斯判据 即Routh-Hurwitz判据 一、系统稳定的必要条件 判据是判别系统特征根分布的一个代数判据。 要使系统稳定,即系统全部特征根均具有负实部,就必须满足以下两个条件: 1)特征方程的各项系数都不等于零。 2)特征方程的各项系数的符号都相同。 此即系统稳定的必要条件。 按习惯,一般取最高阶次项的系数为正,上述两个条件可以归结为一个必要条件,即系统特征方程的各项系数全大于零,且不能为零。 二、系统稳定的充要条件 系统稳定的充要条件是表的第一列元素全部大于零,且不能等于零。 运用判据还可以判定一个不稳定系统所包含的具有正实部的特征根的个数为表第一列元素中符号改变的次数。 运用判据的关键在于建立表。建立表的方法请参阅相关的例题或教材。运用判据判定系统的稳定性,需要知道系统闭环传递函数或系统的特征方程。 在应用判据还应注意以下两种特殊的情况: 1.如果在表中任意一行的第一个元素为0,而其后各元不全为0,则在计算下一行的第一个元时,该元将趋于无穷大。于是表的计算无法继续。为了克服这一困难,可以用一个很小的正数代替第一列等于0的元素,然后计算表的其余各元。若上下各元符号不变,切第一列元素符号均为正,则系统特征根中存在共轭的虚根。此时,系统为临界稳定系统。 2.如果在表中任意一行的所有元素均为0,表的计算无法继续。此时,可以利用该行的上一行的元构成一个辅助多项式,并用多项式方程的导数的系数组成表的下一行。这样,表中的其余各元就可以计算下去。出现上述情况,一般是由于系统的特征根中,或存在两个符号相反的实根(系统自由响应发散,系统不稳

定),或存在一对共轭复根(系统自由响应发散,系统不稳定),或存在一对共轭的纯虚根(即系统自由响应会维持某一频率的等幅振荡,此时,系统临界稳定),或是以上几种根的组合等。这些特殊的使系统不稳定或临界稳定的特征根可以通过求解辅助多项式方程得到。 三、相对稳定性的检验 对于稳定的系统,运用判据还可以检验系统的相对稳定性,采用以下方法: 1)将s平面的虚轴向左移动某个数值,即令s=z-(((为正实数),代入系统特征方程,则得到关于z的特征方程。 2)利用判据对新的特征方程进行稳定性判别。如新系统稳定,则说明原系统特征方程所有的根均在新虚轴之左边,(越大,系统相对稳定性越好。

自动控制实验报告一控制系统稳定性分析

实验一控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验内容 系统模拟电路图如图 系统模拟电路图 其开环传递函数为: G(s)=10K/s(0.1s+1)(Ts+1) 式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf两种情况。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,电路的 输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析] 5.取R3的值为50KΩ,100KΩ,200KΩ,此时相应的K=10,K1=5,10,20。观察不同R3 值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=200kΩ,100kΩ,50kΩ,观察不同R3值

时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。 五、实验数据 1模拟电路图 2.画出系统增幅或减幅振荡的波形图。 C=1uf时: R3=50K K=5:

R3=100K K=10 R3=200K K=20:

等幅振荡:R3=220k: 增幅振荡:R3=220k:

R3=260k: C=0.1uf时:

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

实验五 线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) ()(0.5)(0.7)(3) s G s s s s s += +++,用MATLAB 编写程序来判断闭环系统的稳定性, 并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=poly2str(dc{1},'s') 运行结果如下: dens= s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 dens 是系统的特征多项式,接着输入如下MATLAB 程序代码: den=[1,4.2,3.95,1.25,0.5]

p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i k = 0.2000

系统的相对稳定性分析

系统的相对稳定性分析 已知某系统的开环传递函数为200 153.0005.060023)()(+++= S S S H G S S ,试用Nyquistw 稳定判据判断闭环系统的稳定性,并用阶跃响应曲线验证。 (1)计算系统开环特征方程的根。 p=[0.0005 0.3 15 200]; roots(p) 程序运行结果 ans= 1.0e+002 * -5.4644 -0.2678 + 0.0385i -0.2678 - 0.0385i 即三个根均有负实部,都为稳定根。故开环特征方程的不稳定根的个数p=0。 (2)绘制系统的开环Nyquist 图,并用来判断闭环系统的稳定性。 n=600;d=[0.0005 0.3 15 200]; GH=tf(n,d); nyquist(GH) 程序运行后,绘制出系统的开环Nyquist 曲线如图1所示,由图1可以看出系统的Nyquist 曲线不包围(-1,j0)点。而p=0,根据Nyquist 稳定判据,其闭环系统是稳定的。这还可以用系统的阶跃响应曲线来验证。 图1系统的开环Nyquist 图

