当前位置:文档之家› 电路计算机仿真分析

电路计算机仿真分析

电路计算机仿真分析
电路计算机仿真分析

电路计算机仿真分析

实验报告

学院:电气工程学院

班级:

姓名:

学号:

预备实验Orcad Pspice 的操作和分析过程

一、实验目的

熟悉 Orcad Pspice 的操作和分析过程。

实验示例

阅读实验指导书,查找相关资料了解 Orcad Pspice 的详细过程。上机查看相关视频:

1、了解 Pspice 的启动,电路图的绘制;

2、修改元器件的标号和参数;

3、设置分析功能;

4、仿真前的准备工作;

5、仿真过程;

6、了解库、库元件;

7、了解分析设置的方法。

实验一直流电路工作点分析和直流扫描分析

一、实验目的

(1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程。

(2)学习用Pspice进行直流工作点分析和直流扫描分析的操作步骤。

二、原理和说明

Pspice软件是采用节点电压法对电路进行分析的。

使用Pspice软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,采用Pspice的元件符号库绘制电路图并进行编辑、存盘。然后调

用分析模块、选择分析类型,就可以“自动”进行电路分析了。需要强调的是,Pspice 软件是采用节点电压法“自动”列写节点电压方程的,因

此,在绘制电路图时,一定要有参考节点(即接地点)。此外,一个元件为一条“支路”(branch),要注意到支路(也就是元件)的参考方向。对

于二端元件参考方向定义为正端子指向负端子。

三、实验过程

1、示例说明:应用Pspice求解下图所示电路各节点电压和各支路电流。

2、操作步骤

(1)启动Oread capture新建工程Projl,选项框选择Analog or Mixed A/D.类型选择为create a blank projec t

(2)在原理图界面上点击Place/Part或右侧快捷键。

(3)首先增加常用库,点击Add Library,将常用库添加进来。本例需要添加Analog(包含电阻、电容等无源器件)。在相应的库中选取电阻

R,电流源IDC。点去Place/Ground选取0/Source以放置零节点(每个电路必须有一个零节点)。

(4)移动元器件到适当位置,右键单击器件进行适当旋转,点击Place/Wire或快捷键将电路连接起来(如下页图所示)。

(5)双击原器件或相应参数修改名称和值。

(6)在需要观察到位置放置探针。

(7)保存原理图。

(2)在弹出的窗口中Basic Poi nt是默认选中,必须进行分析的。点击确定。

(3)点击Pspice/Run (快捷键F11)或工具栏相应按钮。

(4)如原理图无错误,则显示Pspice A/D窗口。在本例中未设置其它分析,窗口无显示内容,关闭该窗口。

(5)在原理图窗口中点击V,l工具栏按钮,图形显示各节点电压和各元件电流值如下:

四选做实验

选做实验图

以图所示的直流电路为例,要求对这个电路进行以下两方面的分析:

1、直流工作点分析,即求各节点电压和各元件电压和电流:

3、仿真

2、直流扫描分析:

(1)点击Pspice/New Simulation Profile,输名称(例如输DC1);

a.单击Pspice/Edit Simulation Profile,打开分析类型对话框,建立分析类型。对直流电路的扫描分析要选择“DC Sweep….”。选中后,打

开下一级对话框"直流扫描分析参数表",并设置为:“ Sweep Var.Type ”选择“ Voltage Source" ; Sweep Type "选择

“Linear” ; Name"选择“ Vs1" ; Start Value"输“ 0",“ End Value"输“ 12",”Incremeint"输“ 0.5"。

b.运行Pspice的仿真计算程序,进行直流扫描分析。

c.对于图中电路,电压源US1的电压设置在0到12V之间变化,显示的波形就是负载电阻RL的电流IRL随USL变化的波形:

d.为了得到数值结果,可以从

“ Special"库取“ IPRINT",把它串联到测量点上。例如图中电路,可把“IPRINT ”与“ RL”串联。这时“ dc=1",其余可以缺省。当在"直流扫描分析参数表”中设置的分析参数“Incement"为“ 1"时,运行仿真。在Capture窗口单击

pspice/view output file,数据输出为:

V_Vs1 l(V_PRINT1)

e. IRL与US1的函数关系为:

IRL=1.4+(1.2/12)US1 = 1.4+0.1US1

一、思考与讨论及实验结果分析

(1)根据两图及所得仿真结果验证基尔霍夫定律

答:由示例仿真结果知

第一组方程:Idc1+IR2=2.000A+2.000A=4.000A=IR1,Idc2=4.000A=IR2+IR3 ;

第二组方程:Vidc1+VR1=4+(-4)=0,VR1+VR2+VR3=4+2-6=0,Vidc2+VR3=6-6=0;

由以上两组方程知道,各支点流进电流等于流出电流,各回路电压压降和为0,故结果验证了基尔霍夫定律。

( 2) 怎样理解电流IRL 随US1 变化的函数关系?这个式子中的各项分别表示什么物理意义?

答:IRL 与US1 的函数关系为:IRL=1.4+(1.2/12)US1=1.4+0.1US1 。式子中IRL 表示流过电阻IRL 的电流,US1 表示电源电压。

(3)对图中的电路,若想确定节点电压Uni随US1变化的函数关系,如何使用Pspice软件?

答:直流扫描分析。单击Pspice/Edit Simulation Profile, 打开分析类型对话框,建立分析类型。对直流电路的扫描分析要选择“DC Sweep…。选中后,打开下一级对话框"直流扫描分析参数表",并设置为:“Sweep Var.Type "选择“ Voltage Source" ; Sweep

Type"选择“ Linear" ; Name"选择“ Vs1 ” ; Start Value"输“0",“ End Value"输“ 12" ‘"Increment"输“0.5"。运行Pspice的仿真计算程序,进行直流扫描分析。对于图中电路,电压源US1的电压设置在0到12V之间变化,显示的波形就是负载电阻RL的电流IRL随USL

变化的波形。d.为了得到数值结果,可以从“Special"库取“ IPRINT ”,把它串联到测量点上。例如图中电路,可把“IPRINT "与

“ RL”串联。这时“ dc=1 ",其余可以缺省。当在“直流扫描分析参数表”中设置的分析参数“Incement"为“ 1 "时,运行仿真。在

Capture 窗口单击pspice/view output file ,然后输出数据。

(4)对上述电路,若想确定负载电阻RL的电流IRL随负载电阻RL变化(设RL变化范围为0.1到100)的波形,又该如何使用Pspice软件

进行仿真分析?

