当前位置:文档之家› 电偶极子周围电场分布

电偶极子周围电场分布

电偶极子周围电场分布
电偶极子周围电场分布

k=9e9;

q1=-1e-9;

q2=-q1;

a=0.2;

xx0=0.5;

yy0=0.5;

x=linspace(-xx0,xx0,20);

y=linspace(-yy0,yy0,20);

[X,Y]=meshgrid(x,y);

r1=sqrt((X-a).^2+Y.^2);

r2=sqrt((X+a).^2+Y.^2);

U=k*q1./r1+k*q2./r2;

u0=50;

u=linspace(u0,-u0,11);

contour(X,Y,U,u,'k-');

Grid on

Hold on

plot(a,0,'o','MarkerSize',12);

plot(-a,0,'o','Markersize',12);

xlabel('x','fontsize',16);

ylabel('y','fontsize',16);

[Ex,Ey]=gradient(-U);

E=sqrt(Ex.^2+Ey.^2);

Ex=Ex./E;

Ey=Ey./E;

quiver(X,Y,Ex,Ey);

tetle('一对电荷的等势线图和电场线图','fontize',20);

电偶极子的电场讨论

电偶极子的电场讨论 姓名:乔霞芳 (09物理教育专业 准考证号:412410100009 ) 【摘要】:电偶极子是继点电荷之后最简单而且重要的带电系统。凡是有电荷 的地方,四周就存在着电场,即任何电荷都在自己周围的空间激发电场。这里将从点电荷到电偶极子,通过对其中垂面和延长线上的电场强度、及其空间任意一点电场分布的求解,讨论电偶极子的静态电场。 【关键词】:电场 电场强度 电偶极子 电势 电视梯度 一、电场 为了能够形象的描述电场,正确、定量的讨论电场,先对电场进行适量了解。就它有什么样的性质,用什么定量的描述它,又用什么来给人以形象的概念进行讨论。 1.电场强度 电场的一个重要性质是它对电荷施加作用力,我们就以这个性质来定量地描述电场。我们知道,电场本身的性质由电场强度来反映,即E =F/q 。它是一个矢量,现在以点电荷所产生的电场中各点的电场强度来说明其方向和大小是如何确定的。 如图1-1所示,O 点有一点电荷q ,我们任取一场点P ,记OP=r 。设想把一个正试探电荷q 0 放在P 点,根据库伦定律,它受的力为:F=kqq 0r 1/r 2 (r 1是沿OP 方向的单位向量),又由电场强度的定义式可得P 的场强为E =F/q 0=kq r 1/r 2 ,这表明若q>0,E 沿r 1方向;若q<0,E 沿-r 方向。E 与r 2 成反比,当r →无穷大时,E →0。 电场力是矢量,它服从矢量叠加原理。那么,电场 强度矢量是不是也服从呢?如果以F 1、F 2、…、F k 分别表示点电荷q 1、q 2、…、q k 单独存在时电场施予空间同一点上试探电荷q 0的力,则它们同时存在时,电场施予该点试探电荷的力为F 1、F 2、…、F k 的矢量和,即 图1-1

电场强度和电势

电场强度和电势 编稿:董炳伦审稿:李井军责编:郭金娟 目标认知 学习目标 1.理解静电场的存在,静电场的性质和研究静电场的方法。 2.理解场强的定义及它所描写的电场力的性质,并能结合电场线认识一些具体静电场的分布;能够熟练地运用电场强度计算电场力。 3.理解并能熟练地运用点电荷的场强和场强的叠加原理,弄清正、负两种电荷所产生电场的异同,以此为根据认识电荷系统激发的场。 4.类比重力场理解电场力的功、电势能的变化、电势能的确定方法、电势的定义以及电势差的意义;理解电势对静电场能的性质的描写和电势的叠加原理。 5.明确场强和电势的区别与联系以及对应的电场线和等势面之间的区别和联系。 学习重点 1.用场强和电势以及电场线和等势面描写认识静电场分布。 2.熟练地进行电场力、电场力功的计算。 3.学会认识静电场的描写静电场的方法、手段。 学习难点 1.电势这一概念建立过程的逻辑关系以及正、负两种电荷所导致的具体问题复杂性。 2.用场强和电势以及它们的叠加原理认识电荷系统的静电场等。 知识要点梳理 知识点一:电场强度和电场线 要点诠释: 1.静电场及其特点 (1)电荷间的相互作用力是靠周围的电场产生的。 (2)电场是一种特殊物质,并非分子、原子组成,但客观存在。 (3)电场的基本性质是:对放入其中的电荷(不管是静止的还是运动的)有力的作用,电场具有能量。 2.静电场的性质 (1)电场强度的物理意义是描述电场的力性质的物理量,数值上等于单位电荷量的电荷在电场中受到的电场力,单位是N / C。 (2)电场力的二个性质:

①矢量性:场强是矢量,其大小按定义式计算即可,其方向规定为正电荷在该点的受力方向。 ②唯一性:电场中某一点处的电场强度E的大小和方向是唯一的,其大小和方向取决于场源电荷及空间位置。 电场中某点的电场强度E是唯一的,是由电场本身的特性(形成电场的电荷及空间位置) 决定的,虽然,但场强E绝不是试探电荷所受的电场力,也不是单位正试探电荷所受的电场力,因为电场强度不是电场力,电场中某点的电场强度,既与试探电荷的电荷量q 无关,也与试探电荷的有无无关。因为即使无试探电荷存在,该点的电场强度依然是原有的值。 3.总电荷的电场强度 大小:,Q为场源点电荷,r为考察点与场源电荷的距离。 方向:正点电荷的场中某点的场强方向是沿着场源电荷Q与该点连线背离场源电荷;负的场源电荷在某点产生的场强方向则是指向场源电荷。 4.场强叠加原理 若在某一空间中有多个电荷,则空间中某点的场强等于所有电荷在该点产生的电场强度的矢量和。 说明: (1)点电荷的场强和场强的叠加原理是计算任何电荷系统产生场的理论基础,尽管对复杂的电荷系统计算是不易做到的。 (2)场强的叠加原理必须注意到它的矢量叠加的特点,必须用平行四边形法则计算。 5.关于电场线以及对它的理解 (1)电场线的意义及规定 电场线是形象地描述电场而引入的假想曲线,规定电场线上每点的场强方向沿该点的切线方向,也就是正电荷在该点受电场力产生的加速度的方向(负电荷受力方向相反)。 (2)电场线的疏密和场强的关系的常见情况 按照电场线的画法的规定,场强大的地方电场线密,场强小的地方电场线疏。在图中,E A>E B。 但若只给一条直电场线,如图所示,A、B两点的场强大小无法由疏密程度来确定,对

用matlab数值分析电偶极子的等电势图和电场线图

合肥学院 创新课程设计报告 题目:用matlab分析电偶极子的等电势图和电场线系别:电子信息与电气工程系 专业:通信工程专业 班级: 1 4 姓名: 导师: 成绩: 2013 年 《通信技术综合创新课程设计》任务书

目录 电偶极子的等电势图和电场 (4) 一电偶极子原理以及相关知识 (4) 1.1 电偶极子定义 (4) 1.2 电偶极子原理 (4) 二演示程序 (7) 2.1电偶极子电势在matlab中的模拟 (7) 2.2电偶极子电场在matlab中的模拟 (9) 三结束语 (10) 四参考文献 (11)

电偶极子的等电势图和电场 一电偶极子原理以及相关知识 1.1 电偶极子定义 一个实体,它在距离充分大于本身几何尺寸的一切点处产生的电场强度都和一对等值异号的分开的点电荷所产生的电场强度相同。电偶极子(electric dipole)是两个相距很近的等量异号点电荷组成的系统。电偶极子的特征用电偶极距P=lq描述,其中l是两点电荷之间的距离,l和P的方向规定由-q指向+q。电偶极子在外电场中受力矩作用而旋转,使其电偶极矩转向外电场方向。电偶极矩就是电偶极子在单位外电场下可能受到的最大力矩,故简称电矩。如果外电场不均匀,除受力矩外,电偶极子还要受到平移作用。电偶极子产生的电场是构成它的正、负点电荷产生的电场之和。 1.2 电偶极子原理 两个点电荷q和-q间的距离为L。此电偶极子在场点 P 处产生的电位等于两个点电荷在该点的电位之和,即 (1) 图(1)表示中心位于坐标系原点上的一个电偶极子,它的轴线与Z轴重合,其中与分别是q和-q到 P 点的距离。

几种典型电场线分布示意图及场强电势特点

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 - - - - 点电荷与带电平+ 孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表重点 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立 的 正点 电荷 电场 线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立的 负点电荷 电场线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。

电势 离场源电荷越远,电势越高;与场源电荷等距的各点 组成的球面是等势面,每点的电势为负。 等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 等量同种负点电荷电场 线 大部分是曲线,起于无穷远,终止于负电荷;有两条 电场线是直线。 电势每点电势为负值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都是背离中点;由连线的一端 到另一端,先减小再增大。 电 势 由连线的一端到另一端先升高再降低,中点电势最 高不为零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都沿着中垂线指向中点;由中 点至无穷远处,先增大再减小至零,必有一个位置 场强最大。 电 势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量 同种 电场大部分是曲线,起于正电荷,终止于无穷远;有两条

电偶极子电势电场matlab模拟

利用matlab 绘制电偶极子在3维空间电势、电场的分布 电偶极子(electric dipole )是两个相距很近的等量异号点电荷组成的系统,具体模型如图1所示,两点电荷+q 和-q 相距为d ,且r >>d 。本文主要对电偶极子在空间中产生的电势,电场分布进行计算机模拟。 图1 电偶极子 1 电偶极子的电势、电场计算 应用叠加原理,得场中任意点P 的点位为 012114q φπεr r ??=- ??? 应用关系式=-E φ?,可以求得位于原点的电偶极子在离它r 远处产生的电场强度。 2 电偶极子电势、电场分布在matlab 中的模拟 电势分布模拟,源程序如下: q=1; d=2; e0=8.854187817*10.^-12; x=-3:0.1:3; y=-3:0.1:3; [x,y]=meshgrid(x,y); z=q.*(1./sqrt((y-1).^2+x.^2)-1./sqrt((y+1).^2+x.^2))./(4*pi*e0); mesh(x,y,z); 运行结果如下:

电场分布,源程序如下: q=1; d=2; e0=8.854187817*10.^-12; x=-3:0.1:3; y=-3:0.1:3; [x,y]=meshgrid(x,y); z=q.*(1./sqrt((y-1).^2+x.^2+0.01)-1./sqrt((y+1).^2+x.^2+0.01))./(4*pi*e0); contour(x,y,z); [px,py]=gradient(z); hold on streamslice(x,y,px,py,'k') 运行结果如下:

心脏电场的电偶极子模型

心脏的电偶极子模型和心电图 姓名刘开元学号PB11206017 论文摘要: 心电图在现代医学对心脏的诊疗中占有重要地位,本文综述了心电仿真中一个重要的因素-心脏电兴奋源的模型,简要分析了心脏视为偶极子模型的电磁学原理和建立方法、应用、发展和不足,并重点分析了电偶极子模型为基础的单级导通技术的电磁学基础。 论文目录: 1.心肌细胞的细胞膜电位 2.心脏单电偶极子模型的分析 3.心电图的单级导通技术 4.心脏电偶极子模型的进一步思考和可能的完善 引言: 在心电图的测量中,最为关键的莫过于对心脏电模型的构建.现在的主流模型--单电偶极子模型是如何由心脏的结构抽象而来?有何优点和缺陷?如何进一步的改进和分析?本文将简单讨论该模型的电磁学基础和以此为基础的单极导通技术. 一.心肌细胞的细胞膜电位 为了探究心脏的电偶极子模型,我们有必要先简单分析一下心肌细胞的细胞膜电位. 心肌细胞生物电产生的基础是心肌细胞跨膜电位取决于离子的跨膜电-化学梯度和膜对离子的选择性通透。

心室肌细胞跨膜电位及其产生机理: [1] 静息电位:心室肌细胞在静息时,细胞膜处于内正外负的极化状态,其主要由K+外流形成。 [2] 动作电位:心室肌动作电位的全过程包括除极过程的0期和复极过程的1、2、3、4等四个时期。 0期:心室肌细胞兴奋时,膜内电位由静息状态时的-90mV上升到+30mV左右,构成了动作电位的上升支,称为除极过程(0期)。它主要由Na+内流形成。 1期:在复极初期,心室肌细胞内电位由+30mV迅速下降到0mV左右,主要由K+外流形成。 2期:1期复极到0mV左右,此时的膜电位下降非常缓慢它主要由Ca2+内流和K+外流共同形成。 3期:此期心室肌细胞膜复极速度加快,膜电位由0mV左右快速下降到-90mV,历时约100~150ms。主要由K+的外向离子流(Ik1和Ik、Ik也称Ix)形成。 4期:4期是3期复极完毕,膜电位基本上稳定于静息电位水平,心肌细胞已处于静息状态,故又称静息期。 在心脏中细胞的兴奋是不等同的,如下图所示: 心脏的收缩从窦房结开始,每一心动周期中,由窦房结产生的兴奋,依次传向心房和心室.通过心肌细胞间的润盘结构,窦房结的收缩会向周围的细胞传导从而诱发全心脏的收缩.从传导的次序不同,由上图可以看出心脏的电位变化是不同时的.正是这些差别产生了人体表面的电势变化. 从上述内容可以看出,在心肌细胞受到刺激以及其后恢复原状的过程中,将形成一个变化的电偶极矩,在其周围产生电场,并引起空间电势的变化。

电偶极子

§2.7 电偶极子 一、电偶极子及其电偶极矩 1.电偶极子——两个相距很近的等量异号点电荷所组成的带电系统。 在原子物理学、电介质理论和无线电理论中,电偶极子是很重要的模型。原子中带正电的原子核和带负电的电子。电介质中有一类电介质分子的正、负电荷中心不重合,形成电偶极子,称为有极分子;另一类电介质分子的正、负电荷中心重合,称为无极分子,但在外电场作用下会相对位移,也形成电偶极子。 应用有偶极子天线,以及天线的辐射等现象,可以用振荡偶极子 t j e e p ω来表示,研究从稳恒到 X 光频电磁场作用下电介质的色 散和吸收,等等具有广泛地应用。 将偶极子概念加以推广,可有多极子,其中最重要的是四极子。 电偶极子的特征:点电荷的电荷量(+q 、-q), 两个点电荷的距离---电偶极子的轴线l :从电偶极子的负电 荷到正电荷的一个矢径表示表示。 可集成为一个特征量----电偶极矩来表征电偶极子整体电性质,即用电偶 极矩表示电偶极子的大小和空间取向: 2. 电偶极子的电偶极矩——电偶极子中的一个电荷的电量与轴线的乘积,简称电矩。记为: l q p = 或l q p e = (相对于磁矩m p ) (1) p 是矢量,它是表征电偶极子整体电性质的重要物理量, 大小: 等于乘积, 方向: 规定由-q 指向+q , 单位:库·米( )---国际制单位 德拜(debye)-----微观物理学中常用的单位为;1德拜=3.336×10-30C ·m ,它相当于典型分子内部核间距离的十分之一(约2×10-11m)同一个电子的电荷e =1.6×10-19C 的乘积。 电偶极子在外电场中受力矩作用而旋转,使其电偶极矩转向外电场方向。电偶极矩就是电偶极子在单位外电场下可能受到的最大力矩,故

