当前位置:文档之家› 推荐-MCGS的锅炉温度控制系统设计1 精品

推荐-MCGS的锅炉温度控制系统设计1 精品

西南科技大学

专业方向设计报告

课程名称:自动化专业方向设计

设计名称:基于MCGS的锅炉温度控制系统设计

姓名:赵XX

学号: 20XXXX

班级:自动10XX班

指导教师:王顺利

起止日期: 20XX.10.20——20XX.11.15 西南科技大学信息工程学院制

方向设计任务书

学生班级:自动10XX班学生姓名:赵XX 学号:20XXXXXX 设计名称:基于MCGS的锅炉温度控制系统设计

起止日期:20XX.10.20——20XX.11.15 指导教师:王顺利

方向设计学生日志

基于MCGS的锅炉温度控制系统设计

摘要:锅炉是工业生产中主要的供热设备。电力、机械、冶金、化工、民用都需要锅炉提供热量,但是根据行业的不同,对锅炉的大小规模不尽相同。作为重要的工业设备,在保证其安全和稳定运行的情况下则应考虑其自动生产,提高自动运行能力及工作效率。本设计基于AE2000B实验设备上模拟现场锅炉温度控制系统,通过西门子S7-200 PLC作为控制器,MCGS 作为上位机,通过通信链接对锅炉温度进行实时监控,同时设计系列联锁,保证系统安全运行。关键词: 锅炉温度 AE2000B PLC MCGS

Based on the MCGS boiler temperature control system design Abstract:The boiler is the main heating equipment in the industrial manufacture.

The electric power, the machinery, the metallurgical industry ,the chemical industry and the civil all need the heat the boiler offers. However, according to different industries, The size of the boiler varies from one to another. As an important industrial equipment, if we could ensure its safe and stable operation ,we should consider its automatic production and improve the automatic ability and its working efficiency. This design is based on AE2000B experimental device to simulate the spot boiler temperature control system by using the Siemens S7-200 PLC as the controller and the MCGS as upper machine. Meanwhile, the munication link will supervise the boiler temperature timely and the interlocking series will guarantee the safe operation of the system.

Keywords: boiler temperature AE2000B PLC MCGS

1 设计目的和意义

锅炉生产在国民是工业中占据着重要的地位,早期的锅炉自动化程度很低,监控系统不完善,导致系统故障不断,但是锅炉因为适合各种行业仍然被广泛使用,锅炉的广泛使用使锅炉现代化成为必然。锅炉现代化的管理不但需要安全、高度自动化的控制方案,还需要考虑高效、节能、环保等方面的因素。所以对于锅炉的自动运行这一方面还需要我们做控制的人不断的研究和探索,力争将锅炉实际运行生产达到安全、高效的高度。

本设计通过用PLC作为控制器,PID算法作为灵魂,对锅炉温度控制系统的设计,力争使锅炉控制系统结构简单、检修维护方便快捷、可靠性提高,同时增强控制系统的响应速度和稳定性,使锅炉控制系统的先进性整体提升。

2 控制要求

采用北京昆仑公司的MCGS工业控制组态软件,通过RS232/ RS485 转换器使PC 机与选定下位机(PLC)进行通信。能够完成现场数据采集、实时和历史数据处理、报警和安全机制、工艺过程实时监控、趋势曲线等功能。分析相关控制参数并设置的整个控制系统。

3 设计方案论证

3.1锅炉部分分析

构成锅炉的温度控制方法有很多种,但基本都是基于锅炉的给热量和散热量平衡的关系来确定的,当给热量和散热量平衡时炉温保持在给定的范围内。当某种因素出现变动时,从温度传感器采集的实际温度与给定温度进行比较,得到两者的差值,即偏差。控制器根据实际偏差值的具体情况按照指定规律发出相应信号,控制被控量的大小,使温度恢复到给定值的范围内,从而实现对温度的自动控制。