答:单击Pspice/Edit Simulation Profile,打开分析类型对话框,建立分析类型。对直流电路的扫描分析要选择“DC Sweep…."。选中后,打开下一级对话框“直流扫描分析参数表”,并设置为:“ Sweep Var.Type "选择“ Model parametent" ; Sweep Type "选择

“Lin ear" ; Name"选择“ IRL" ; Start Value"输“ 0.1 ",“ End Value"输“ 12" ,"ln creme nt"输“ 0.5"。运行Pspice 的仿真计算程序,进行直流扫描分析。

(5)总结如何用Pspice进行直流工作点分析和直流扫描分析。

直流工作点分析,即求各节点电压和各元件电压和电流。直流扫描分析:单击Pspice/Edit Simulation Profile,打开分析类型对话框,建立分

析类型。对直流电路的扫描分析要选择“DC Sweep…."。

实验二戴维南定理和诺顿定理的仿真

一、实验目的:

(1) 进一步熟悉Pspice仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。学习Probe窗口的设置。

( 2) 加深对戴维南定理与诺顿定理的理解

二、原理与说明:

戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻串联的支路来代替,该电压源的电压US等于原网络的

开路电压UOC,电阻RO等于网络的全部独立电源置零后的输入电阻REQ。诺顿定理指出,任一线性有源一端口网络,对外电路来说,可以用一个

电流源与电导并联的支路来代替,该电流源的电流Is等于原网络的短路电流ISC,其电导GO等于原网络的全部独立电源置零后的输入电导Geq ( Geq=1/Req)。

三、实验内容:

(1)测量有源一端口网络等效入端电阻Req和对外电路的伏安特性。其W= 5V,R仁100,U2=4V,R2=50,R3=150。

(2)根据任务中测出的开路电压Uoc、电阻Req,组成等效有源一端口网络,测量其对外电路的伏安特性。

(3)根据任务1中测出的短路电流ISC、电阻Req,组成等效有一端口网络,测量其对外电路的伏安特性。

四、实验步骤:

&在Capture下绘制和编辑电路,包括取元件、连线、输参数和设置节点等。分别编辑原电路、戴维南等效电路和诺顿等效电路(等效参数待定),检查无误后存盘。

9、为测量原网络的伏安特性,RL是可变电阻。为此,RL的阻值要在“ PARAM "中定义一个全局变量var。注意:PARAM设置方法是从special

库中去PARAM放置在电路图上,双击该器件在属性栏左上角的Add New Column/Row,输名称var,值1K。如要显示该名称和值在电路

图上,在数据栏上右键单击,修改display 属性。

10、为测电路的开路电压UOC及短路电流ISC,设定分析类行为“ DC sweep”,扫描变量为全局变量var,并具体设置线性扫描的起点、终点和步

长。因需要测短路点,故扫描的起点电阻要尽量小,但不能是0。而要测开路电压,扫描的终点电阻要尽量大。现行扫描的起点为1P,终点为1G,步长为1MEG。此时不需要中间数据,为了缩短分析时间,步长可以设置大一些。

11、启动分析后,系统自动进了Probe窗口。选择Plot=Add plot to window增加一坐标轴,选择Trace=Add…分别在两轴上加I和V变量。激活显示

电流的坐标轴。选择Trace=cursor=display显示电流的坐标值列表,选择Trace=cursor=max显示电流的最大值。同样可以显示电压的最大

值。测得I (RL )最大值ISC=130ma , V (RL : 2)最大值 3.5455V 。则电阻Req=3.5455/0.13=27.273。回到capture 界面,按测得的等效 参数修改电路参数。重新设定扫描参数,扫描变量仍为

var ,现行扫描的起点为1,终点为10K ,步长为100.重新启动后,来到Probe 窗

口。选择plot=Add plot 增加两个坐标轴,选择 Plot=Xaxis setting=axis variable ,设置横轴 V ( RL : 2),选择 Trace=add 分别在三个轴上 力口 I(RL)、

l(RLd)、I(RLn)变量。选择Trace=cursor=display 显示坐标值列表,点击 l(RL)、l(RLd)、I(RLn)前面的小方格,数值列表中将显 示相应坐标中的坐标

值。用鼠标拖动十字交叉线,可以显示不同电压时的相应电流值。比较三条伏安特性曲线,验证戴维南定理和诺顿 定理。

五、 实验分析思考与讨论

(1) 戴维南定理和诺顿定理的使用条件是什么? 答:戴维南定理和诺顿定理要求是一个线性有源一端口网络。 (2)

绘制原电路和等效电路的伏安特性曲线,比较三条曲线的特性。

实验三 正弦稳态电路分析和交流扫描分析

一、 实验目的

(1) (2) (3)

学习用 pspice 进行正弦稳态电路的分析 学习用 Pspice 进行正弦稳态电路的交流扫描分析 熟悉含受控源电路的链接方式

二、 原理与说明

对于正弦稳态电路,可以用向量法列写电路方程,求解电路中各个电压和电流的振幅(有效值)和初相位(初 相角)。 Pspice 软件是用相量形式的节点电压法对正弦稳态电路进行分析的。

三、 实验示例

(1)

正弦稳态分析。其中正弦电源的角频率为 10Krad/s ,要求计算两个回路中的电流。

a. 在 capure 环境下编辑电路,互感是用符号“ XFRM_LINER ”表示的。参数设置如下: L1_VALUE , L2_VALUE 为自感,

COUPLING 为耦合系数。

b. 设置仿真,打开分析类型对话框,对于正弦电路分析要选择“ AC sweep”。单击该按钮后,可以打开下一

级对话框“交流扫描分析参数表”,设置具体的分析参数。对于图中的例子,设置为:“

Start freq. ”

四、 选做实验

(1) 以给岀的实验例题和实验步骤,用 pspice 独立做一遍,给岀仿真结果 (2)

对正弦稳态电路进行计算机辅助分析,求出个元件的电流。

选做实验( 1 ): 选做( 2)

五、 思考与讨论

1)

为了提高电路的功率因数,常在感性负载上并联电容器,此时增加了一条电流支路,试问电路的总电 流时增大还是减小,此时感性元件上的电流和功率是否改变?