(3)用阶跃响应曲线来验证。 syms s GH sys; GH=600/(0.0005*s^3+0.3*s^2+15*s+200); sys=factor(GH/(1+GH)) 程序运行结果 sys = 1200000/(s^3 + 600*s^2 + 30000*s + 1600000) 即1600000 300006001200000s 23+++=Φs s s )( 下面为使用matlab 绘制系统单位阶跃响应曲线的程序代码: n=1200000;d=[1 600 30000 1600000]; sys=tf(n,d); step(sys) 程序运行后,绘制系统单位阶跃响应曲线如图2所示。由图2可知,曲线略微超调后迅速衰减到响应终了值,对应的系统闭环不仅稳定,而且具有优良的性能指标,这就证明了Nyquist 稳定判据的正确性。 图2 系统的单位阶跃响应曲线

(整理)MATLAB实现控制系统稳定性分析.

MATLAB 实现控制系统稳定性分析 稳定是控制系统的重要性能,也是系统能够工作的首要条件,因此,如何分析系统的稳定性并找出保证系统稳定的措施,便成为自动控制理论的一个基本任务.线性系统的稳定性取决于系统本身的结构和参数,而与输入无关.线性系统稳定的条件是其特征根均具有负实部. 在实际工程系统中,为避开对特征方程的直接求解,就只好讨论特征根的分布,即看其是否全部具有负实部,并以此来判别系统的稳定性,由此形成了一系列稳定性判据,其中最重要的一个判据就是Routh 判据.Routh 判据给出线性系统稳定的充要条件是:系统特征方程式不缺项,且所有系数均为正,劳斯阵列中第一列所有元素均为正号,构造Routh 表比用求根判断稳定性的方法简单许多,而且这些方法都已经过了数学上的证明,是完全有理论根据的,是实用性非常好的方法. 但是,随着计算机功能的进一步完善和Matlab 语言的出现,一般在工程实际当中已经不再采用这些方法了.本文就采用Matlab 对控制系统进行稳定性分析作一探讨. 1 系统稳定性分析的Matlab 实现 1.1 直接判定法 根据稳定的充分必要条件判别线性系统的稳定性,最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有,系统则不稳定.然而实际的控制系统大部分都是高阶系统,这样就面临求解高次方程,求根工作量很大,但在Matlab 中只需分别调用函数roots(den)或eig(A)即可,这样就可以由得出的极点位置直接判定系统的稳定性. 已知控制系统的传递函数为 ()24 5035102424723423+++++++=s s s s s s s s G (1) 若判定该系统的稳定性,输入如下程序: G=tf([1,7,24,24],[1,10,35,50,24]); roots(G.den{1}) 运行结果: ans = -4.0000 -3.0000 -2.0000 -1.0000 由此可以判定该系统是稳定系统. 1.2 用根轨迹法判断系统的稳定性 根轨迹法是一种求解闭环特征方程根的简便图解法,它是根据系统的开环传递函数极点、零点的分布和一些简单的规则,研究开环系统某一参数从零到无穷大时闭环系统极点在s 平面的轨迹.控制工具箱中提供了rlocus 函数,来绘制系统的根轨迹,利用rlocfind 函数,在图形窗口显示十字光标,可以求得特殊点对应的K 值. 已知一控制系统,H(s)=1,其开环传递函数为: ()()() 21++=s s s K s G (2) 绘制系统的轨迹图. 程序为: G=tf(1,[1 3 2 0]);rlocus(G); [k,p]=rlocfind(G) 根轨迹图如图1所示,光标选定虚轴临界点,程序 结果为:

基于MATLAB的控制系统稳定性分析报告

四川师范大学本科毕业设计 基于MATLAB的控制系统稳定性分析 学生姓名宋宇 院系名称工学院 专业名称电气工程及其自动化 班级 2010 级 1 班 学号2010180147 指导教师杨楠 完成时间2014年 5月 12日

基于MATLAB的控制系统稳定性分析 电气工程及其自动化 本科生宋宇指导老师杨楠 摘要系统是指具有某些特定功能,相互联系、相互作用的元素的集合。一般来说,稳定性是系统的重要性能,也是系统能够正常运行的首要条件。如果系统是不稳定,它可以使电机不工作,汽车失去控制等等。因此,只有稳定的系统,才有价值分析与研究系统的自动控制的其它问题。为了加深对稳定性方面的研究,本设计运用了MATLAB软件采用时域、频域与根轨迹的方法对系统稳定性的判定和分析。 关键词:系统稳定性 MATLAB MATLAB稳定性分析