(完整版)两电荷电场强度电势图像

一、两个等量异种点电荷电场 1.电场特征 (1)两个等量异种点电荷电场电场线的特征是:电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线.如图16所示. 图16 (2)在两电荷连线上,连线的中点电场强度最小但是不等于零;连线上关于中点对称的任意两点场强大小相等,方向相同,都是由正电荷指向负电荷; 图17 由连线的一端到另一端,电场强度先减小再增大.以两电荷连线为x轴,关于x=0对称分布的两个等量异种点电荷的E-x图象是关于E轴(纵轴)对称的U形图线,如图17所示. (3)在两电荷连线的中垂线上,电场强度以中点处最大;中垂线上关于中点对称的任意两点处场强大小相等,方向相同,都是与中垂线垂直,由正电荷指向负电荷;由中点至无穷远处,

图18 电场强度逐渐减小.以两电荷连线中垂线为y轴,关于y=0对称分布的两个等量异种点电荷在中垂线上的E-y图 象是关于E轴(纵轴)对称的形图线,如图18所示. 2.电势特征 (1)沿电场线,由正电荷到负电荷电势逐渐降低,其等势面如图19所示.若取无穷远处电势为零,在两电荷连线上的中点处电势为零.

图19 (2)中垂面是一个等势面,由于中垂面可以延伸到无限远处,所以若取无穷远处电势为零,则在中垂面上电势为零. (3)若将两电荷连线的中点作为坐标原点,两电荷连线作为x轴,则两个等量异种点电荷的电势φ随x变化的图象如图20所示. 图20 二、两个等量同种点电荷电场 1.电场特征 (1)电场线大部分是曲线,起于正电荷,终止于无穷远;只有两条电场线是直线.(如图22所示) 图22 (2)在两电荷连线上的中点电场强度最小为零;连线上关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,电场强度先减小到零再增大. (3)若以两电荷连线中点作为坐标原点,沿两电荷连线作为x轴建立直角坐标系,则关于坐标原点对称分布的两个等量同种点电荷在连线方向上的E-x图象是关于坐标原点对称的图线,两个等量正点电荷的E-x图象如图23所示的曲线.

自由电偶极子空间各点的电势-聂中治

自由电偶极子空间各点的电势 摘 要:给出一种用分离变量法求解均匀介质球内外放有点电荷或自由偶极子等类问题电势的新方法。 关键词:电偶极子;分离变量法;拉普拉斯方程;唯一性定理;电势。 Abstract :Give an a kind of the new method that solve static electricity a problem with separation variable the way. Key words :separate variable the way ;laplace equation ;unique axioms ;potentiality 前言:分离变量法(文献[1])是求解静电场边值问题的基本方法,由于应用广泛,题型变化多,不容易掌握。尤其对于用分离变量法求均匀介质球内外放有点电荷或自由电偶极子这类问题的电势时,虽然大多教材中的给出了解析,但大多解法相同且不好理解。我在此演示一种求解这类问题的新思路,不仅概念清楚,容易接受,而且较为简便,且得出和题解中完全相同的结果。 以下针对例题说明: 题目: 半径为R 的均匀介质球(电容率为1ε) 中心置一自由电偶极子(其电偶极矩为p) ,球外充满了另一种介质(电容率为2ε) ,求空间各点的电势。 此题比较典型,文献[3]和文献[4]中均有详细求解,其基本思想是:空间各点的电势是由电偶极子的电势和球面上极化电荷所产生电势的叠加,前者可分析得出3 14r r p πε?,后者满足拉普拉斯方程, 以球心为原点, p 的方向为极轴方向, 建立球坐标系,由对称性可得球内外电势表达式为: =1φ314r r p πε?+∑∞=0 )(cos n n n n P r a θ, r ≤R (1) =2φ314r r p πε?+∑∞=+01 )(cos n n n n P r b θ, r ≥R (2) 根据边值关系,确定系数,可得: θεεπεεεπεθθφcos )2(2_)(4cos ),(321121211r R p r p r +-+=, r ≤R (3) 221221121212)2(4cos 3cos )2(2_)(4cos ),(r p r p r p r εεπθθεεπεεεπεθθφ+=+-+= , r ≥R (4)

电偶极子的电场与电势

计算机模拟电偶极子电场中的电势及场强分布 1 引言 在物理中课程中,电磁场理论理论性强、概念抽象、场图较为复杂。传统教学中,单纯的理论推导无法使学生深刻理解电磁场中的许多概念,从而影响整个课程的学习。电偶极子的电场是一种对于人体生物电研究有着重要基础意义的典型电场,原子、分子、心肌细胞等的电性质都可以等效为电偶极子来描述。利用Matbal可模拟出电磁场中的物理量,以图形化的方式显示其分布及其计算结果,得到富有感染力的图形及计算结果。 2 理论推导 电偶极子是由两个相距很近的等量异号点电荷+q与-q 所组成的带电系统,从电偶极子的负电荷作一矢径到正电荷,称为电偶极子的轴线。以电偶极子中心为原点,电场中任意一点a 的位矢为, 与之间的夹角为θ,r l 。根据电势叠加原理,a 点的总电势应为[1]: U=U++U- [1] 1/4πε0·qlcosθr2=1/4πε0·pcosθr2 U+ 与U- 分别为正、负电荷在a 点产生的电势,p为电偶极子的电偶极矩,=q ,表征电偶极子的整体电性质。上式子说明电偶极子电场中电势的分布与方位有关。以电偶极子轴线的中垂面为零势面将整个电场分为正、负两个对称的区域,正电荷所在一侧为正电势区,负电荷所在一侧为负电势区。 在球坐标系中,电偶极子的电场中的场强为: Er=1/4πε0·2pcosθr3 Eθ=1/4πε0·psinθr3 特殊地,在电偶极子轴线延长线上,θ=0 或π ,Eθ=0 ,E=Er=1/4πε0·2pr3 在电偶极子的中垂面上,θ=π2 ,Er=0 ,E=Eθ=1/4πε0·pr3

