当前位置:文档之家› 数值分析——求π

数值分析——求π

数值分析——求π
数值分析——求π

怎么计算π的值:

用莱布尼兹公式、韦达公式和斯特林公式分别迭代,当结果与π确切值之间误差小于0.005时结束迭代,通过分析三个公式的迭代次数得出最优的迭代公式。

1、莱布尼兹公式: (7)

1-5131-14++=π 根据数列得出:∑∞=---=111

21)1(4n n n π 通过程序实现如下(laibulizi.m ):

for n=1:1000

n

a(n)=(-1).^(n-1)./(2*n-1);

%y=vpa(4*sum(a),30)

%error=vpa(y-pi,30)

y=4*sum(a)

error=y-pi

if (error<=0.005&&error>=-0.005)

break ;

end

end ;

运行结果为:

2、韦达公式:??????+++=2

222222222π 通过分析公式可知:)2

(cos 22221+=???+++i π 则:∏∞=+=11)2

cos(2i i ππ

通过程序实现如下(weida.m ):

clear;

x=1;

for i=1:100;

i

x=x*cos(pi/2^(i+1));

pai=2/x

error=pai-pi

if (error<=0.005&&error>=-0.005)

break ;

end

end

运行结果为:

3、斯特林公式:π2!lim =?∞→n

n n e n n n 程序实现如下(sitelin.m ):

for n=1:150

n

a=exp(n);

b=factorial(n);

c=sqrt(n);

d=(a*b)/((n^n)*c);

p=(d^2)/2

err=p-pi

if err<=0.005

break ;

end

end

分析:通过运行结果进行分析,当误差小于0.05时,使用莱布尼兹公式迭代了200次,得到的结果为3.1366,通过韦达公式迭代了5次,结果为3.1403,通过斯特林公式迭代了105次,结果为3.1466。通过比较得出韦达公式最快。

注:使用误差为0.005是因为在计算斯特林公式时计算到143项时结果就变成了无穷,所以选择了一个比较大的误差进行判断,其他两个公式(高斯公式和拉马努金公式)由于编程计算失败,故没有进行比较。

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析5

三对角与块三对角方程组课程设计 一、基于高斯消元法的三对角方程组求解 三对角矩阵是一类重要的特殊矩阵,在数学计算和工程计算中有广泛应用。例如,二阶常微分方程边值问题数值求解,一维热传导方程数值求解,以及三次样条函数计算等都会涉及到三对角方程组求解。由于三对角矩阵的稀疏性质,用直接法求解三对角方程组的算法效率较高,很有实用价值。 考虑n 阶三对角矩阵和n 维向量 A =? ? ???? ??? ???-n n αγβαγβα122111 ,????? ???????=n f f f f 21 求解方程组 Ax = f 的高斯消元法的程序如下 function f=triGauss(gama,alpha,bata,f) %Solving TriDiag(gama,alpha,bata)systems by Gauss method n=length(alpha); for k=1:n-1 m=gama(k)/alpha(k); alpha(k+1)=alpha(k+1)-m*bata(k); f(k+1)=f(k+1)-m*f(k); end f(n)=f(n)/alpha(n); for k=n-1:-1:1 f(k)=(f(k)-bata(k)*f(k+1))/alpha(k); end 由程序知,对于n 阶三对角方程组,高斯消元法只用到 5n –4 次乘法和除法。 例1.求二阶常微分方程边值问题 ? ? ?==∈=+''-0)1(,0)0() 1,0(,y y x x y y 数值解,并与解析解:1 sinh sinh )(x x x y -=作对比。 解:对正整数n ,取h= 1/(n + 1),令x j = jh ,( j = 0,1,2,……,n+1),y j ≈ y ( x j )。由 2 1 12h y y y y j j j j +-+-≈'' 得差分方程 j j j j j x y h y y y =++-- +-2 1 12 整理,得 – y j-1 + (2 + h 2 ) y j – y j+1 = h 2 x j ( j = 1,…,n ) 根据边界条件,有 y 0 = 0,y n+1 = 0 形成三对角方程组