FREQ IM(V_PRINT1) IP(V_PRINT1) IR(V_PRINT1) II(V_PRINT1) 1.592E+03 2.268E-03 8.987E+01 5.145E-06 2.268E-03 FREQ

IM(V_PRINT2) IP(V_PRINT2) IR(V_PRINT2) II(V_PRINT2) 1.592E+03

2.004E+00

8.987E+01

4.546E-03

2.004E+00

IMAG )。仿真计算的输出结果为 分析:可以清楚的看出,电源回路中的电流振幅近似等于 c. d. “ 1592 ”;“ end freq. ”输“ 1592 ”;“ total pts. ” 输“ 1”。

运行 pspice 的仿真计算程序,在 probe 窗口显示交流扫描分析的结果。

为了得到数值的结果,可以在两个回路中分别设置电流打印机标示符。 其I(R1) 和 I( C1), 设置项有( AC 、MAG 、 PHASE 、REAL 、

0,负载回路中的电流振幅等于 2A

计算机仿真技术与CAD习题答案

第0章绪论 0-1 什么是仿真?它所遵循的基本原则是什么? 答: 仿真是建立在控制理论、相似理论、信息处理技术和计算机技术等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助专家经验知识、统计数据和信息资料对试验结果进行分析和研究,进而做出决策的一门综合性的试验性科学。 它所遵循的基本原则是相似原理。 0-2 仿真的分类有几种?为什么? 答: 依据相似原理来分:物理仿真、数学仿真和混合仿真。 物理仿真:就是应用几何相似原理,制作一个与实际系统相似但几何尺寸较小或较大的物理模型(例如飞机模型放在气流场相似的风洞中)进行实验研究。 数学仿真:就是应用数学相似原理,构成数学模型在计算机上进行研究。它由软硬件仿真环境、动画、图形显示、输出打印设备等组成。 混合仿真又称数学物理仿真,它是为了提高仿真的可信度或者针对一些难以建模的实体,在系统研究中往往把数学仿真、物理仿真和实体结合起来组成一个复杂的仿真系统,这种在仿真环节中有部分实物介入的混合仿真也称为半实物仿真或者半物理仿真。 0-3 比较物理仿真和数学仿真的优缺点。 答: 在仿真研究中,数学仿真只要有一台数学仿真设备(如计算机等),就可以对不同的控制系统进行仿真实验和研究,而且,进行一次仿真实验研究的准备工作也比较简单,主要是受控系统的建模、控制方式的确立和计算机编程。数学仿真实验所需的时间比物理仿真大大缩短,实验数据的处理也比物理仿真简单的多。 与数学仿真相比,物理仿真总是有实物介入,效果直观逼真,精度高,可信度高,具有实时性与在线性的特点;但其需要进行大量的设备制造、安装、接线及调试工作,结构复杂,造价较高,耗时过长,灵活性差,改变参数困难,模型难以重用,通用性不强。 0-4 简述计算机仿真的过程。 答: 第一步:根据仿真目的确定仿真方案 根据仿真目的确定相应的仿真结构和方法,规定仿真的边界条件与约束条件。 第二步:建立系统的数学模型 对于简单的系统,可以通过某些基本定律来建立数学模型。而对于复杂的系统,则必须利用实验方法通过系统辩识技术来建立数学模型。数学模型是系统仿真的依据,所以,数学模型的准确性是十分重要。

计算机仿真与建模实验报告

中南大学 计算机仿真与建模 实验报告 题目:理发店的服务过程仿真 姓名:XXXX 班级:计科XXXX班 学号:0909XXXX 日期:2013XXXX

理发店的服务过程仿真 1 实验案例 (2) 1.1 案例:理发店系统研究 (2) 1.1.1 问题分析 (3) 1.1.2 模型假设 (3) 1.1.3 变量说明 (3) 1.1.4 模型建立 (3) 1.1.5 系统模拟 (4) 1.1.6 计算机模拟算法设计 (5) 1.1.7 计算机模拟程序 (6) 1实验案例 1.1 案例:理发店模拟 一个理发店有两位服务员A和B顾客随机地到达该理发店,每分钟有一个顾客到达和没有顾客到达的概率均是1/2 , 其中60%的顾客理发仅用5分钟,另外40%的顾客用8分钟. 试对前10分钟的情况进行仿真。 (“排队论”,“系统模拟”,“离散系统模拟”,“事件调度法”)