3.1主程序 clear;clc;q=2e-6;k=9e9;a=2.0;b=0;x=-6:0.6:6;y=x; [X,Y]=meshgrid(x,y); rp=sqrt((X-a).^2+(Y-b).^2); rm=sqrt((X+a).^2+(Y+b).^2); V=q*k*(1./rp-1./rm); [Ex,Ey]=gradient(-V); AE=sqrt(Ex.^2+Ey.^2); Ex=Ex./AE;Ey=Ey./AE; cv=linspace(min(min(V)),max(max(V)),51); contour(X,Y,V,cv,'r-') %axis('square') title('\fontname{宋体}、fontsize{11} 电偶极子的电场线与等势线'),hold on quiver(X,Y,Ex,Ey,0.6,'g') plot(a,b,'bo',a,b,'g+') plot(-a,-b,'bo',-a,-b,'bo',-a,-b,'w-') xlabel('x');ylabel('y'),hold off 3.2 模拟图像

matlab结题报告(电偶极子的辐射场)

matlab结题报告(电偶极子的辐射场)

————————————————————————————————作者:————————————————————————————————日期:

电偶极子的辐射场 背景与意义: 对于一个带电体来说,如果正负电荷呈电偶分布,正、负电荷的重心不重合,那么讨论这种带电体的电场时,可以把它模拟成两个相距很近的等量异号的点电荷+q 和?q ,这样的带电系统称为电偶极子。实际生活中电偶极子的例子随处可见,例如,在研究电解质极化时,采用重心模型描述后电解质分子可等效为电偶极子;在电磁波的发射和吸收中电子做周期性运动形成振荡电偶极子;生物体所有的功能和活动都以生物电的形式涉及到电偶极子的电场等,当天线长度l 远小于波长时,它的辐射就是电偶极辐射。因此,研究电偶极子在空间激发的电场问题具有重要意义。我们主要讨论宏观电荷系统在其线度远小于波长情形下的辐射问题。 基本内容介绍: 1. 计算辐射场的一般公式 A B ??= (1) B k ic E ??= (2) 其中 (3) 若电流J 是一定频率的交变电流,有 (4) 代入(3)式得 , (5) 式中 为波数。令 有 ')'(π4μ)(0dV r e x J x A V ikr ?= (6) 2. 失势的展开 在失势公式(6)中,存在三个线度:电荷分布区域的线度l ,它决定积分区 的大小;波长 以及电荷到场点的距离r 。我们研究分布于一个小区域的电流所产生的辐射。所谓小区域是指它的线度远小于波长 以及观察距离r ,即 λ<

电偶极子的等势面

电偶极子的等势面 程序: function dengshimian(h,xspan,yspan) x=xspan(1):h:xspan(2); y=yspan(1):h:yspan(2); [X,Y]=meshgrid(x,y); Z=1./sqrt((X-0.2).^2+Y.^2)-1./sqrt((X+0.2).^2+Y.^2); contour(x,y,Z,[-10:0.5:10]); % dengshimian(0.01,[-0.3,0.3],[-0.3,0.3]) 执行 -0.25-0.2-0.15-0.1-0.0500.050.10.150.20.25 -0.25 -0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 0.2 0.25 【 * 例 5.5.2 .2-2 】研究偶极子 (Dipole) 的电势( Electric potential )和电场强度( Electric field density )。设在 处有电荷 ,在 处有电荷 。那么在电荷所在平面上任何一点的电势和场强分别为 , 。其中 。 。又设电荷 , , 。