ABSTRACT System is to point to have certain function, connect with each other, a collection of interacting elements. Generally speaking, the stability is an important performance of system, also is the first condition of system can run normally. If the system is not stable, it could lead to motor cannot work normally, the car run out of control, and so on. Only the stability of the system, therefore, have a value analysis and the research system of the automatic control of other problems. In order to deepen the study of stability, this design USES the MATLAB software using the time domain, frequency domain and the root locus method determination and analysis of the system stability. Keywords: system stability MATLAB MATLAB stability analysis

线性系统的稳定性分析

第三章 线性系统的稳定性分析 3.1 概述 如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够 的准确度恢复到原来的平衡状态,则系统是稳定的。否则,系统不稳定。一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。因此,稳定性问题是系统控制理论研究的一个重要课题。对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。 应用于线性定常系统的稳定性分析方法很多。然而,对于非线性系统和线性时变系 统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。 本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫 稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。 虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地 位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。技巧和经验在解决非线性问题时显得非常重要。在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。 3.2 外部稳定性与内部稳定性 3.2.1 外部稳定: 考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件: 1()u t k ≤<∞ 的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立: 2()y t k ≤<∞ 则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。 注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。 系统外部稳定的判定准则 系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。

系统稳定性意义以及稳定性的几种定义

一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不

控制系统的稳定性分析

自动控制理论实验报告 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10

自动控制理论实验报告 2.绘制EWB 图和Simulink 仿真图。 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较 (1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

线性系统稳定性分析

线性系统稳定性分析 1.系统的稳定性: (1) 外部稳定:又称输出稳定,就是系统在干扰取消后,在一定时间内其输出会恢复到 原来的稳定输出。输出稳定有时描述为系统的BIBO 稳定,即有限的系统输入只能产生有限的系统输出。 (2) 内部稳定:主要针对系统内部状态,反映的是系统内部状态受干扰信号的影响情况。 当干扰信号取消后,若系统的内部状态会在一定时间内恢复到原来的平衡状态,则称系统状态稳定。 经典控制论中,研究对象都是高阶微分方程或传递函数描述的单输入单输出(SISO )系统,反映的仅仅是输入与输出的关系,不涉及系统的内部状态,因此经典控制论只讨论系统的输出稳定问题。对于系统内部状态稳定问题,经典控制论中的方法就不好发挥作用了,需要用到Lyapunov 稳定性理论。 2.平衡状态:设控制系统齐次状态方程为:0.0(,)()|t t X f X t X t X ===,其中,()X t 为系统的n 维状态向量,f 是有关状态向量X 以及时间t 的n 维矢量函数,f 不一定是线性定常的。如果对所有的t ,状态e X 总满足:(,)0e f X t =,则称e X 为系统的平衡状态。对于一般控制系统,可能没有,也可能有一个或多个平衡状态。系统的状态稳定性是针对系统的平衡状态的,当系统有多个平衡状态时,需要对每个平衡状态分别进行讨论。 3. Lyapunov 稳定性分析 (1)Lyapunov 稳定性定义 设一般控制系统的解为:00()(;,)X t t X t =Φ,它是与初始时间0t 及初始状态0X 有关的,体现系统状态从00(,)t X 出发的一条状态轨迹。设e X 为系统的一个平衡点,如果给定一个以e X 为球心,0(,)t δε为半径的n 维球域()S δ,使得从()S δ球域出发的任意一条系统状态轨迹00(;,)t X t Φ在0t t ≥的所有时间内都不会跑出()S ε球域,则称系统的平衡状态e X 是Lyapunov 稳定的。 一般来说,δ的大小不但与ε有关,而且与系统的初始时间0t 有关,当δ仅与ε有关时,称e X 是一致稳定的平衡状态。 进一步地,如果e X 不仅是Lyapunov 稳定的平衡状态,而且当时间t 无限增加时,从()S δ出发的任一条状态轨迹00(;,)t X t Φ都最终收敛于球心平衡点e X ,那么称e X 是渐进稳定的。 更近一步地,如果从()S ∞即整个系统状态空间的任意一点出发的任意一条状态轨迹00(;,)t X t Φ,当t →∞时都收敛于平衡点e X ,那么称e X 是大范围渐进稳定的。显然此时的e X 是系统唯一的平衡点。 反之,对于给定的()S ε,不论0δ>取得多么小,若从()S δ出发的状态轨迹 00(;,)t X t Φ至少有一条跑出()S ε球域,那么平衡点e X 是不稳定的。

最新实验五线性系统的稳定性和稳态误差分析

实验五线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5)()(0.5)(0.7)(3) s G s s s s s +=+++,用MATLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=poly2str(dc{1},'s') 运行结果如下:

dens= s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 dens是系统的特征多项式,接着输入如下MATLAB程序代码:den=[1,4.2,3.95,1.25,0.5] p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058

相关主题
文本预览
相关文档 最新文档