当前位置:文档之家› 钢筋锈蚀对混凝土的影响

钢筋锈蚀对混凝土的影响

钢筋锈蚀对混凝土的影响
钢筋锈蚀对混凝土的影响

混凝土中钢筋腐蚀与防护技术(1)

——钢筋腐蚀危害与对混凝土的破坏作用

混凝土中钢筋锈蚀已成为世界关注的大问题,被认为是当今影响混凝土结构耐久性的首要原因。钢筋锈蚀已经或正在给国民经济带来巨大经济损失。基于此,美国总结正反两个方面的经验教训,提出了“立足前期措施,着眼长远效益”,并强行实施基建工程管理中的“全寿命经济分析法”(LCCA)。目前,我国正处于基本建设**时期,国内外的经验教训应认真吸取,这已不是单纯技术问题。本讲座结合大量国内外新近资料与工程实例,以知识性和使用性为主分5讲系统介绍了钢筋腐蚀危害及对混凝土的破坏作用、钢筋锈蚀的电化学过程及混凝土对钢筋的保护、氯盐对钢筋的腐蚀、中性化的影响、钢筋防腐蚀技术、钢筋锈蚀的检测与判定技术等,供业内人士参考。

——编者

STEEL CORROSION AND PROTECTIVE TECHNOLOGY IN CONCRETE(1) ——DAMAGE OF STEEL CORROSION AND FAILURE EFFECT ON CONCRETE

Hong Naifeng

(Central Research Institute of Building & Construction,MMI

Beijing 10 0088)

1 钢筋锈蚀危害与经济损失

世界一些国家的腐蚀损失,平均可占国民经济总产值的2%~4%;其中,被认为与钢筋腐蚀有关者可占40%(至今我国尚无确切统计数据)。

美国1984年报道,仅就桥梁而言,57.5万座钢筋混凝土桥,一半以上出现钢筋腐蚀破坏,4 0%承载力不足和必须修复与加固处理,当年的修复费为54亿美元;1998年报道钢筋混凝土腐蚀破坏的修复费,一年要2?500亿美元,其中桥梁修复费为1?550亿美元(是这些桥初建费用的4倍 );还有报道说,到本世纪末,美国要花4?000亿美元用于修复和重建钢筋腐蚀破坏的工程。如此巨大的经济投入,引起美国朝野人士的震惊与高度重视,并制定法律法规,限制腐蚀破坏的发生和挽回部分经济损失。加拿大早期大量使用“防冰盐”,使钢筋混凝土桥梁等破坏严重。欧洲、英国、澳大利亚、海湾国家等,都有以氯盐为主的钢筋腐蚀破坏问题(英国修复费为每年50亿英镑)。韩国曾发生一系列建筑物破坏、倒塌事件,其中也与“盐害”有关。我国台湾重修澎湖大桥和不断发生的“海砂屋”事件,也是氯盐腐蚀钢筋所造成的。

混凝土耐久性已是当今世界的重大问题,在第二届国际混凝土耐久性会议上,梅塔教授指出:“当今世界混凝土破坏原因,按递减顺序是:钢筋锈蚀、冻害、物理化学作用”。他明确将“钢筋锈蚀”排在影响混凝土耐久性因素的首位。而来自海洋环境和使用“防冰盐”中的氯盐,又是造成钢筋锈蚀的主要原因。当然,混凝土中性化、冻融等也促进钢筋

腐蚀破坏。此外,“碱集料反应”也在钢筋混凝土破坏中占一定的比例(本文暂不讨论)。

我国海港码头不能耐久,北方使用化冰盐,桥梁道路遭破坏。以北京立交桥为例,仅使用19 年的西直门立交桥(已重修),钢筋锈蚀破坏十分明显与严重。我国存在着广泛的腐蚀环境,北方地区使用化冰盐有增无减,而桥梁道路却未采取应有的防护措施(甚至“规范”中无防盐腐蚀要求);我国海岸线很长,而大规模的基本建设大都集中于沿海地区,以往的海港码头等工程,多数达不到设计寿命要求;特别是沿海一带河砂已呈短缺现象,滥用海砂则其害无穷;我国还有广泛的盐碱地(石油基地),其腐蚀条件更为苛刻;特别应该指出的是,我国工业环境中的建筑物,其钢筋锈蚀破坏十分普遍与严重,有调查报告表明,大多数工业建筑达不到设计寿命的年限,目前正在进入大规模修复的时期。因此,我国钢筋锈蚀破坏的形势是严峻的。

“立足前期措施、着眼长远效益”,这是美国经过正反两个方面的经验教训所得出的可贵结论。美国正在强行实施基建工程管理中的“全寿命经济分析法”(LCCA),其基本思想是,在设计施工阶段,不论是事先采取防护措施还是以后“坏了再修”,都要做出经济预算和比较,承建者要对工程的“全寿命”负责到底,这样可避免“短期行为”给后人带来的麻烦与巨大经济损失。“全寿命经济分析法”中曾有以下例举:工程处在氯盐腐蚀环境中,钢筋混凝土结构物设计寿命为40年,前期实施措施(采用钢筋阻锈剂),附加费用为0.85美元/m2(混凝土面板);若前期无措施,则15~20年开始修复,40年内累积费用为4.8美元/ m2(5倍于

前者)。可见,推行“全寿命经济分析法”和倡导工程前期(设计、施工阶段)采取防钢筋腐蚀的措施,已经不是单纯的技术问题,其重大意义和长远经济效益是不可低估的。

2 钢筋腐蚀破坏的主要表征

混凝土中的钢筋一旦具备了腐蚀条件,锈蚀便会发生和发展。钢筋锈蚀是一个电化学过程,由铁变成氧化铁,其体积发生膨胀,根据最终产物的不同,可膨胀2~7倍。

钢筋锈蚀破坏的主要破坏特征可归纳为:

(1)混凝土顺钢筋开裂

混凝土具有较好的抗压性能,但其抗折、抗裂性差,尤其钢筋表面混凝土缺乏足够的厚度时,钢筋锈蚀产物体积发生膨胀,足以使钢筋表面发生混凝土顺钢筋开裂。大量试验研究和工程实践表明,钢筋表面锈层厚度很薄时(如20~40μm),便可导致混凝土顺钢筋开裂。换言之,钢筋锈蚀导致混凝土开裂是容易发生的。设计、施工、使用、管理及维护人员,认识到这一点十分重要。欲使混凝土不发生顺钢筋开裂,提高结构物的耐久性,其着眼点就是要最大限度地阻止钢筋生锈,而不应立足于锈蚀发生后再采取补救措施。

混凝土一旦发生顺钢筋开裂,腐蚀介质更容易到达钢筋表面,钢筋锈蚀的速度将会大大加快。研究和工程实践表明,这时钢筋锈蚀的速度,有可能快于裸露于大气中的钢筋。这是由于裂缝处更易促成电化学腐蚀的发生和发展。由此引出两个重要观念:一是要阻止钢筋生锈,二是钢