1.1.1 问题分析 理发店系统包含诸多随机因素,为了对其进行评判就是要研究其运行效率, 从理发店自身利益来说,要看服务员工作负荷是否合理,是否需要增加员工等考 虑。从顾客角度讲,还要看顾客的等待时间,顾客的等待队长,如等待时间过长 或者等待的人过多,则顾客会离开。理发店系统是一个典型的排队系统,可以用 排队论有关知识来研究。 1.1.2 模型假设 1. 60%的顾客只需剪发,40%的顾客既要剪发,又要洗发; 2. 每个服务员剪发需要的时间均为5分钟,既剪发又洗发则花8分钟; 3. 顾客的到达间隔时间服从指数分布; 4. 服务中服务员不休息。 1.1.3 变量说明 u :剪发时间(单位:分钟),u=5m ; v: 既剪发又理发花的时间(单位:分钟),v=8m ; T : 顾客到达的间隔时间,是随机变量,服从参数为λ的指数分布,(单位: 分钟) T 0:顾客到达的平均间隔时间(单位:秒),T 0=λ 1; 1.1.4 模型建立 由于该系统包含诸多随机因素,很难给出解析的结果,因此可以借助计算机 模拟对该系统进行模拟。 考虑一般理发店的工作模式,一般是上午9:00开始营业,晚上10:00左 右结束,且一般是连续工作的,因此一般营业时间为13小时左右。 这里以每天运行12小时为例,进行模拟。 这里假定顾客到达的平均间隔时间T 0服从均值3分钟的指数分布, 则有 3小时到达人数约为603 603=?人, 6小时到达人数约为1203 606=?人, 10小时到达人数约为2003 6010=?人, 这里模拟顾客到达数为60人的情况。 (如何选择模拟的总人数或模拟总时间)

通信对抗原理大作业题目

通信对抗原理仿真大作业题目 基本要求:仿真大作业分组完成,每个组3~5人,至少选择4个题目,并且在每一类中至少选择一个题目。利用MATLAB完成计算机仿真,并且撰写仿真实验报告。大作业完成情况将作为评价平时成绩的依据。 第一类:测频方法仿真 1.FFT法数字测频技术仿真。仿真模拟通信信号或者数字通信信号三种以上, 基于FFT法进行载波频率测量。画出信号的时域、频域波形,给出FFT法测量的结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比与测量误差的关系。 2.互相关法数字测频技术仿真。仿真模拟通信信号或者数字通信信号三种以上, 基于互相关法进行载波频率测量。画出信号的时域、频域波形,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比与测量误差的关系。 3.相位差分法数字测频技术仿真。仿真模拟通信信号或者数字通信信号三种以 上,基于相位差分法法进行载波频率测量。画出信号的时域、频域波形,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比与测量误差的关系。 第二类:测向方法仿真 4.相位干涉仪测向方法仿真。仿真模拟通信信号或者数字通信信号两种以上, 基于相位干涉仪测向方法,对不同方向到达的通信信号进行测向。画出信号的时域、频域波形,给出到达方向测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比、到达角与测量误差的关系。 5.到达时差测向方法仿真。仿真模拟通信信号或者数字通信信号两种以上,基 于到达时差测向方法,对不同方向到达的通信信号进行测向。画出信号的时域、频域波形,观察相关函数,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比、到达角与测量误差的关系。6.多普勒测向方法仿真。仿真模拟通信信号或者数字通信信号两种以上,基于 多普勒测向方法,对不同方向到达的通信信号进行测向。画出信号的时域、频域波形,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比、到达角与测量误差的关系。 7.沃森-瓦特测向方法仿真。仿真模拟通信信号或者数字通信信号两种以上,基 于沃森-瓦特测向方法,对不同方向到达的通信信号进行测向。画出信号的时域、频域波形,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比、到达角与测量误差的关系。 第三类:信号处理技术仿真 8.信号带宽和幅度测量方法仿真。仿真模拟通信信号或者数字通信信号三种以 上,基于FFT法进行信号带宽、信号相对幅度测量。画出信号的时域、频域

电路计算机仿真实验报告

电路计算机仿真分析 实验报告

实验一直流电路工作点分析和直流扫描分析 一、实验目的 1、学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 2、学习使用Pspice进行直流工作点分析和直流扫描分析的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法(支路电流法、节点电压法、回路电流法)列写电路方程,求解电路中各个电压和电流。PSPICE软件是采用节点电压法对电路进行分析的。 使用PSPICE软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,用PSPICE 的元件符号库绘制电路图并进行编辑、存盘。然后调用分析模块、选择分析类型,就可以“自 动”进行电路分析了。需要强调的是,PSPICE软件是采用节点电压法“自动”列写节点电 压方程的,因此,在绘制电路图时,一定要有参考节点(即接地点)。此外,一个元件为一 条“支路”(branch),要注意支路(也就是元件)的参考方向。对于二端元件的参考方向定 义为正端子指向负端子。 三、示例实验 应用PSPICE求解图1-1所示电路个节点电压和各支路电流。 图1-1 直流电路分析电路图

4.000V R2 1 2.000A 0V Idc2 4Adc 4.000A 6.000V R1 1 4.000A Idc1 2Adc 2.000A R3 3 2.000A 图1-2 仿真结果 四、选做实验 1、实验电路图 (1)直流工作点分析,即求各节点电压和各元件电压和电流。 (2)直流扫描分析,即当电压源Us1的电压在0-12V之间变化时,求负载电阻R L中电流I RL随电压源Us1的变化曲线。 R4 3 Is3 2Adc 0Vs2 10Vdc RL 1 Is1 1Adc Is2 1Adc R1 4 I Is5 3Adc R2 2 12Vdc IPRINT Vs3 5Vdc Vs4 7Vdc 图1-3 选做实验电路图 2、仿真结果

交通仿真实验报告

交通仿真实验报告 篇一:交通仿真实验报告 目录 1 上机性质与目的.................................. 2 2 上机内容....................................... 2 3 交叉口几何条件、信号配时和交通流数据描述.......... 3 3.1 交叉口几何数据................................ 3 3.2 交叉口信号配时系统............................ 3 3.3 交叉口交通流数据.............................. 4 4 交叉口交通仿真.................................. 4 4.1 交通仿真步骤.................................. 4 4.2 二维输出..................................... 13 4.3 3D输出...................................... 14 5 仿真结果分析................................... 15 6 实验总结和体会 (15) 实验上机名称:信号交叉口仿真 1 上机性质与目的 本实验属于计算机仿真实验,借助仿真系统模拟平面信号交叉口场景,学生将完成从道路条件设计到信号相位配置等一系列仿真实验。 实验目的: 1. 了解平面信号交叉口在城市交通中的地位; 2. 了解平面信号交叉口的主要形式、规模等基本情况; 3. 了解交叉口信号相位配时及对交叉口通行能力的影响;