根据不同类型的锅炉以及现场的具体情况有不同的控制方法。从用途就可分为生活锅炉、工业锅炉、电站锅炉。生活锅炉主要是在低压情况下运行,为日常生活提供热水,亦可称为热水锅炉,本设计即为此类锅炉的缩影;工业锅炉基本在高压下进行生产,其需要提供大量热量;电站锅炉主要是将水加热到高温高压的蒸汽状态,从而驱动汽轮机,进行发电,亦可成为蒸汽锅炉。另一方面主要从燃料的角度区分锅炉,主要有燃煤锅炉、燃油锅炉、燃气锅炉、电加热锅炉等。基于燃煤、燃油、燃气的三类锅炉均需要空气做助燃剂,当燃料与空气的比值适合时才能发挥最大的能效,因此此类控制系统必然会用到比值控制等复杂算法,同时燃烧的过程复杂、干扰多,还需要对烟气含氧量、炉膛火焰等情况进行监控,故而此类燃烧方式的锅炉大多需要复杂、精确地设计、调试验证及试运行后才能投入到现场生产中;电加热锅炉因为其提供能量方式单一,调节加热器的电流或者电压大小即可对炉温进行控制,同时延迟不大,能源使用率较高等因素被受亲睐,但是其能提供的能量较少因此使用的规模不大。

表1 不同燃料的锅炉性能分析

基于实际条件及控制要求,本设计选择在AE2000B型实验装置下的电加热型热水锅炉作为对象。

AE2000B型过程控制实验装置是浙大中控根据工业自动化及相关专业教学特点,吸取了国外同类实验装置的特点和长处,并与目前大型工业自动化现场紧密联系,采用了工业上广泛使用并处于领先的AI智能仪表加组态软件控制系统、DCS(分布式集散控制系统),经过精心设计,多次实验和反复论证,推出的一套基于本科,着重于研究生教学、学科基地建设的实验设备。AE2000型过程实验装置的检测信号、控制信号及被控信号均采用ICE标准,即电压1~5V、电流4~20mA。

3.2控制器分析

由于实际的工业现场情况复杂,干扰较多,因此在控制器方面因选择抗干扰能力强、运行稳定的控制器,综合单片机、PLC等控制器的特点,本设计选择西门子S7-200型PLC作为控制器。常用的西门子S7-200系列的PLC有224或226,本次设计选用224作为控制器。西门子S7-200系列PLC作为西门子推出的小型PLC,拥有体积小、通讯开放、程序和数据存储器较大、集成的RS485接口、扩展性良好、指令功能强大等特点,被广泛用于工业生产现场的小规模控制系统。

表2 控制器选型分析

3.3组态软件分析

组态软件在国内是一个约定俗成的概念,并没有明确的定义,它可以理解为“组态式监控软件”。是指用户通过类似“搭积木”的简单方式来完成自己所需要的软件功能,而不需要编写计算机程序,也就是所谓的“组态”。

组态软件,又称组态监控软件系统软件。它是指一些数据采集与过程控制的专用软件。它们处在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。组态软件的应用领域很广,可以应用于电力系统、给水系统、石油、化工等领域的数据采集与监视控制以及过程控制等诸多领域。

目前常用的组态软件有西门子的WINCC、北京昆仑的MCGS、亚控的组态王、北京三维的力控,国外的组态软件大多只针对自己的PLC,而国内的组态软件基本能与几大主流的PLC进行配合使用。

表3 主要组态软件情况对比

本设计选择北京昆仑的组态软件MCGS作为上位机,MCGS是一套用于快速构造和生成计算机的。它能够在基于Microsoft 的各种32 位Windows 平台上运行,通过对现场数据的采集处理,以动画显示、报警处理、和报表输出等多种方式向用户提供解决实际的方案,在自动化领域有着广泛的应用。