筋锈蚀一旦发生或初见混凝土顺钢筋开裂时,就立即采取防护措施。这是被提高了的新认识,对于防钢筋锈蚀破坏、提高结构物的耐久性具有重要指导意义,更具有巨大经济价值。

(2)“握裹力”下降与丧失

初见混凝土发生顺钢筋开裂时,结构物物理力学性能、承载能力等,可能还没有发生明显变化(这是人们不重视初始顺钢筋开裂的重要原因之一)。然而,随着裂缝的不断加宽,混凝土与钢筋之间的粘结力(握裹力)也随之下降(下降速度取决于钢筋锈蚀速度),滑移增大,构件变形。当“握裹力”丧失到一定限度时,局部或整体失效便会发生。这时的钢筋锈蚀程度也并不一定十分严重。那些对“握裹力”敏感的构件,更具重要性。

(3)钢筋断面损失

混凝土中钢筋锈蚀,一般分为局部腐蚀(如坑蚀)和全面腐蚀(均匀腐蚀),常常是局部腐蚀为主而造成钢筋断面损失,其损失率达到极限时,构件便会发生破坏。应该说明的是,从钢筋锈蚀、混凝土顺钢筋开裂到构件破坏,是一个复杂的演变过程,不仅取决于钢筋锈蚀的发展速度,也取决于构件的承载能力及钢筋的受力状态等。故有时钢筋锈蚀并不十分严重,构件就破坏了,而有时钢筋出现明显的断面损失,构件却还在支撑着(有些人认为“钢筋锈蚀无大妨害”就是依此为证)。对于钢筋断面损失与构件承载能力之间的关系,尚待进一步研究。

(4)钢筋应力腐蚀断裂

处在应力状态下的钢筋(包括预应力),在遭受腐蚀时有可能发生突然

断裂。世界上曾发生过此类事故,如钢筋混凝土桥梁突然倒塌,建筑物突然断裂等。柏林议会大厦屋顶突然塌落,即与钢筋应力腐蚀断裂有关。

应力腐蚀断裂可在钢筋未见明显锈蚀的情况下发生,断裂时钢筋属于脆断。这是“腐蚀”与“应力”相互促进的结果:应力可使钢筋表面产生微裂纹、腐蚀沿裂纹深入、应力再促裂纹开展。如此周而复始,直到突然断裂。这是一种危险的形式,应引起重视。此外,应力腐蚀断裂与环境介质有关。

3 混凝土质量与钢筋锈蚀

应该指出,钢筋混凝土过早破坏(或称耐久性不足)多半是综合因素造成的,在任何情况下工程质量都是首要的。而工程质量又取决于正确设计、良好施工、精心管理与维护等。在腐蚀环境中,不采取防护措施或措施不当,更是导致钢筋腐蚀破坏过早出现的原因。而混凝土工程质量不佳,则防护措施也难以奏效。钢筋首先是受混凝土保护的,因此,混凝土质量对防止钢筋腐蚀是至关重要的。

3.1 设计与规范

我国相关设计规范,多以混凝土“抗压强度”为主要甚至唯一标准,而混凝土对钢筋的保护能力,主要取决于“密实性”和钢筋表面混凝土层的厚度。实践中“抗压强度”与“密实性”并不是同步关系,在一定条件下,甚至“超强设计”也未必能实现对钢筋的良好保护。新近修订的相关设计规范中,已引入“耐久性设计”的观念(与国际接轨),这是提高混凝土对钢筋保护能力的重要方面。设计者除了强化“耐久性设计”

的观念外,还要根据结构所处的腐蚀环境的严酷程度,采取相应的防钢筋锈蚀的技术措施,才可实现结构耐久的目的。以往,人们对于钢筋锈蚀危害及混凝土耐久性认识不足、相关规范的欠完善和“修标”滞后,在一定条件下没有采取相应的防钢筋锈蚀的技术措施等,是造成已有结构物过早出现钢筋锈蚀的原因之一。

3.2 施工质量

钢筋混凝土工程施工质量的重要性是不言而喻的,已有工程的实践表明,钢筋过早的出现腐蚀破坏,大多与混凝土质量欠佳有关。工程施工质量与众多人为因素密不可分(这里暂不讨论)也有一些技术问题没有得到很好的解决。如微裂纹与宏观缺陷,似在施工过程中是很难完全避免,这就对钢筋保护不利;又如,目前特别强调建设速度,设法使混凝土“早强”,其结果使“密实性”得不到保证,长期强度与耐久性受到不良影响。总之,施工质量对于保护钢筋、保证结构物的耐久性,在任何情况下都起着关键作用。

3.3 原材料

3.3.1 水泥

水泥水化的高碱度,使钢筋表面形成钝化膜,这是混凝土之所以能保护钢筋的主要依据与基本条件。任何削弱或丧失这个条件的因素,都将促进钢筋锈蚀、影响混凝土的耐久性。混凝土的高碱度,主要来源于水泥水化产物中的氢氧化钙和少量氢氧化钠、氢氧化钾(pH>12.6 )。钾、钠离子含量高时,能刺激“碱集料反应”,因此,限制其含量十分必要。然而,认为“水泥碱度越低越好”的看法,也是十分有害的。在为避免

“碱集料反应”而寻求“低碱度水泥”的同时,切莫忘记,长期保持混凝土的高碱度(至少pH>11.5),是钢筋得到保护的起码条件,也是保证混凝土耐久性的关键问题之一。碱度过低的水泥,对于钢筋混凝土应限制使用,或使用时同时采取防腐蚀技术措施(如用耐腐蚀钢筋、涂层钢筋、掺钢筋阻锈剂等)。

3.3.2 海砂

由于海砂含有不等量的氯离子,能够刺激钢筋锈蚀,我国相关规范不推荐或严格限制使用海砂。这是完全必要的,国内外滥用海砂造成的危害不乏实例。从另一个角度讲,海砂也是可利用资源,日本即是成功开发利用海砂的国家之一,主要是同时采取防氯离子腐蚀的技术措施(如掺加钢筋阻锈剂等)。在我国,如日本那样严格而合理地开发利用海砂资源已提到日程上来(据悉宁波地区已经发布文件,采取加钢筋阻锈剂等措施后开放使用海砂)。总之,严格界定海砂的使用,是我国建设中面临的新问题,意义重大。

3.3.3 掺合料、外加剂

各种掺合料(粉煤灰、矿渣等,用于改善水泥性能,降低成本),正在大力发展中。凡是能提高混凝土密实性、增强对钢筋保护能力者,均有利于结构物的耐久性;然而,一些掺合料能降低混凝土的碱度和碱储量,这是不利于对钢筋的保护的,甚至可引起钢筋腐蚀 (与掺合料的性质、掺加量等有关)。这一点应该引起重视,在掺合料的研究和应用中,考虑其对混凝土作用的同时,必须考虑到对钢筋的影响。