计算机仿真实验-基于Simulink的简单电力系统仿真

实验七 基于Simulink 的简单电力系统仿真实验 一. 实验目的 1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用; 3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。 二.实验内容与要求 单机无穷大电力系统如图7-1所示。平衡节点电压0 44030 V V =∠? 。负荷功率10L P kW =。线路参数:电阻1l R =Ω;电感0.01l L H =。发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流 70 fn i A =;额定频率50n f Hz =。发电机定子侧参数:0.26s R =Ω, 1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。发电机阻尼绕组参数:0.0224kd R =Ω, 1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。发电机转动惯量和极对数分别 为224.9 J kgm =和2p =。发电机输出功率050 e P kW =时,系统运行达到稳态状态。在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。

G 发电机节点 V 负 荷 l R l L L P 图 7.1 单机无穷大系统结构图 输电线路 三.实验步骤 1. 建立系统仿真模型 同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。模块的第1个输入端子(Pm)为电机的机械功率。当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。在发电机模式下,输入可以是一个正的常数,也可以是一个函数或者是原动机模块的输出;在电动机模式下,输入通常是一个负的常数或者是函数。模块的第2个输入端子(Vf)是励磁电压,在发电机模式下可以由励磁模块提供,在电动机模式下为一个常数。 在Simulink仿真环境中打开Simulink库,找出相应的单元部件模型,构造仿真模型,三相电压源幅值为4403,频率为50Hz。按图连接好线路,设置参数,建立其仿真模型,仿真时间为5s,仿真方法为ode23tb,并对各个单元部件模型的参数进行修改,如图所示。

计算机仿真课程设计

附件1: 北京理工大学珠海学院 《计算机仿真》课程设计说明书题目: 控制系统建模、分析、设计和仿真 学院:信息学院 专业班级: 学号: 学生姓名: 指导教师: 2012年6 月16 日 附件2: 北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第2学期 学生姓名:专业班级: 指导教师:工作部门:信息学院 一、课程设计题目 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为8xxxxxxxxx2的学生必须选做[2号题]。

[0号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [1号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [2号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [3号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [4号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [5号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [6号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [7号题] 控制系统建模、分析、设计和仿真

江南大学数媒0902基于虚拟现实技术大作业报告

课程:虚拟现实题目:沸腾的水壶 班级:数媒0902 学号:0305090206 姓名:沈玉婷 日期:2012.12

1、绪论 1.1 虚拟现实动画简介 虚拟现实动画就是用虚拟现实的技术以动画的形式表现出来(这是建立在虚拟现实及动画技术的基础上出现的)。我们以了解什么是虚拟现实及动画的意思后就能全面理解虚拟现实动画的概念。 1.2 关于虚拟现实技术 虚拟现实(Virtual Reality,简称VR;又译作灵境、幻真)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用电脑模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以及时、没有限制地观察三度空间内的事物。 VR是一项综合集成技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它用计算机生成逼真的三维视、听、嗅觉等感觉,使人作为参与者通过适当装置,自然地对虚拟世界进行体验和交互作用。使用者进行位置移动时,电脑可以立即进行复杂的运算,将精确的3D世界影像传回产生临场感。该技术集成了计算机图形(CG)技术、计算机仿真技术、人工智能、传感技术、显示技术、网络并行处理等技术的最新发展成果,是一种由计算机技术辅助生成的高技术模拟系统。概括地说,虚拟现实是人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式,与传统的人机界面以及流行的视窗操作相比,虚拟现实在技术思想上有了质的飞跃。 2、需求分析 随着CAD技术的发展,人们就开始研究立体声与三维立体显示相结合的计算机系统。目的在于建立一种新的用户界面,使用户可以置身于计算机所表示的三维空间资料库环境中,并可以通过眼、手、耳或特殊的空间三维装置在这个环境中"环游",创造出一种"亲临其境"的感觉。 虚拟现实是人们通过计算机对复杂数据进行可视化、操作以及实时交互的环境。与传统的计算机人――机界面(如键盘、鼠标器、图形用户界面以及流行的Windows等)相比,虚拟现实无论在技术上还是思想上都有质的飞跃。传统的人――机界面将用户和计算机视为两个独立的实体,而将界面视为信息交换的媒介,由用户把要求或指令输入计算机,计算机对信息或受控对象作出动作反馈。虚拟现实则将用户和计算机视为一个整体,通过各种直观的工具将信息进行可视化,形成一个逼真的环境,用户直接置身于这种三维信息空间中自由地使用各种信息,并由此控制计算机。目前,虚拟现实技术已经遍布我们生活中的每一个行业,城市规划中的应用、旅游景观的应用、医学中应用、娱艺教中的应用、军事与航天中的应用、室内设计中的应用、房产开发中的应用、工业仿真中的应用、应急推演中的应用。由此可知,虚拟

计算机仿真课程设计报告

、 北京理工大学珠海学院 课程设计任务书 2010 ~2011 学年第 2学期 学生姓名:林泽佳专业班级:08自动化1班指导教师:钟秋海工作部门:信息学院一、课程设计题目 : 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为8xxxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容|

! " [2 有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 (二)《控制系统建模、分析、设计和仿真》课题设计要求及评分标准【共100分】 , 1、求被控对象传递函数G(s)的MATLAB描述。(2分) 2、求被控对象脉冲传递函数G(z)。(4分) 3、转换G(z)为零极点增益模型并按z-1形式排列。(2分) 4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际 闭环系统稳定的要求。(6分) 5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳 定的要求。(8分)