clear;clf;q=2e-6;k=9e9;a=1.5;b=-1.5;x=-6:0.6:6;y=x; [X,Y]=meshgrid(x,y); % 设置坐标网点 rp=sqrt((X-a).^2+(Y-b).^2);rm=sqrt((X+a).^2+(Y+b).^2); V=q*k*(1./rp-1./rm); % 计算电势 [Ex,Ey]=gradient(-V); % 计算场强 AE=sqrt(Ex.^2+Ey.^2);Ex=Ex./AE;Ey=Ey./AE;% 场强归一化,使箭头等长 cv=linspace(min(min(V)),max(max(V)),49);% 产生49 个电位值 contourf(X,Y,V,cv,'k-') % 用黑实线画填色等位线图 %axis('square') % 在Notebook 中,此指令不用 title('fontname{ 隶书}fontsize{22} 偶极子的场'),hold on quiver(X,Y,Ex,Ey,0.7) % 第五输入宗量0.7 使场强箭头长短适中。 plot(a,b,'wo',a,b,'w+') % 用白线画正电荷位置 plot(-a,-b,'wo',-a,-b,'w-') % 用白线画负电荷位置 xlabel('x');ylabel('y'),hold off 本篇文章来源于黑客基地-全球最大的中文黑客站原文链接:https://www.doczj.com/doc/787408769.html,/lib/2007-06-02/30202.html 利用MATLAB模拟静电场 等量异种电荷(其他类似) 一、电势的分布: 1.模型建立:平面上在x=2, y=0处有一正电荷,x=-2, y=0处有一负电荷; 2.计算公式:根据U=q /(4π*r*ε0) ,r为两点间的距离公式 3matlab程序: [x,y]=meshgrid(-5:0.2:5,-4:0.2:4); %建立数据网格 z=1./sqrt((x-2).^2+y.^2+0.01)-1./sqrt((x+2).^2+y.^2+0.01);%电势的表达式 mesh(x,y,z) %三维曲面绘图 二、电场 [x,y]=meshgrid(-2:0.1:2,-2:0.1:2);%以0.1为步长建立平面数据网格 z=1./sqrt((x-1).^2+y.^2+0.01)-1./sqrt((x+1).^2+y.^2+0.01);%写出电势表达式 [px,py]=gradient(z); %求电势在x,y方向的梯度即电场强度 contour(x,y,z,[-12,-8,-5,-3,-1,-0.5,-0.1,0.1,0.5,1,3,5,8,12])%画出等势线 hold on %作图控制 quiver(x,y,px,py,'k') %画出各点上电场的大小和方向

用matlab数值分析电偶极子的等电势图和电场线图

创新课程设计报告 题目:用matlab分析电偶极子的等电势图和电场线系别:电子信息与电气工程系 专业:通信工程专业 班级:1 4 姓名: 导师: 成绩: 2013 年 《通信技术综合创新课程设计》任务书

目录 电偶极子的等电势图和电场 (5) 一电偶极子原理以及相关知识 (5) 电偶极子定义 (5) 电偶极子原理 (5) 二演示程序 (8) 电偶极子电势在matlab中的模拟 (8) 电偶极子电场在matlab中的模拟 (9) 三结束语 (11) 四参考文献 (12)

电偶极子的等电势图和电场 一电偶极子原理以及相关知识 电偶极子定义 一个实体,它在距离充分大于本身几何尺寸的一切点处产生的电场强度都和一对等值异号的分开的点电荷所产生的电场强度相同。电偶极子(electric dipole)是两个相距很近的等量异号点电荷组成的系统。电偶极子的特征用电偶极距P=lq描述,其中 l是两点电荷之间的距离,l和P的方向规定由-q 指向+q。电偶极子在外电场中受力矩作用而旋转,使其电偶极矩转向外电场方向。电偶极矩就是电偶极子在单位外电场下可能受到的最大力矩,故简称电矩。如果外电场不均匀,除受力矩外,电偶极子还要受到平移作用。电偶极子产生的电场是构成它的正、负点电荷产生的电场之和。 电偶极子原理 两个点电荷q和-q间的距离为L。此电偶极子在场点 P 处产生的电位等于两个点电荷在该点的电位之和,即 (1) 图(1)表示中心位于坐标系原点上的一个电偶极子,它的轴线与Z轴重合,其中与分别是q和-q到 P 点的距离。

图1 电偶极子 一般情况下,我们关心的是电偶极子产生的远区场,即负偶极子到场点的距离r 远远大于偶极子长度L的情形,此时可以的到电偶极子的远区表达式 (2)可见电偶极子的远区电位与成正比,与的平方成反比,并且和场点位置矢量与轴的夹角有关。 为了便于描述电偶极子,引入一个矢量P,摸P=q L,方向由-q指向q,称之为此电偶极子的电矩矢量,简称为偶极矩,记作 P=q L (3)此时(2)式又可以写成 (4)电偶极子的远区电场强度可由(4)式求梯度得到。因电位只是坐标和的函数,于是有 (5)从(4)式和(5)式可以看到,电偶极子的远区电位和电场分别与的平方和的三次方成反比。因此,其电位和场强随距离的下降比单个点电荷更为迅速,这是由于两个点电荷q和-q的作用在远区相互抵消的缘故。 根据(4)式,电偶极子的等电位面方程可由

关于电偶极子matlab的资料

电偶极子 定义: 一个实体,它在距离充分大于本身几何尺寸的一切点处产生的电场强度都和一对等值异号的分开的点电荷所产生的电场强度相同。 电偶极子(electric dipole)是两个相距很近的等量异号点电荷组成的系 统。电偶极子的特征用电偶极距P=lq描述,其中l是两点电荷之间的距离, l和P的方向规定由-q指向+q。电偶极子在外电场中受力矩作用而旋转, 使其电偶极矩转向外电场方向。电偶极矩就是电偶极子在单位外电场下可能 受到的最大力矩,故简称电矩。如果外电场不均匀,除受力矩外,电偶极子 还要受到平移作用。电偶极子产生的电场是构成它的正、负点电荷产生的电 场之和。 主要内容 公式1 相距为l的一对等量异号点电荷+q和-q,并且它们到观察点P的距离r>>l。通常的媒质分子在外电场的作用下可以形成这种电偶极子。电偶极子的特征用电偶极矩(或电矩)p=lq表示,l和p的方向规定由-q指向+q。电矩p的国际制单位为C·m(库·米)。微观物理学中常用的单位为德拜(debye);1德拜=3.336×10-30C·m,它相当于典型分子内部核间距离的十分之一(约2×10-11m)同一个电子的电荷e=1.6×10-19C的乘积。 电偶极子产生的电场 公式2