我国混凝土外加剂种类繁多,特别是含氯盐的早强、防冻剂,已经给

我国一批建筑物带来严重的钢筋腐蚀危害(包括国家级重要建筑物)。尽管已经有使用限制规定,但此类工程事故仍时有发生。含硫酸盐的外加剂种类更多,硫酸盐也刺激钢筋腐蚀(不及氯盐明显)。国外研究表明,许多外加剂在短期内能改善和提高混凝土的某些性能,但对其长期耐久性并无改善,甚至明显降低其耐久性。在我国,通过不适当使用外加剂引发的问题,是影响钢筋腐蚀和混凝土耐久性的一个重要方面。

锈蚀对钢筋与混凝土粘结性能的影响

低温建筑技术2012年第11期(总第173期) 锈蚀对钢筋与混凝土粘结性能的影响 仲济波 (镇江市工程勘察设计研究院,江苏镇江212000) 【摘要】采用钢筋混凝土结构最常用的变形肋钢筋和光圆钢筋进行拔出试验,钢筋的锈蚀率为0 12.2%,钢筋锈蚀采用电化学加速锈蚀方法,研究了钢筋表面形状和锈蚀率对粘结力的影响,试验结果表明:在低 锈蚀率时,两种类型钢筋与混凝土的粘结力有所提高,随着锈蚀率的增加,钢筋的粘结力急剧下降;变形肋钢筋试 件的破坏模式均为劈裂破坏,光圆钢筋在无锈蚀和较高锈蚀率时,发生钢筋拔出破坏,在低锈蚀率时,发生劈裂 破坏。 【关键词】钢筋混凝土;劈裂破坏;锈蚀;粘结力 【中图分类号】TU528.57【文献标识码】B【文章编号】1001-6864(2012)11-0006-02 钢筋与混凝土的粘结力是其能够共同工作的关键点,但是钢筋混凝土结构在其使用过程中,混凝土中钢筋容易发生锈蚀,钢筋锈蚀使得钢筋截面减小,降低了钢筋的力学性能,钢筋表面产生的锈蚀产物,其体积是原来的2 6倍,使得钢筋周围混凝土产生环向拉应力,随着钢筋锈蚀率的增加,混凝土保护层产生顺筋裂缝,从而降低钢筋与混凝土间的粘结强度[1,2]。混凝土对钢筋的摩擦力减小,因此降低了钢筋混凝土结构的承载力和使用寿命,例如北京西直门立交桥1980年建成通车,使用一段时间后,保护层剥落露筋,钢筋严重锈蚀,其主要原因为冬季为清除冰雪而撒的除冰盐和盐水,使得氯离子有机会渗透到混凝土中,使得钢筋严重锈蚀,因为损伤严重,危及安全,于1999年不得已拆除重建,使用不到20年;同样近海钢筋混凝土结构长期受到氯离子侵蚀,混凝土保护层开裂、钢筋锈蚀等现象普遍非常严重,锈蚀钢筋与混凝土的粘结力是评估锈蚀钢筋混凝土结构承载力的关键[3-5]。 由于光面钢筋和变形钢筋是现在钢筋混凝土结构最常用的钢筋形式,并且其表面形状不同,文中通过电化学加速锈蚀方法对钢筋进行锈蚀,对不同锈蚀率的钢筋与混凝土进行拔出试验,钢筋采用变形肋钢筋和光圆钢筋两种,研究了不同锈蚀率对不同钢筋的粘结力的影响,为目前钢筋混凝土结构的耐久性评估和鉴定提供依据。 1试验概况 1.1试验试件 试件采用混凝土材料为32.5级普通硅酸盐水泥、天然中砂和粒径小于20mm的碎石,试件采用混凝土长方体试件,试件尺寸为150mm?100mm?100mm,将直径为16mm的钢筋浇筑于长方体的中心位置,钢筋采用变形肋钢筋和光圆钢筋,钢筋设计粘结长度为50mm,钢筋无粘结部分均用环氧树脂涂层,避免其发生钢筋锈蚀,在试件的两端位置,采取塑料套管包裹钢筋,模拟无粘结段,试件的具体尺寸如图1所示,混凝土配合比为水泥?水?砂?石=1?0.44?1.27?2.70,混凝土浇筑时,掺加1%水泥质量的氯化钠,并预留混凝土立方体试件,标准养护28d后,实测混凝土立方体平均抗压强度为33.5MPa 。 1.2钢筋锈蚀 实际钢筋混凝土工程中,钢筋锈蚀速度很慢,为了达到较高的钢筋锈蚀率,需要数年的时间,为了在较短时间内获得期望的钢筋腐蚀率,实验室通常采用电化学加速锈蚀的方法进行钢筋锈蚀,钢筋的理论锈蚀率设定为0%,3%,6%,9%和15%,采用法拉第定律进行计算,如式(1)所示,钢筋在通电锈蚀前,将钢筋混凝土试件放入5%的氯化钠溶液中1d,使得氯化钠溶液能够渗透到钢筋表面,将试件中的钢筋用导线与恒流电源的阳极相连,而恒流电源的阴极则与溶液中的铜片相连,通过氯化钠溶液形成回路,使阳极的钢筋发生锈蚀。 Δm=(A·I·t)/Z·F(1) 式中,Δm为阳极金属的质量损失,g;M为铁的摩尔质量,56g/mol;I为锈蚀电流强度,A;t为锈蚀持续时间,s;z为阳极反应电极化学价(铁为+2);F为法 6