6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。 (12分) 7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。 (3分) ! 8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。(7分) 9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。 (8分) 10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际 闭环系统稳定的要求。(6分) 11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际 闭环系统稳定的要求。(8分) 12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。 (12分) 13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。(3分) 14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。(7分) 15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。 & (8分) 16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。(4分) 三、进度安排 6月13至6月14:下达课程设计任务书;复习控制理论和计算机仿真知识,收集资料、熟悉仿真工具;确定设计方案和步骤。 6月14至6月16:编程练习,程序设计;仿真调试,图形仿真参数整定;总结整理设计、 仿真结果,撰写课程设计说明书。 6月16至6月17:完成程序仿真调试和图形仿真调试;完成课程设计说明书;课程设计答 辩总结。 [ 四、基本要求

计算机仿真实验

计算机仿真实验报告 专业:电气工程及其自动化班级:09电牵一班学号:22 姓名:饶坚指导老师:叶满园实验日期:2012年4月30日 一、实验名称 三相桥式SPWM逆变电路仿真 二、目的及要求 1.了解并掌握三相逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink的使用及构建模块; 3.掌握SPWM原理及构建调制电路模块; 4.复习在Figure中显示图形的程序编写和对图形的修改。 三、实验原理与步骤、电路图 1、实验原理图

2、电路原理(采用双极性控制方式) U、V和W三相的PWM控制通常公用一个三角波载波Uc,三相的调制信号Uru、Urv和Urw依次相差120°。 电路工作过程(U相为例):当Uru>Uc时,上桥臂V1导通,下桥臂V4关断,则U相相对于直流电源假想中点N’的输出电压Uun’=Ud/2。当Uru

对电路模型进行封装如下图示:

其中Subsystem1为主电路,Subsystem2为负载,Subsystem3为检测电路,Subsystem4为输入信号,Subsystem5为调制电路,Scope 为示波器,Repeating Sequence为三角载波。 各子系统电路分别如下所示: Subsystem1 Subsystem2 Subsystem3

MATLAB计算机仿真设计

《计算机仿真技术》 课程设计 姓名: 学号: 班级: 1 专业: 学院: 2016年12月24日

目录 一、设计目的 (1) 二、设计任务 (1) 三、具体要求 (1) 四、设计原理概述 (1) 五、设计内容 (2) 六、设计方案及分析 (2) 1、观察原系统性能指标 (2) 2、手动计算设计 (6) 3、校正方案确定 (8) 七、课程设计总结 (14)

模拟随动控制系统的串联校正设计 一、设计目的 1、通过课程设计熟悉频域法分析系统的方法原理。 2、通过课程设计掌握滞后-超前校正作用与原理。 3、通过在实际电路中校正设计的运用,理解系统校正在实际中的意义。 二、设计任务 控制系统为单位负反馈系统,开环传递函数为) 1025.0)(11.0()(G ++=s s s K s ,设计校正装置,使系统满足下列性能指标:开环增益100K ≥;超调量30%p σ<; 调节时间ts<0.5s 。 三、具体要求 1、使用MATLAB 进行系统仿真分析与设计,并给出系统校正前后的 MATLAB 仿真结果,同时使用Simulink 仿真验证; 2、使用EDA 工具EWB 搭建系统的模拟实现电路,分别演示并验证校正前 和校正后的效果。 四、设计原理概述 校正方式的选择:按照校正装置在系统中的链接方式,控制系统校正方式分 为串联校正、反馈校正、前馈校正和复合校正4种。串联校正是最常用的一种校 正方式,这种方式经济,且设计简单,易于实现,在实际应用中多采用这种校正 方式。串联校正方式是校正器与受控对象进行串联链接的。本设计按照要求将采 用串联校正方式进行校正。 校正方法的选择:根据控制系统的性能指标表达方式可以进行校正方法的确 定。本设计要求以频域指标的形式给出,因此采用基于Bode 图的频域法进行校 正。 几种串联校正简述:串联校正可分为串联超前校正、串联滞后校正和滞后- 超前校正等。 超前校正的目的是改善系统的动态性能,实现在系统静态性能不受损的前提

武汉理工大学-计算机仿真实验作业答案

五、(10分)已知系统的传递函数为6 168682)(232+++++=s s s s s s G 。 语言建立系统传递函数模型,并求: ⑴ 该系统的单位阶跃响应;(2分) ⑵ 输入函数为u(t)时的响应;(3分) (u(t)正弦信号,周期2秒,仿真时间8秒,采样周期0.1); (3) 输入函数为u(t)时的响应;(3分) (u(t)方波输入信号,周期10秒,仿真时间20秒,采样周期0.05) (4) 绘出系统的波德图(Bode )。(2分) 解答: num=[2 8 6]; den=[1 8 16 6]; sys=tf(num,den); t=0:0.1:8; y1=step(sys,t); u=sin(t*pi); y2=lsim(sys,u,t); subplot(2,2,1);plot(t,y1); grid; title('阶跃响应曲线'); xlabel('响应时间'); ylabel('响应值'); hold on; subplot(2,2,2);plot(t,y2); grid on ; title('对sin(t)的响应曲线'); xlabel('响应时间'); ylabel('响应值'); t=0:0.05:20 u=square(pi/5*t) y3=lsim(sys,u,t); subplot(2,2,3);plot(t,y3) grid on ; title('对方波信号的响应曲线'); xlabel('响应时间'); ylabel('响应值'); subplot(2,2,4);bode(sys);

grid ;title('bode 图'); 运行结果: 六、(10分)设二阶动力学系统的传递函数如下,假设将无阻尼固有频 率固定为ωn =1 rad/s ,将阻尼比的值分别设置成ζ=0,0.1,0.2,0.3,…, MATLAB 语言编程,分析在这些阻尼比ζ的取值下该系统的阶跃响应。 2222)(n n n s s s G ω?ωω++= 解答:wn=1; kesi=[0:0.1:1,2,3,4,5]; figure('color',[1 1 1]); hold on for i=kesi num=wn.^2 den=[1,2*i*wn,wn.^2]; step(num,den);