+q和-q分别在观察点P(r)产生的电位的代数和即电偶极子产生的电位。 公式1中墷只对P点的坐标变量运算。在P点的电场强度为(公式2)。外电场中的电偶极子 若电偶极子+q和-q所在点的外电场的电位为V1和V2,则偶极子的位能W=qV1-qV2=q(l·墷)V=p·墷V=-p·E o,式中E o为点偶极子所在的外电场强度。 偶极子在外电场中受到平移力 F=-墷W=墷(p·E o)=(p·墷)E o。 公式3 如果外电场均匀,E o为常量,则F=0。 偶极子在外电场作用下受到的力矩T=-дW/дθ=pE osinθ或T=p×E o,它使电矩p同外电场强度E o的夹角减小。如果p同E o平行,则力矩T=0。并可看到p的量值也就是电偶极子在单位外电场(E o=1)下可 电偶极子 能受到的最大力矩,故称电矩。 如果点偶极子p1 处于另一偶极子p2 产生的电场E2(r)中,则p1的位能即相互作用能为(公式3)。

关于二维电n极子电势分布的一种试探性观点

关于二维电2n 极子电势分布的一种试探性观点 孟雨 2011级物理工程学院物理三班 摘述:我们书中仅给出了二维电偶极子的电势分布规律,然而其他电极子呢?它们之间是否有潜在的规律呢?先仅对二维电2n 极子的个别例子进行简单计算,寻找其中规律,以期找到描述规律的通式。 以下我们将对几个电极子进行求解,下面几个例子中各点电荷 间距均为L,其中涉及的夹角θ)【π2,0∈,且r>>L.下面将不再重复。 一 电偶极子的电势分布 如右图所示: 易知: )(则其中 202220210212222212 0104/cos )4/cos /(cos *4/)/1/1(*4/cos *2/)sin ()2/cos (cos *2/)sin ()2/cos (/1*4/2;/1*4/1r qL L r L q r r q U U U L r r L r r L r r L r r r q U r q U πεθθθπεπεθθθθ θθπεπε≈-=-=+=+≈++=-≈+-=-== 二 电四极子的电势分布

如右图所示: 则 )(42310/1/1/1/1*4/r r r r q U P --+=πε 其中 ) sin (cos *2/)2/sin ()2/cos () sin (cos *2/)2/sin ()2/cos () sin (cos *2/)sin (cos 2/)sin (cos )2/-sin ()2/cos (223222222221θθθθθθθθθθθθθθθθ++≈+++=-+≈-++=+-≈+-≈++-=+-=L r L r L r r L r L r L r r L r rL r L rL r L r L r r )sin (cos *2/)2/sin ()2/cos (224θθθθ--≈++-=L r L r L r r 则: θπεθθθθθθθθθθθθθ2sin */*4//2sin )] 16/2sin )4//((2sin *2/1[2/1/1/1/1)) 2sin 1(*4//(2)) sin (cos *2//(1))sin (cos *2//(1/1/1) 4/)2sin 1(/(2)) sin (cos 2//(1))sin (cos *2//(1/1/13203 2242222423122422231r L q Up r L L L r L r r r r r L r r L r L r r r L r r L r L r r r =≈--=--+--=--+-+=++-=++++-=+故故 三 电六极子的电势分布 如右图所示:

电偶极子的场及辐射

收稿日期:2003-06-14 作者简介:吕宽州(1963-) ,男,河南扶沟人,郑州经济管理干部学院讲师。文章编号:1004-3918(2003)05-0512-03 电偶极子的场及辐射 吕宽州1,姜 俊2 (1.郑州经济管理干部学院, 河南郑州450053;2.河南省科学院,河南郑州450002)摘 要:采用了镜像法等方法对电偶极子及其产生的静电场、电磁场及辐射等做了较系统和深入的分析、研究,使 分析方便、简化,推出的结论有一定实际指导意义。 关键词:电偶极子;电场;磁场;辐射中图分类号:0442 文献标识码:A 在很多文献上,缺乏对电偶极子及其产生的静电场、电磁场及辐射等较系统和深入的分析、研究。本文参考有关文献给出或分析、推出了重要结论,部分内容采用了镜像法,使分析更方便。 !电偶极子及其产生的静电场 电偶极子由一对正、负点电荷组成,电量为l ,相距为l ,如图1所示。其电偶极矩p =l l ,l 的方向由~ l 指向+l , 在T 处产生的电场的电势为:#(r )= l 4L e 0T +_ l 4L e 0T _ 当T !l 时, #(r )=l l cOs 64L e 0T 2=p ?e r 4L e 0T 2(1) 电场强度为: E =_"@=e r P cOs 62L e 0T 3+e !P si n 6 4L e 0T 3 (2) 以上结果表明,电偶极子的电势及电场强度的大小分别与距离的平方、三次方成反比,既存在于近区,且 与方位角有关,这些特点都与点电荷的电场显著不同。图2 绘出了电偶极子的电力线与等位面。 0ct .2003