钢筋混凝土防腐蚀

钢筋混凝土防腐蚀 (上海法赫桥梁隧道养护工程技术有限公司) 摘要:介质对钢筋混凝土的腐蚀机理,根据规范要求提出防腐蚀措施。 关键词:腐蚀机理;钢筋混凝土;基础 1 引言 钢筋混凝土基础埋置于地下,接触到的腐蚀性介质主要是腐蚀性水和污染土。如果地下水对砼具有腐蚀性,设计师就需要进行防腐蚀设计。 2 钢筋混凝土的腐蚀机理 钢筋混凝土的腐蚀分为两部分;一部分是混凝土的腐蚀,另一部分是钢筋的腐蚀。 混凝土受腐蚀的类型有结晶类腐蚀,分解类腐蚀及结晶分解复合类腐蚀。结晶类腐蚀指水或土中某些盐类浸入混凝土的毛细孔中,经干湿交替作用盐溶液浓缩至饱和,当温度下降时析出盐晶体,晶体不断积累膨胀或与混凝土中某些成分相结合生成新的结晶物质膨胀,致使混凝土破坏。分解类腐蚀指水或土中的盐类与混凝土的化学成分反应生成易溶盐,被溶解或被水带走,从而使混凝土分解破坏。结晶分解复合类腐蚀指水或土中的盐类对混凝土既有结晶破坏又有分解破坏。 水或土对钢筋的腐蚀主要为电化学腐蚀和酸类的腐蚀。电化学腐蚀是指钢铁表面各部位受不同的物理或化学条件作用,形成电位差产生腐蚀电流,使钢铁被氧化导致锈蚀破坏。酸类的腐蚀是指水、土中的酸类对钢铁的化学溶蚀居多,它是因与电介质接触的金属表面形成大量短路微电池的作用而引起的。 当钢筋所处环境中含有氯离子等杂质时,会大为加快上述电化学腐蚀的速度,其作用原因为:①破坏金属钝化膜:当混凝土中存在氯离子等有害杂质时,可使混凝土局部的PH值降低,造成钝化膜的局部破坏,电化学腐蚀可以进行;②导电作用:腐蚀微电池的要素之一是要有离子通路,氯离子和硫酸根离子的存在,降低了混凝土中的电阻,从而加速了钢筋的电化学腐蚀过程;③阳极去极化作用:氯离子还会加速电化学腐蚀的阳极反应过程,其原理是将阳极反应生成的Fe2+“搬走”,使阳极反应得以顺利进行,也就加速了钢筋的腐蚀过程。同时在这些过程中,氯离子并未被消耗,也即凡进入混凝土中的氯离子均会周而复始地起作用,其危害非常大,建筑物中的金属腐蚀很大程度是由于氯离子造成的。 各主要腐蚀指标(介质)的腐蚀作用为: 2.1 PH值(酸碱度) PH值较小,表明水中的H+浓度相对较高,具有酸性,可与混凝土的CACO3等物质发生复分解反应,产生分解腐蚀。同时,PH值小显酸性时,会对钢铁产生酸性腐蚀。将11.5称做保护钢筋的“临界PH值”。 2.2 侵蚀性CO2(溶蚀碳酸钙) 地下水中常含有一些游离的碳酸(CO2),而水泥石中的氢氧化钙能与碳酸起化学反应,生成碳酸钙(CaCO3),碳酸钙又与碳酸起化学反应,生成易溶于水的碳酸氢钙: 如果水泥石在有渗滤的压力水作用下生成碳酸氢钙,并溶于水中被冲走,上述反应将永远达不到平衡。氢氧化钙将连续流失,使水泥石中石灰浓度逐渐降低,使硬化了的水泥石结构发生破坏。环境水中含游离碳酸越多,其侵蚀性也越强烈;若水温较高,则侵蚀速度将加快。 2.3 阴离子(HCO3-、Cl-及SO42-) 当水泥石处于软水(矿化度低于0.1g/L)中时,氢氧化钙将首先被溶解,溶出性侵蚀的强弱

钢筋锈蚀电位的检测与判定

第三节钢筋锈蚀电位的检测与判定 一、概述 混凝土碳化会使得混凝土的PH值降低,当PH值小于11时,这时混凝土中钢筋表面的致密钝化膜就被破坏,不仅如此,CaSO3、CaSO4还会与水尼水化产物中的铝酸三钙反应,生成物体积增大,从而使混凝土胀裂,这就是硫酸盐侵蚀破坏。 一旦钢筋表面钝化膜局部破坏或变得致密度差,即不完整,则钝化膜处就会形成阳极,而周围钝化膜完好的部位构成阴极,从而形成了若干个微电池。 二、半电池电位法 半电池电位法是利用混凝土中钢筋锈蚀的电化学反应引起的电位变化来测定钢筋锈蚀状态的一种方法。通过测定钢筋/混凝土半电池电极与在混凝土表面的铜/硫酸铜参考电极之间电位差的大小,评定混凝土中锈蚀活化程度。 三、测量装置 1、参考电极(半电池):本方法参考电极为铜/硫酸铜半电池。 2、二次仪表的技术性能要求 3、导线:导线总长不应超过150m,一般选择截面积大于0.75mm2的导线。 4、接触液:为使铜/硫酸铜电极与混凝土表面有较好的电接触,可在水中加适量的家用液态洗涤剂对被测表面进行润湿,减少接触电阻与电路电阻。 四、测试方法 1、测区的选择与测点布置 (1)、主要承重构件或承重构件的主要受力部位。 (2)、在测工上布置测试网格,网格节点为测点。间距可选20cm×20cm、30cm ×30cm、20cm×10cm。测点位置距构件边缘应大于5cm,一般不宜少于20个测

点。 (3)、当一个测区内存在相邻点的读数超过150mV时,通常应减小测点的间距。(4)、测区应统一编号。 2、混凝土表面处理 用钢丝刷、砂纸打磨测区混凝土表面,去除涂料、浮浆、污迹、尘土等,并用接触液将表面润湿。 3、二次仪表与钢筋的电连接 (1)、铜/硫酸铜电极接二次仪表的正输入端;钢筋接负输入端。 (2)、局部打开混凝土或选择裸露的钢筋,在钢筋上钻一小孔并拧上自攻螺钉,用加压型鳄鱼夹夹住并润湿,确保有良好的电连接。 (3)、铜/硫酸铜参考电极与测点的接触。 电极前端浸湿,读数前湿润混凝土表面。 4、铜/硫酸铜电极的准备。 5、测量值的采集 测点读数变动不超过2mV,可视为稳定。重复测读的差异不超过10mV。五、钢筋锈蚀电位的一般判定标准 (1)、在对已处理的数据(已进行温度修正)进行判读之前,按惯例将这些数据加以负号,绘制等电位图,然后进行判读。 (2)按照表6-6的规定判断混凝土中钢筋发生锈蚀的概率或钢筋正在发生锈蚀的锈蚀活动程度。 结构混凝土中钢筋锈蚀电位的判定标准表6-6

钢筋锈蚀原理浅谈

钢筋的锈蚀机理及影响因素 方岸林 摘要 本文基于大量的研究成果,并从理论原理出发,深入地分析总结了钢筋混凝土构件中钢筋的锈蚀机理、钢筋锈蚀后的粘结性能退化机理及影响混凝土构件中钢筋锈蚀的主要因素。为以后的研究者提供理论上的参考依据。 关键词:锈蚀机理退化机理参考依据 The Corrosive Mechanisms And The Influencing Factors Of Reinforcement Abstract:This passage basic on a lot of researches,and set out from principles,gaive an in-depth analyze and summarize that the corrosive mechanism of the reinforcements in the concrete structures,the degenerate mechanism of the bond performance after reinforcement being corrosived,and the main factors of impact reinforced corrosived.Provide theoretical reference imformetion for the fouture researchers. Key Words:corrosive mechanism ,degenerate mechanism ,reference imformetion 0.引言 自水泥问世以来,钢筋混凝土结构在土木工程中得到了广泛的应用。然而由于施工不当、不良使用条件(如工业环境、海洋环境等)、不当使用方法(如高速路路面和桥梁桥面撒盐除冰法等),特别是由于目前环境的严重污染(如我国的酸雨强度近年来持续增强等[1])等因素的影响,混凝土中钢筋的锈蚀已经成为威胁全世界混凝土结构耐久性的最主要灾害。1991年在法国召开的第二届混凝土耐久性国际学术会议上,美国加州大学Mehta教授[2]的主题报告“混凝土耐久性50年进展”中提出,目前钢筋锈蚀已经成为钢筋混凝土构件破坏的最主要的原因。 根据有关资料报道[3],日本约有21.4%的钢筋钢筋混凝土结构损坏是由于钢筋锈蚀引起的;在美国,最普遍的耐久性破坏形式为钢筋混凝土桥梁、路面以及