计算机仿真实训实验报告实验1-4

实验一 熟悉MATLAB 工作环境 16电气5班 周树楠 20160500529 一、实验目的 1.熟悉启动和退出MATLAB 软件的方法。 2.熟悉MATLAB 软件的运行环境。 3.熟悉MATLAB 的基本操作。 二、实验设备及条件 计算机一台(带有MATLAB6.0以上的软件境)。 三、实验内容 1.练习下面指令: cd,clear,dir,path,help,who,whos,save,load 。 2.建立自己的工作目录MYBIN 和MYDATA ,并将它们分别加到搜索路径的前面或者后面。 3.求23)]47(*212[÷-+的算术运算结果。 4.M 文件的建立,建立M 文件,求出下列表达式的值: ?? ????-+=++=+= 545.0212),1ln(21 185sin 2222 1i x x x z e z o 其中

5.利用MATLAB的帮助功能分别查询inv、plot、max、round函数的功能和用法。 四、运行环境介绍及注意事项 1.运行环境介绍 打开Matlab软件运行环境有图1-1所示的界面

图1-1 MATLAB的用户界面 操作界面主要的介绍如下: 指令窗( Command Window ),在该窗可键入各种送给 MATLAB 运作的指令、函数、表达式,并显示除图形外的所以运算结果。 历史指令窗( Command History ),该窗记录已经运行过的指令、函数、表达式;允许用户对它们进行选择复制、重运行,以及产生 M 文件。 工作空间浏览器( Workspace Browser ),该窗口罗列出 MATLAB 工作空间中所有的变量名、大小、字节数;并且在该窗中,可对变量进行观察、编辑、提取和保存。 其它还有当前目录浏览器( Current Directory Browser )、 M 文件编辑 / 调试器(Editor/Debugger )以及帮助导航/ 浏览器(Help Navigator/Browser )等,但通常不随操作界面的出现而启动。 利用 File 菜单可方便对文件或窗口进行管理。其中 File | New 的各子菜单, M-file ( M 文件)、 Figure (图形窗口)、或 Model ( Simulink 编辑界面)分别可创建对应文件或模块。 Edit 菜单允许用户和 Windows 的剪切板交互信息。 2.在指令窗操作时应特别注意以下几点 1)所有输入的指令、公式或数值必须按下回车键以后才能执行。例如: >>(10*19+2/4-34)/2*3 (回车) ans= 234.7500 2)所有的指令、变量名称都要区分字母的大小写。 3)%作为MATLAB注释的开始标志,以后的文字不影响计算的过程。 4)应该指定输出变量名称,否则MATLAB会将运算结果直接存入默认的输出变量名ans。 5)MATLAB可以将计算结果以不同的精确度的数字格式显示,可以直接在指令视窗键入不同的数字显示格式指令。例如:>>format short (这是默认的) 6)MATLAB利用了↑↓二个游标键可以将所输过的指令叫回来重复使用。按下↑则前一次输入的指令重新出现,之后再按Enter键,即再执行前一次的指令。

计算机仿真实验报告7

山东工商学院计算机仿真及应用实验报告 实验七 MATLAB的基本应用(二)及Simulink仿真 (验证性实验) 学院: 专业班级: 实验时间: 学号: 姓名:

一、实验目的 1、掌握连续信号的仿真和傅里叶分析方法 2、掌握连续系统的分析方法(时域分析法,拉氏变换法和傅里叶分析法); 3、掌握离散信号的仿真和分析运算方法 4、掌握离散系统的分析方法(时域分析法); 5、掌握符号运算方法; 6、掌握Simulink仿真工具; 二、实验原理 1、连续信号的仿真和分析法,参考教材第6.1节,重点: 单位冲激信号的仿真方法;单位阶跃信号的仿真方法;复指数信号的仿真方法 2、连续系统的分析方法,参考教材第6.1节,重点: 例6.2,LTI系统的零输入响应的求解方法; 例6.3,LTI系统的冲激响应的求解方法 例6.5,LTI系统的零状态响应的求解方法 例6.6,系统中有重极点时的计算 3、系统的频域分析方法,参考教材第6.2节,重点: 例6.7,方波分解为多次正弦波之和 例6.8:全波整流电压的频谱 例6.10:调幅信号通过带通滤波器 例6.12:用傅里叶变换计算滤波器的响应和输出 4、离散信号的仿真和分析法,参考教材第6.3节,7.1节,重点: 单位脉冲序列impseq,单位阶跃序列stepseq 例7.1:序列的相加和相乘 例7.2:序列的合成与截取 例7.3:序列的移位和周期延拓运算 三、实验内容(包括内容,程序,结果) 以自我编程练习实验为主,熟悉各种方法和设计,结合课堂讲授,实验练习程序代码。 1、根据教材第6.1节的内容,练习连续信号和系统的时域分析和拉氏变换方法。 q602 clear,clc a=input('输入分母系数向量a=[a1,a2,...]= '); n=length(a)-1; Y0=input('输入初始条件向量Y0=[y0,Dy0,D2y0,...]= '); p=roots(a);V=rot90(vander(p));c=V\Y0'; dt=input('dt= ');tf=input('tf= '); t=0:dt:tf;y=zeros(1,length(t));

计算机仿真课程设计

计算机仿真课程设计 Prepared on 22 November 2020

附件1: 北京理工大学珠海学院 《计算机仿真》课程设计说明书题目: 控制系统建模、分析、设计和仿真 学院:信息学院 专业班级: 学号: 学生姓名: 指导教师: 2012年 6 月 16 日 附件2: 北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第 2学期 学生姓名:专业班级: 指导教师:工作部门:信息学院 一、课程设计题目 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。

学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为8xxxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容 [0 [1号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [2号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [3号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [4号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [5号题] 控制系统建模、分析、设计和仿真