!电偶极子产生的电磁场及辐射 当P =P 0e -j G t 时,为谐振电偶极子,P 0为常矢,则在近区,即l H T 时, 主要地一方面将感应如上所述的静电场,另一方面,相当于I =j G C 、 长为l 的电流元还将产生一稳恒磁场,其规律可用毕萨定律描述,且电场与磁场的相位相差为90 , 即电场能量与磁场能量相互转换,而平均波印亭矢量为零,故不产生辐射。这里主要讨论远区,即T H l 、T H X 时的辐射场。由文献[2] 知,矢量磁位A (r )= H 04K T e j aT P (3) 若电偶极子位于球坐标原点,并以p 方向为极轴, 则磁感应强度由B =U >A 得:B =14K E 0c 3T e j aT P ?? >e r =P ?? 4K E 0c 3T e j aT si n !e !(4) 而电场强度: E =c B >e r =P ?? 4K E 0c 2T e j aT si n !e "(5)可见B 沿纬线振荡,磁力线是围绕极轴的圆周,E 沿经线振荡, 电力线是经面上的闭合曲线。电偶极子辐射平均能流密度为: s =12 R e ( E 。>H )=c 2H 0B 2e r =P ?? 2 32K 2E 0 c 3T 2si n 2G e r (6)由上式知,在G =90 的平面上辐射最强,而沿电偶极矩轴线方向没有辐射,既具有方向性。把s 对球面积分即得辐射功率: P =f s R 2 d O =P ?? 2 32K 2E 0 c 3f si n 2G d O =14K E 0P ?? 23c 3(7)由上式知,若保持电偶极矩振幅不变,则辐射正比于频率的四次方,频率越高,辐射功率越大。而辐射功率与 距离T 无关, 说明电磁场可以传播到无限远,既近区以感应的静电场和稳恒磁场为主,远区以电偶极子辐射场为主(忽略磁偶极子及电四极子的较弱辐射)。 "无限大导体平面附近电偶极子的辐射 在工程上,讨论导体平面或近似导体平面附近电偶极子的辐射具有实际意义,这里以理想的无限大导体平面为例进行讨论。如图3所示,p 表示电偶极矩p 在导体中的镜像,在a H X 时,可不考虑推迟效应,p 与 T e j (aT ~G t ) 210cos O e Z 故远处产生的电磁场为: B =U >A =~G 2 H 010cos O 2K Tc e j (aT ~G t ) si n G e ! E =c B >e r =~G 2H 010cos O 2K T e j (aT ~G t ) si n G e " 平均能流密度: s =c 2H 0B 2 e r =G 4120cos 2O 8K 2E 0c 3T 2si n 2G e r — 3 15—2003年10月 电偶极子的场及辐射

几种典型电场线分布示意图及场强电势特点表

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 - - - - 点电荷与带电平 + 孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立 的 正点 电荷 电场线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不 同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立 的 负点 电荷 电场线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点组成的球面是等势面,每点的电势为负。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 等量 同种 负点 电荷 电场线 大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。 电势 每点电势为负值。 连 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中 点;由连线的一端到另一端,先减小再增大。 电势 由连线的一端到另一端先升高再降低,中点电势最高不为零。

中 垂线上场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。电势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量同种正点电荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。 电势每点电势为正值。 连 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中 点;由连线的一端到另一端,先减小再增大。 电势由连线的一端到另一端先降低再升高,中点电势最低不为零。 中 垂 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂 线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。 电势 中点电势最高,由中点至无穷远处逐渐降低至零。 等量异种点电荷电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线。 电势中垂面有正电荷的一边每一点电势为正,有负电荷的一边每一点电势为负。 连 线 上 场强 以中点最小不等于零;关于中点对称的任意两点场强大小相等,方向相同,都是由 正电荷指向负电荷;由连线的一端到另一端,先减小再增大。 电势由正电荷到负电荷逐渐降低,中点电势为零。 中 垂 线 上 场强 以中点最大;关于中点对称的任意两点场强大小相等,方向相同,都是与中垂线垂 直,由正电荷指向负电荷;由中点至无穷远处,逐渐减小。 电势 中垂面是一个等势面,电势为零 例如图所示,三个同心圆是同一个点电荷周围的三个等势面,已知这三个圆的半径成等差数列。A、B、C分别是这三个等势面上的点,且这三点在同一条电场线上。A、C两点的电势依次为φA=10V和φC=2V,则B点的电势是 A.一定等于6V B.一定低于6V C.一定高于6V D.无法确定 解:由U=Ed,在d相同时,E越大,电压U也越大。因此U AB> U BC,选B 要牢记以下6种常见的电场的电场线和等势面: 注意电场线、等势面的特点和电场线与等势面间的关系: ①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。 ②电场线互不相交,等势面也互不相交。③电场线和等势面在相交处互相垂直。 ④电场线的方向是电势降低的方向,而且是降低最快的方向。 ⑤电场线密的地方等差等势面密;等差等势面密的地方电场线也密。 +

相关主题
文本预览
相关文档 最新文档