钢筋混凝土中钢筋腐蚀的化学机理与防腐措施

第22卷第3期 宁夏大学学报(自然科学版)2001年9月 Vol.22No.3 Journal of Ningxia Uni versity(Natural Science Edi tion)Sep.2001文章编号:0253-2328(2001)03-0298-04 钢筋混凝土中钢筋腐蚀的化学机理与防腐措施 杨建森1,何党庆2 (1.宁夏大学土木工程系,宁夏银川 750021; 2.长庆输油公司,宁夏银川 750004) 摘 要:分析阐述了钢筋混凝土中钢筋腐蚀的化学机理,并着重讨论了碳化反应和氯离子对钢筋腐蚀的影响规律,最后提出了防止钢筋腐蚀的技术措施. 关键词:钢筋腐蚀;碳化;氯离子侵蚀 分类号:(中图)TU528.571 文献标识码:A 当今混凝土的耐久性问题已越来越引起人们的关注和重视,在1991年召开的第二届混凝土耐久性国际学术会议上,Mehta教授在题为 混凝土耐久性50年进展!的主旨报告指出:?当今世界,混凝土破坏原因,按重要性递降顺序排列是钢筋腐蚀、寒冷气候下的冻害、侵蚀环境的物理化学作用.#对于钢筋混凝土结构或构件而言,钢筋腐蚀是最重要的破坏因素之一.混凝土中钢筋的腐蚀,其危害性主要表现在以下三个方面:?降低了结构或构件的承载能力,减小了安全储备;%降低了结构或构件的刚度,增大了变形,甚至使混凝土保护层脱落,影响了正常使用;&降低了结构或构件的延性,甚至改变其形态,从而导致伤亡事故.因此,钢筋腐蚀是影响结构耐久性的主要因素,近年来对钢筋腐蚀的研究已成为混凝土领域研究最多的问题之一. 1 钢筋腐蚀机理 通常情况下,混凝土中的高碱性溶液(pH值一般在12以上,约为12.6)对混凝土中的钢筋起到保护作用.钢筋在这种高碱性的环境中,表面沉积着一层致密的水化氧化铁薄膜( F2O3?2H2O)而处于惰性状态.通常钢筋表面薄膜的破坏有两种原因:?因混凝土碳化而引起钢筋混凝土保护层的碱度降低(pH值可降至9以下),当混凝土pH值降到11.5以下时,钢筋表面的钝化薄膜就会受到破坏;%由于氯离子和氧离子的扩散侵蚀而破坏钝化薄膜.钝化薄膜的破坏,失去了对钢筋的保护作用,若有空气(指其中的氧气)和水分侵入,钢筋便开始发生腐蚀.腐蚀的机理是发生吸氧性电化学腐蚀阳极Fe(Fe2++2e-,阴极H2O+ 1 2 O2+2e-(2OH-,电化学腐蚀必需具备两个基本条件:存在两个电势不等的电极;金属表面存在必要的电解质液相薄膜.一般说来,由于钢筋成分不均匀或氧气浓度的差异,第一个条件总是能够满足的,第二个条件则要求混凝土中腐蚀的相对湿度>60%[1]. 2 钢筋腐蚀的影响因素及其作用规律 影响钢筋腐蚀的因素很多.在一般大气条件下,影响钢筋腐蚀的主要因素有氯离子、混凝土碳化、环境条件(温度、湿度、浓度等)、混凝土渗透性和保护层厚度、钢筋位置与直径等.混凝土的渗透性与其强度、孔隙率、裂缝宽度及密度有关. 一般说来,由于暴露程度较大,角部钢筋的腐蚀速度为中间钢筋的1.3~1.5倍[2].混凝土的渗透性能与钢筋腐蚀速度有直接关系.研究表明,裂缝分布越密,混凝土水灰比越大,养护时间就越短,强度越低,裂缝宽度越大,混凝土渗透性越好,钢筋腐蚀越快.采用矿渣水泥的混凝土中的钢筋腐蚀速度为普通水泥的1.7~1.9倍.关于粉煤灰对钢筋腐蚀的影响,研究认为混凝土中粉煤灰掺量小于30%时,对钢筋腐蚀无不利影响,甚至是有利的,但掺量超过 收稿日期:2001-02-23 基金项目:宁夏自然科学基金资助项目(B002) 作者简介:杨建森(1971-),男,讲师,研究土木工程材料和环境保护

混凝土中钢筋锈蚀与结构耐久性

目录 目录 (2) 引言 (4) 第一章钢筋混凝土结构的组成材料 (4) 1.1混凝土材料…………………………………………………………………………… 1.2钢筋材料..........................................................................................第二章钢筋混凝土的腐蚀原理与过程 (5) 2.1混凝土中钢筋腐蚀的基本理论 (5) 2.2混凝土中气体、水、离子的传输过程 (5) 2.3混凝土碳化诱导的腐蚀 (5) 2.4氢离子诱导腐蚀 (5) 2.5腐蚀防护知识及钢筋混凝土阻锈剂的使用 (6) 第三章混凝土成分对钢筋的影响 (6) 3.1抗碳化性能 (6) 3.2抗氢离子侵入性能 (6) 3.3胶凝材料对氢离子扩散系数的影响 (6) 3.4水泥用量对氢离子扩展系数的影响 (6) 3.5腐蚀速率的影响因素 (6) 第四章:钢筋混凝土表面处理和涂层 (7) 4.1钢筋混凝土腐蚀的原因 (7) 4.2防护与修补的方法 (7) 4.3基层处理 (7) 4.4填充混凝土中的裂缝与孔洞 (7) 4.5砂浆与混凝土 (7)

4.6混凝土表面的保护层 (7) 第五章:钢筋混凝土结构的耐久性 (8) 5.1混凝土结构的耐久性的含义 (8) 5.2提高混凝土的耐久性 (9) 结论 (11) 参考文献 (12) 致谢 (13) 混凝土中钢筋锈蚀与结构耐久性 摘要:建筑工程安全性与耐久性在我国探讨话题中占据了越来越重要的地位,根据建设部近几年的调查研究发现,国内大部分地区大多数钢筋混凝土建筑物在使用寿命达到25~30年后即需大修,甚至处于严酷环境下的钢筋混凝土建筑物使用寿命仅仅只有15~20年。还有一部分工程在建成后几年就出现钢筋锈蚀、混凝土开裂等现象。钢筋混凝土腐蚀和耐久性成为当今一大研究对象。在本文将对钢筋混凝土结构发腐蚀性和耐久性做出一系列的探讨。 关键词:钢筋;腐蚀性;耐久性