4 系统设计

本设计使用西门子S7-200型PLC作为控制器,北京昆仑的组态软件MCGS作为上位机,通过现场温度传感器进行温度采集,使用可控硅调节加热器两端电压等系列方法控制加热效果,达到控制的所需要的工艺要求。目的在于设计过程中能够了解S7-200 PLC是如何被运用于工业实际生产过程的,解决工业现场干扰多、情况复杂等情况下大多数控制器不稳定的问题。通过在上位机上动手操作和观察,实时远程监控锅炉内水温的具体情况,并得到完整的炉温实时曲线。同时监控工艺运行时是否正常,达到安全生产的目的。

4.1 工艺分析

所选被控对象是常见的电加热锅炉,通过电加热棒与待加热液体直接进行热传递,将一定量的液体加热到工艺要求的温度。

图 1 锅炉加热系统流程图

待加热液体由丹麦泵直接抽到锅炉中,同时输送管道上面有电动调节阀,锅炉内部也有液位传感器,传感器与电动调节阀形成闭环控制回路,保证锅炉内部液体稳定,同时在程序内设定液位上下限,保证锅炉内运行安全。在锅炉内有电加热棒并通过单相SCR可控调压装置控制其输出电压,同时锅炉内有温度检测装置,两者与控制器PLC构成闭环控制回路,达到调节温度的目的。

在本设计中要求控制锅炉温度,故而对于液位部分只检测锅炉内有无液体,将此液位作为参考值,在安全控制方面作为液位上、下限的报警值。

4.2 硬件选型

本设计主要选择控制器、加热装置、温度检测装置、上位机选型等。控制器选择西门子S7-200系列PLC,型号为224;加热装置为电加热棒,可控硅调节其端电压,调压范围为0—220V;温度检测装置选择铂热电阻PT100,其温度测量范围为0—100℃。

4.3 硬件连接及I/O分配

锅炉温度控制系统主要有温度传感器、变送器、控制器PLC、带MCGS的PC机作为上位机、执行机构可控硅调压电路等构成,其结构如图2。

图2 锅炉温度控制系统结构图

计算机上装有MCGS可作为上位机,同时计算机通过PC/PPI电缆通过RS485通信与PLC进行通讯,西门子S7-200 PLC与模拟量模块EM235安装在同一导轨上,PLC的CPU模块224有24个I/O接口,其中有14个输入端、10个输出端,输入端口外接开始按钮、停止按钮、急停按钮,输出端口外接工作指示灯、报警指示灯、正在加热指示灯,模拟量模块EM235有4路模拟量输入端口、1路模拟量输出端口,其中模拟量输入端口根据外接电路的接法不同可以分为1—5V电压型和4—20mA电流型,模拟量输出端可选择V或者I来确定需要电流输出还是电压输出。

本设计选择3路数字量输入、2路数字量输出、1路模拟量标准电流输入、1路数字量标准电流输出,其具体分配情况见表4。

表4 PLC硬件连接情况及I/O分配

硬件连线主要有温度变送器的接线与PLC的接线、可控硅与PLC的接线。温度变送器PT100与PLC的接线如图3。

图3 温度变送器与PLC连接

可控硅与电加热棒构成一个电压可调的模块,通过调节给到电热棒两端的电压大小来改变电加热棒对锅炉内液体供热的大小,从而达到加热的目的,单相SCR可调压装置与PLC的接线如图4。

图4 单相SCR可调压装置与PLC接线图

4.4 输入、输出信号转换

由于采集的数据都为工程中的实际数据,单位、幅值和范围也不同,必须将其转换成标准形式才能被控制器PLC接受执行。转换的第一步是将给定值或A/D转换后得到整数值由16位转换成浮点数,转换后的下一步是将实数进一步转换成标准化实数,锅炉温度测量范围是0~100℃,模拟量的标准电信号是4-20mA,A/D转换后数值为6400-32000,

设T为转换后的温度值,则其转换公式如下:

(1)

对于输出信号亦是同样的设计公式,设U为输出电压,其转换公式如下:

(2) 4.5 系统框图

设计锅炉温度的闭环控制回路,其具体框图如图5。

图5 锅炉温度闭环控制系统框图

相关主题
文本预览
相关文档 最新文档