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析试题答案

数值分析试题答案 1、构造拉格朗日插值多项式(X)p 逼近3 (x)f x =,要求 (1)取节点011,1x x =-=作线性插值 (2)取节点0121,0,1x x x ===作抛物插值 答案:(1)代入方程得 0110 10010 1,1(x)y (x x )x y y y y p x x =-=-=+ -=- (2)代入方程得 1202011220120102101220210.1(x x )(x x )(x x )(x x )(x x )(x x ) (x)y x (x x )(x x )(x x )(x x )(x x )(x x )y y p y y ==------= ++=------ 2、给出数据点:01234 39 61215 i i x y =?? =? 用1234,,,x x x x 构造三次牛顿插 值多项式3 () N x ,并计算 1.5x =的近似值3(1.5)N 。 33333133.15()93(1) 4.5(1)(2)2(1)(2)(3)(1.5) 5.6250, ()36 4.5(1)3(1)(2)(1.5)7.5000, 1.54 (1.5)(1.5)((1.5)(1.5)) 1.17194 N x x x x x x x N N x x x x x x x N R f N N N =+-+------==+--+--=-=-≈ -=四(分) 3、已知 分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。 答案: )53)(43)(13() 5)(4)(1(6 )51)(41)(31()5)(4)(3(2 )(3------+------=x x x x x x x L

数值分析习题集及答案[1].(优选)

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表 x -1 1 2 ()f x -3 0 4 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1)k x -1 1 2 k y -3 0 4 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- k x ()k f x 一阶 二阶 -1 -3 1 0 3/ 2 2 4 4 5/6 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有

数值分析经典例题

数值分析经典例题1.y' = y , x [0,1] ,y (0) =1 , h = 0.1。 1求解析解。 2 Eular法 3 R-K法 ○1解析法 在MATLAB命令窗口执行 clear >> x=0:0.1:1; >> y=exp(x); >> c=[y]' c = 1.000000000000000 1.105170918075648 1.221402758160170 1.349858807576003 1.491824697641270 1.648721270700128 1.822118800390509 2.013752707470477 2.225540928492468 2.459603111156950 2.718281828459046 ○2Euler法 在Matlab中建立M文件如下: function [x,y]=euler1(dyfun,xspan,y0,h) x=xspan(1):h:xspan(2);y(1)=y0; for n=1:length(x)-1 y(n+1)=y(n)+h*feval(dyfun,x(n),y(n)); end x=x';y=y' 在MATLAB命令窗口执行

clear >> dyfun=inline('y+0*x'); >> [x,y]=euler1(dyfun,[0,1],1,0.1); >> [x,y] 得到 ans = 0 1.000000000000000 0.100000000000000 1.100000000000000 0.200000000000000 1.210000000000000 0.300000000000000 1.331000000000000 0.400000000000000 1.464100000000000 0.500000000000000 1.610510000000000 0.600000000000000 1.771561000000000 0.700000000000000 1.948717100000000 0.800000000000000 2.143588810000000 0.900000000000000 2.357947691000000 1.000000000000000 2.593742460100000 ○3R-K法(龙格-库塔法) 在本题求解中,采用经典4阶龙格-库塔法 首先在Matlab的M文件窗口对4阶龙格-库塔算法进行编程: function [x,y]=RungKutta41(dyfun,x0,y0,h,N) x=zeros(1,N+1);y=zeros(1,N+1);x(1)=x0;y(1)=y0; for n=1:N x(n+1)=x(n)+h; k1=h*feval(dyfun,x(n),y(n)); k2=h*feval(dyfun,x(n)+h/2,y(n)+1/2*k1); k3=h*feval(dyfun,x(n)+h/2,y(n)+1/2*k2); k4=h*feval(dyfun,x(n+1)+h,y(n)+k3); y(n+1)=y(n)+(k1+2*k2+2*k3+k4)/6; end 在MATLAB命令窗口执行 clear >> dyfun=inline('y','x','y'); >> [x,y]=RungKutta41(dyfun,0,1,0.1,10); >> c=[x;y]' 得到

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(

数值分析课程第五版课后习题答案(李庆扬等)

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值分析试题及答案.