钢筋混凝土结构的腐蚀及防护措施(标准版)

钢筋混凝土结构的腐蚀及防护 措施(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0623

钢筋混凝土结构的腐蚀及防护措施(标准 版) 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,

结构强度降低等,从而导致结构耐久性的降低。 据调查,我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50年代至70年代建的海港工程,高桩码头不到20年,甚至7~8年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外,环境的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建

钢筋混凝土的钢筋腐蚀现状调查与原因探究

钢筋混凝土的钢筋腐蚀现状调查与原因探究[摘要]现在钢筋混凝土结构的构筑物由于钢筋腐蚀导致结构失效的现象越 来越多,这里分析了这些工程事故的钢筋腐蚀原因和各因素影响,综述了钢筋混凝土中钢筋受蚀的机理。 【关键词】混凝土;钢筋腐蚀;结构;化学反应 钢筋混凝土是通过在混凝土中加入钢筋、钢筋网、钢板或纤维而构成的一种组合材料,两者共同工作从而改善混凝土抗拉强度不足的力学性质,为混凝土加固的一种最常见形式,具有材料来源容易、价格低廉、坚固耐用等特点,广泛应用于公路、桥梁等结构中。混凝土结构中钢筋腐蚀导致结构物破坏或失效,已成为当今世界关注的重大课题之一,它在影响结构物耐久性因素中,占主导地位。在混凝土工程中,因为钢筋的腐蚀造成众多的工程事故,钢筋混凝土中钢筋受腐蚀的现象正逐步受到我国各方的重视。虽然我国在混凝土结构钢筋腐蚀方向并没有完整、系统、深入的调查,但是对钢筋腐蚀现状调查,分析腐蚀产生的原因,制定相关措施,对我国混凝土工程质量有着非同寻常的意义。 正常使用条件下,自然环境中的钢筋混凝土的腐蚀并不严重,所以并未受到人们的重视。混凝土结构由于环境污染和的建筑物老化的加重,环境介质中腐蚀性物质含量增加,遭受破坏的现象日益严重。根据统计,因为国民经济中的1.25%是钢筋腐蚀而造成的经济损失,钢筋腐蚀而造成的工程事故也时常发生,因此,钢筋混凝土的腐蚀破坏问题已引起国内的关注,成为研究和关注的一个重要方向。由于钢筋混凝土结构耐久性问题的加重,造成的经济损失和人员伤亡已远远超出人们的预计。 截止1986年,美国已花费240亿美元用于修复被腐蚀桥梁,而且以每年5亿美元的速度增长。美国1984年报道,57.5万座钢筋混凝土桥出现钢筋腐蚀破坏,其中40%的桥梁需要耗费54亿美元来修理承载力不足与加固处理。建于1967年的美国明尼苏达州境内一座跨越密西西比河标号为1-35W钢梁混凝土公路拱桥,在使用仅二十多年桥体就出现重大腐蚀现象,用局部修补的方法进行了修复,不久又出现裂缝和腐蚀现象,但未及时采取有效措施,最终于2007年发生重大坍塌事故,造成了人员的重大伤亡。加拿大早期由于大量使用“防冰盐”,使得钢筋混凝土桥梁等破坏严重。1986年同本运输省检查的103座混凝土海港码头状况,发现仅服役20年的结构都需要修补。在英国、澳大利亚、欧洲、海湾国家中,由于氯盐为主的钢筋腐蚀破坏问题大量出现。根据1994年铁路秋检统计,我国铁路中有损坏的钢筋混凝土桥为2675座,其中由于钢筋锈蚀而发生损伤的为722座,占27%。20世纪90年代前修建的海港工程竟然使用10~20年就会发生严重的钢筋锈蚀。1979年建成通车的北京西直门立交桥,因为冬季撒盐化冰造成的“盐害”,在使用不足20年后便被迫拆除重修,重修费用高达3000万元。由此可见,恶劣环境中(如酸雨、海洋环境、除冰盐、高低温等环境条件)服役的钢筋混凝土结构耐久性问题十分突出。2001年,位于我国四川的宜宾大桥突然垮塌,然后仅使用了11年;使用仅不到20年就需重建或修理比比皆是,如澎

土木工程毕业论文浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响

浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响 论文摘要:钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。本文从锈蚀机理、影响因素和影响后果等方面进行了综述性讨论。 钢筋锈蚀是一个比较普遍、并且严重威胁结构安全的耐久性问题。它在影响结构物耐久性因素中,占据主导地位。美国、英国、德国和日本等国每年均花费巨资用于混凝土结构的耐久性修复,其中钢筋锈蚀占有相当大的比例。我国也有相当数量的钢筋混凝土桥梁相继进入老化期,钢筋锈蚀的研究和防治显得非常重要。 钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。钢筋锈蚀对桥梁结构的破坏分为三个时期:前期是钢筋表面局部锈蚀出现锈斑、锈片等;中期是钢筋整个表面锈蚀,并产生膨胀,与保护层脱离,发生层裂;后期表现为钢筋铁锈进一步膨胀,混凝土本身发生破坏,出现顺筋胀裂,混凝土脱离,直至钢筋不断锈蚀,有效截面不断减小,桥梁结构承载力不断下降,钢筋混凝土构件丧失基本承载能力。 一、钢筋混凝土桥梁中钢筋锈蚀机理 正常情况下,由于初始混凝土的高碱性,钢筋混凝土桥梁结构力筋表面形成一层致密的钝化膜,使其处于钝化状态。但随着环境介质的侵入,钝化膜逐渐遭到破坏,从而导致腐蚀的发

生。 力筋发生锈蚀需要三大基本要素: (一)力筋表面钝化膜的破坏; (二)充足氧的供应; (三)适宜的湿度(RH=60~80%)。 三个要素缺一不可,第一要素为诱发条件,而腐蚀速度则取 决于氧气及水分的供应。 钢筋的锈蚀一般为电化学锈蚀。发生电化学锈蚀必须具备3 个条件: 1、在钢筋表面形成电位差; 2、在阴极部位钢筋表面存在足够的氧气和水; 3、在阳极区,使阳极部位的钢筋表面处于活化状态,即钢筋 表面的钝化膜遭到破坏。 在氧气和水的共同作用下,钢筋表面不断失去电子发生电化 学反应,逐渐被锈蚀,在钢筋表面生成红锈,引起混凝土开 裂。 对于钢筋混凝土桥梁,在一般环境条件下,钢筋的锈蚀通常 由两种作用引起:一种是混凝土碳化作用;一种是氯离子的侵蚀。二氧化碳和氯离子对混凝土本身都没有严重的破坏作用,但是这 两种环境物质都是混凝土中钢筋钝化膜破坏的最重要又最常遇到 的环境介质:混凝土碳化使混凝土孔隙溶液中的Ca(OH)2含量逐 渐减少,PH值逐渐下降,钝化膜逐渐变得不再稳定以至于完全被 破坏,使钢筋处于脱钝状态;周围环境中的氯离子从混凝土表面 逐渐渗入到混凝土内部,当到达钢筋表面的混凝土孔溶液中的游 离氯离子浓度超过一定值(临界浓度)时,即使混凝土碱度再高,pH值大于11.5值,Cl-也能破坏钝化膜,从而使钢筋发生锈蚀。 氯盐引起钢筋锈蚀的发展速度很快,远比碳化锈蚀严重,这种情 况常发生在近海或海洋环境以及冬季经常使用除冰盐的环境。