计算机仿真期末大作业Mersenne Twister随机数发生器及随机性测试

Mersenne Twister随机数发生器及随机性测试 一、实验目的 用MATLAB实现Mersenne Twister随机数发生器,并对其随机性进行测试。二、实验原理 伪随机数的产生,首先是选取种子,然后是在此种子基础上根据具体的生成算法计算得到一个伪随机数,然后利用此伪随机数再根据生成算法递归计算出下二个伪随机数,直到将所有不重复出现的伪随机数全部计算出来。这个伪随机数序列就是以后要用到的伪随机数序列。上面的计算过程可以一次性计算完毕,也可以使用一次递归计算一次,每次生成的伪随机数就是这个伪随机数序列中的一个,不过不管怎么样,只要确定了种子,确定了生成算法,这个序列就是确定的了。所谓种子,就是一个对伪随机数计算的初始值。 Mersenne Twister算法是一种随机数产生方法,它是移位寄存器法的变种。该算法的原理:Mersenne Twister算法是利用线性反馈移位寄存器(LFSR)产生随机数的,LFSR的反馈函数是寄存器中某些位的简单异或,这些位也称之为抽头序列。一个n位的LFSR能够在重复之前产生2^n-1位长的伪随机序列。只有具有一定抽头序列的LFSR才能通过所有2^n-1个内部状态,产生2^n - 1位长的伪随机序列,这个输出的序列就称之为m序列。为了使LFSR成为最大周期的LFSR,由抽头序列加上常数1形成的多项式必须是本原多项式。一个n阶本原多项式是不可约多项式,它能整除x^(2*n-1)+1而不能整除x^d+1,其中d能整除2^n-1。例如(32,7,5,3,2,1,0)是指本原多项式x^32+x^7+x^5+x^3+x^2+x+1,把它转化为最大周期LFSR就是在LFSR小邓第32,7,5,2,1位抽头。利用上述两种方法产生周期为m的伪随机序列后,只需要将产生的伪随机序列除以序列的周期,就可以得到(0,1)上均匀分布的伪随机序列了。 伪代码如下: // 建立624位随机序列数组 int[0..623] MT int index = 0 //初始化随机序列数组 function initializeGenerator(int seed) { MT[0] := seed for i from 1 to 623 { MT[i] := last 32 bits of(1812433253 * (MT[i-1] xor(right shift by 30 bits(MT[i-1]))) + i) // 0x6c078965 } }

方波逆变电路的计算机仿真课案

电力电子系统仿真 题目:单相方波逆变电路仿真 院系:电气工程学院 班级:电气F1305 学号:201323010209 学生姓名:蒋广敬

单相方波逆变电路仿真 实验步骤 ①设计一单相桥式方波逆变电路,开关器件选用IGBT,直流电压为300V,电阻负载,电阻1欧姆,电感2毫亨。根据上述要求完成主电路设计。 ②完成上述单相桥式方波逆变电路的计算机仿真,观察输出电压波形。系统输入电流波形,电压电流波形的谐波情况、不同仿真条件时系统输入输出的变化情况和理论分析的结果进行比较。 仿真软件简介 MATLAB 是一种适用于工程应用各领域分析设计与复杂计算的科学计算软件,由美国MathWorks公司于1984年正式推出,1988年推出3.X(DOS)版本,1992年推出4.X(Windows)版本;近几年来,Mathworks公司将MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。MATLAB 已成为美国和其他发达国家大学教学和科学研究中最常用而且必不可少的工具。 MATLAB时“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需求。在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数,所有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。 MATLAB主要包括MATLAB和Simulink两大部分。MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便

计算机仿真概述

计算机仿真 概述

引言 仿真技术作为一门独立的科学已经有50多年的发展历史了,他不仅用于航天、航空、各种系统的研制部门,而且已经广泛应用于电力、交通运输、通信、化工、核能等各个领域。特别是近20年来,随着系统工程与科学的迅速发展,仿真技术已从传统的工程领域扩充到非工程领域,因而在社会经济系统、环境生态系统、能源系统、生物医学系统、教育系统也得到了广泛的应用。 在系统的规划、设计、运行、分析及改造的各个阶段,仿真技术都可以发挥重要作用。随着研究对象的规模日益庞大,结构日益复杂,仅仅依靠人的经验及传统技术难以满足愈来愈高的要求。基于现代计算机及其网络的仿真技术,不但能提高效率,缩短研究开发周期,减少训练时间,不受环境及气候限制,而且对保证安全、节约开支、提高质量尤其具有突出的功效。 现在,仿真技术成已为各个国家重点发展的一门高新技术,从某种角度上,它代表着一个国家的科技实力的强弱,同时在某些方面也制约着一些国家的现代化建设和发展。 从理论上讲,我们日常生活中以及自然界中碰到的一切问题,都可以利用计算机进行模拟。因此,要跟上时代的发展要求,学习和了解一定的仿真技术是必要的。 一、系统、模型与仿真 在认识仿真之前,首先要了解与仿真相关的两个概念:系统与模型。 系统:一般来说,所谓“系统”就是指按照某些规律结合起来,相互作用、相互依赖、相互依存的所有实体的集合。描述系统的“三要素”――实体、属性、活动。实体确定了系统的构成;属性也称为描述变量,用来描述每一实体的特性;活动定义了系统内部实体之间的相互作用,从而确定了系统内部发生的过程。举个例子说,我们可以把一个理发馆定义为一个系统。该系统的“实体”包括服务员和顾客,顾客到达模式和服务质量分别是顾客和服务员两个实体的“属性”,而整个服务过程就是“活动”。 模型:所谓“模型”就是系统某种特定功能的一种描述,它集合了系统必要的信息,通过模型可以描述系统的本质和内在的关系。它一般分为物理模型和数学模型两大类。物理模型与实际系统有相似的物理性质,它们与实际系统外貌相似,只不过按比例改变尺寸,如各种飞机、轮船的模型等。数学模型是用抽象的数学方程描述系统内部各个量之间的关系而建立的模型,这样的模型通常是一些数学方程。如带电粒子在电场中运动的数学模型,我们关心的是粒子的速度、位移随时间的变化。于是我们将系统的特征如电场强度,时间,粒子

相关主题
文本预览
相关文档 最新文档