一、单项选择题(每小题3分,共15分) 1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110 l x = B . () 00l x =0, ()111 l x = C . () 00l x =1, ()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组12312312 20223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A .232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案

二、填空题(每小题3分,共15分) 1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数 ()()() 33301213,88C C C === ,那么() 3 3C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满 足 ,所以 ()0 f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公 式 . 填空题答案

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

数值分析教案

数值分析教案 土建学院 工程力学系 2014年2月 一、课程基本信息 1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

《数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 );

12、 为了使计算 32)1(6)1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-改写为 199920012 + 。 13、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 14、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 0.4268 ,用 辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿插值 多项式为 )1(716)(2-+=x x x x N 。 16、 求积公式?∑=≈b a k n k k x f A x x f )(d )(0的代数精度以( 高斯型 )求积公式为最高,具有 ( 12+n )次代数精度。 17、 已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求?5 1 d )(x x f ≈( 12 )。 18、 设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( 2.5 )。 19、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( 10 )次。 20、已知?????≤≤+-+-+-≤≤=31)1()1()1(2110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( 3 ),b =( 3 ),c =( 1 )。 21、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( 1 ),∑== n k k j k x l x 0 )(( j x ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( 32 4++x x )。 22、区间[]b a ,上的三次样条插值函数)(x S 在[]b a ,上具有直到_____2_____阶的连续导数。

数值分析5-1

3.复化求积公式的收敛性与收敛阶 定义:设有一个复化求积公式)(f I n ,如果存在与步长h 无关的非零常数c ,使得 1 ) ()(lim +→-p n h h f I f I =c 则称求积公式)(f I n 是p 阶收敛的. 显然,从复化梯形公式和复化Simpson 公式的余项可以看出,)(f T n 是二阶收敛的,而)(f S n 是4阶收敛的. 对插值型求积公式的收敛性,我们不作证明地给出如下结论: 定理:设)(x f 在区间],[b a 上黎曼可积,则当插入分点无限增多,即∞→n 且0→h 时,)(f T n 与 )(f S n 收敛到积分?b a dx x f )(. 最后,我们介绍一下步长的自动选择问题.由上面的收敛性定理可知:加密节点可以提高求积公式的精度.但在使用之前必须给出合适的步长,这却是一个难题.步长取得太大,满足不了精度要求,步长取得太小,又增加了不必要的运算.在计算机上通常采用将区间逐次二等分,反复利用求积公式进行计算,直到所求得前后二次积分的差满足精度为止. §5.3 Gauss 求积公式 前面讨论的对积分 ? b a dx x f )(的插值型求积公式)(f I n =∑=n k k k x f A 0 )(中,其节点0x ,1x ,…,n x 是给定的且使)(f I n 至少具有n 次代数精度.这样实际上是限定了求积公式的代数精度,若求积点 ),,2,1,0(n k x k =也可任意选取,则求积公式中含有22+n 个待定参数),,2,1,0(,n k A x k k =,适 当选取这些参数可使求积公式具有12+n 次代数精度,称这种用1+n 个求积点而具有12+n 次代数精度的求积公式为高斯求积公式,1+n 个求积点称为高斯点. 1Exp 对于积分?-1 1 )(dx x f 构造求积公式 ? -1 1 )(dx x f ≈)(00x f A +)(11x f A 使其至少有代数精度3次. 解:按要求,为了使求积公式具有3次代数精度,分别令1)(=x f ,x ,2x ,3 x 代入上式有 1)(=x f ,?0A +1A =2 ① x x f =)(,?0A 0x +1A 1x =0 ② 2)(x x f =,?0A 20x +1A 21x = 3 2 ③ 3)(x x f =,?0A 30x +1A 3 1x =0 ④ 由②得:(0A +1A )0x +1A (1x -0x )=0,利用 ①得

相关主题
文本预览