混凝土钢筋锈蚀电位检测报告

钢筋锈蚀电位检测报告 1 概况 光帮桥位于立跃公路上,东西走向,横跨鹤坡塘河,桥梁上部为预应力混凝土简支结构,下部结构为桩柱式桥墩,桥台采用重力式桥台。桥梁跨径布置为:5×20m,横向布置为:0.25m(栏杆)+0.75m(人行道)+14m(行车道)+0.75m(人行道)+0.25m(栏杆)=16m。0#桥台宽16m,地面以上高度为2.75m。 为了掌握结构混凝土的钢筋锈蚀电位检测的方法,受检测中心总工办的委托,于2010年8月26日对该桥0#桥台的钢筋锈蚀电位情况进行模拟检测。 图1.1 桥梁整体照图1.2 0#桥台 2 参照依据与检测方法 2.1 检测依据和参照 (1)《建筑结构检测技术标准》(GB/T 50344-2004); (2)《水运工程混凝土试验规程》(JTJ 270-1998); (3)《公路桥梁承载能力检测评定规程》(报批稿); (4)《上海市政工程检测中心委托单》(委托编号:2010JG00033)。 2.2 钢筋锈蚀电位检测方法原理 此次电位检测采用半电池电位法,半电池电位法是通过测量钢筋的自然腐蚀电位判断钢筋的锈蚀程度。腐蚀电位是钢筋上某区域的混合电位,反映了金属的抗腐蚀能力。混凝土中的钢筋的活化区(阳极区)和钝化区(阴极区)显示出不同的腐蚀电位,钢筋

在钝化时,腐蚀电位升高,电位偏正;由钝态转入活化态(锈蚀)时,腐蚀电位降低,电位偏负。 将混凝土中的钢筋看作是半个电池组,与合适的参比电极(铜/硫酸铜参考电极或其它参考电极)连通构成一个全电池系统,混凝土是电解质,参比电极的电位值相对恒定,而混凝土中的钢筋因锈蚀程度不同产生不同的腐蚀电位,从而引起全电池电位的变化,根据混凝土中钢筋表面各点的电位评定钢筋的锈蚀状态。 2.3 检测仪器 本次检测采用的主要仪器为: (1)KON-XSY型钢筋锈蚀仪(北京康科瑞公司),仪器编号:QS-111,见图2.1。 图2.1 钢筋锈蚀仪 (2)KON-RBL(D+)型钢筋位置及保护层测定仪(北京康科瑞公司),仪器编号:YP-51,见图2.2。

钢筋锈蚀的机理

钢筋锈蚀的机理 公司内部编号:(GooD?TMMT?MMUT?UUPTY?UUYY?DTTI?钢筋锈蚀的机理

1前言 钢筋锈蚀对钢筋混凝土结构及预应力混凝土结构的耐久性和安全性影响极大。混凝土在多种因素作用下(如碳化、氯离子侵蚀等),钢筋因原先在碱性介质中生成的钝化膜被破坏而渐渐失去保护作用,导致钢筋锈蚀,生成的铁锈体积比被腐蚀掉的金属体积大3~4倍,使混凝土保护层沿钢筋纵向开裂,而裂缝一旦产生,钢筋锈蚀速度大大加快,结构构件的承载力与可靠性劣化的速度大大加快,有的共至发展到钢筋锈断,危及结构的安全。 文献资料表明,钢筋锈蚀引起钢筋混凝土结构的过早破坏已成为世界各国普遍关注的一大灾害。美国标准局1975年的调查表明,混凝土中钢筋的腐蚀占全美各种腐蚀的40%:日本新干线使用不到10年,就出现大面积因钢筋腐蚀引起的混凝土开裂、剥蚀。在我国,大量采用钢筋混凝土结构已有儿十年历史,对于遭受恶劣环境条件的腐蚀作用影响,尤其是在20世纪五六十年代,由于要求早强或防冻在混凝土中掺加过量的氯盐的结构,耐久性破坏现象非常严重。长期以来,人们发现混凝土结构在复杂恶劣的环境下会出现未老先衰的现象,尤其是接连不断的工程事故,使学术界在血的教训面前深刻认识到研究和提高混凝土耐久性的现实意义。 笔者将对钢筋锈蚀机理、影响因素、腐蚀过程、锈后钢筋混凝土的力学性能及粘结性能等进行分析,提出钢筋锈蚀应采取的预防措施,提高混凝土的耐久性和结构的安全性,减少耐久性破坏造成的损失,将是一项具有重大实际意义和社会经济效益的研究课题。 2对钢筋锈蚀的分析 混凝土中钢筋锈蚀机理的研究 一一电化学反应过程

混凝土结构的腐蚀机理及预防措施(一)

混凝土结构的腐蚀机理及预防措施(一) 摘要:腐蚀是影响混凝土结构耐久性、可靠性的至关重要的因素。为深入了解混凝土结构的腐蚀,本文从影响混凝土结构的腐蚀性介质,混凝土结构的腐蚀机理,混凝土结构的腐蚀预防措施,并结合电力工程中混凝土防腐措施的施工要点进行了阐述。为了保证防腐蚀工程的质量,在设计中应根据腐蚀介质的性质、浓度和作用条件,结合工程部位的重要性等因素,正确选择防腐蚀材料和构造;在施工中应严格执行科学的制度,精心施工,确保建筑工程质量,提高建筑物使用寿命,执行可持续发展。 关键字:混凝土结构腐蚀腐蚀性介质腐蚀机理预防措施施工要点工程实例 建筑(ARCHITECTURE),巨大的工艺品。它组成我们赖以生存的不可缺少的空间,建筑也以其优美造型给我们带来愉悦。随着社会的不断进步,随着对环境资源的重视,人们对建筑质量有更高的要求,也越来越重视建筑工程中的腐蚀现象。由于多种因素,在建筑工程中,腐蚀无所不在。腐蚀给国民经济带来巨大的损失,腐蚀给我们生存的建筑空间带来不确定的安全隐患。 所谓腐蚀,是材料与其环境间的物理化学作用引起材料本身性质的变化。 腐蚀反应的场所,首先是材料和腐蚀性介质之间相界面处。在一个腐蚀系统中,对材料行为起决定作用的是化学成分、结构和表面状态。腐蚀过程中如伴有机械应力的作用,将加速腐蚀而出现一系列特殊的腐蚀现象。但单纯的机械负荷(如拉应力、摩擦、磨损、疲劳等)造成的材料损伤,则不属于腐蚀范畴。 由于电力工程的特点,电力工程建设中存在着大量的腐蚀行为。如何通过设计选材适当、保证施工质量,减轻腐蚀给电力工程带来的负面影响,应成为电力工程技术人员探索的课题。对电力土建专业来说,确保建筑物的耐久性,尤其是保证混凝土结构的耐久性,防止或减少混凝土结构中腐蚀出现,应该成为我们探索的目标。 一、影响混凝土结构的腐蚀性介质 为了确定建筑物不同部位的防护措施,将腐蚀性介质按其形态并结合不同的作用部位分为5种:气态介质、腐蚀性水、酸碱盐溶液、固态介质和污染土。各种介质对不同材料的腐蚀程度,可按介质类别、环境相对湿度和作用条件等因素分为强腐蚀性、中等腐蚀性、弱腐蚀性和无腐蚀性共四个等级。 1.气态介质包括腐蚀性气体和以液体为分散相的气溶胶(酸雾、碱雾等),其作用的部位主要是室内外上部建筑结构的构配件。 2.腐蚀性水系指在工业生产过程中受到各种介质污染的工业水(生产水和废水)或地下水,介质在腐蚀性水中的含量较低。腐蚀性水作用的部位主要是地基、基础、污水池、地面和墙面等。 3.酸碱盐溶液:含有不同浓度介质的酸碱盐液体(包括完全潮解或溶解的腐蚀性固体),其

钢筋锈蚀对混凝土结构的影响

钢筋锈蚀对混凝土结构的影响 摘要:钢筋锈蚀是混凝土结构耐久性的主要病害之一,所以防止钢筋锈蚀对提高混凝土耐久性尤为重要。本文阐述了混凝土中钢筋锈蚀的原理及造成的严重影响,并提出了防止钢筋锈蚀相应措施,希望对相关工程具有一定借鉴意义。 关键词:混凝土结构;钢筋锈蚀;原理与影响;措施 引言 结构腐蚀是影响混凝土结构耐久性、可靠性的至关重要的因素。钢筋锈蚀对钢筋混凝土结构及预应力混凝土结构的耐久性和安全性影响极大。混凝土结构中钢筋锈蚀源于在多种因素作用下(如碳化、氯离子侵蚀等),钢筋原先在碱性介质中生成的钝化膜被渐渐破坏而失去保护作用,导致锈蚀生成的铁锈,其体积是被腐蚀掉的金属体积大3-4倍,使混凝土保护层沿钢筋纵向开裂。钢筋锈蚀引起的裂缝一旦产生,钢筋锈蚀速度将大大加快,结构构件的承载力与可靠性劣化的速度大大加快,有的甚至发展到钢筋锈断,危及结构的安全。1991年在法国召开的第二届混凝土耐久性国际学术会议上,美国加州大学Mehta教授的主题报告“混凝土耐久性50年进展”中提出,目前钢筋锈蚀已经成为钢筋混凝土构件破坏的最主要的原因。基于此,对钢筋锈蚀对混凝土的影响研究势在必行[1-2]。 1 腐蚀原理与影响 钢筋锈蚀的原因有两个方面[3]:一是钢筋保护层的碳化,其碳化的原因是混凝土不密实,抗渗性能不足。硬化的混凝土,由于水泥水化,生成氢氧化钙,故显碱性,pH值>12,此时钢筋表面生成一层稳定、致密、钝化的保护膜,使钢筋不生锈。当不密实的混凝土置于空气中或含CO2环境中时,由于CO2的侵入,混凝土中的氢氧化钙与CO2反应,生成碳酸钙等物质,其碱性逐渐降低,当混凝土的pH值<12时,钢筋的钝化膜就不稳定,当pH值<11.5时,钢筋的钝化保护膜就遭破坏,钢筋的锈蚀便开始进行;二是氯离子的含量。据有关试验证明,即便是pH值较高的溶液(如pH值>13),只要有4~6mg/L的氯离子含量,就足可以破坏钢筋的钝化膜,使钢筋失去钝化,在水和氧气的作用下导致钢筋锈蚀。 资料表明,钢筋锈蚀引起钢筋混凝土结构的过早破坏已成为世界各国普遍关注的一大灾害。混凝土中钢筋锈蚀的影响因素有:混凝土的密实度、混凝土保护层厚度、混凝土碳化、环境湿度、氯离子侵入等。在这些因素中,混凝土保护层的碳化和氯离子侵入是造成钢筋锈蚀的主要原因。钢筋锈蚀主要对混凝土结构造成影响存在以下几方面: (一)钢筋腐蚀对结构受力的影响

钢筋锈蚀的机理

钢筋锈蚀的机理 1前言 钢筋锈蚀对钢筋混凝土结构及预应力混凝土结构的耐久性和安全性影响极大。混凝土在多种因素作用下(如碳化、氯离子侵蚀等),钢筋因原先在碱性介质中生成的钝化膜被破坏而渐渐失去保护作用,导致钢筋锈蚀,生成的铁锈体积比被腐蚀掉的金属体积大3~4倍,使混凝土保护层沿钢筋纵向开裂,而裂缝一旦产生,钢筋锈蚀速度大大加快,结构构件的承载力与可靠性劣化的速度大大加快,有的甚至发展到钢筋锈断,危及结构的安全。 文献资料表明,钢筋锈蚀引起钢筋混凝土结构的过早破坏已成为世界各国普遍关注的一大灾害。美国标准局1975年的调查表明,混凝土中钢筋的腐蚀占全美各种腐蚀的40%;日本新干线使用不到10年,就出现大面积因钢筋腐蚀引起的混凝土开裂、剥蚀。在我国,大量采用钢筋混凝土结构已有几十年历史,对于遭受恶劣环境条件的腐蚀作用影响,尤其是在20世纪五六十年代,由于要求早强或防冻在混凝土中掺加过量的氯盐的结构,耐久性破坏现象非常严重。长期以来,人们发现混凝土结构在复杂恶劣的环境下会出现未老先衰的现象,尤其是接连不断的工程事故,使学术界在血的教训面前深刻认识到研究和提高混凝土耐久性的现实意义。 笔者将对钢筋锈蚀机理、影响因素、腐蚀过程、锈后钢筋混凝土的力学性能及粘结性能等进行分析,提出钢筋锈蚀应采取的预防措施,提高混凝土的耐久性和结构的安全性,减少耐久性破坏造成的损失,将是一项具有重大实际意义和社会经济效益的研究课题。 2对钢筋锈蚀的分析 2.1混凝土中钢筋锈蚀机理的研究 2.1.1钢筋的腐蚀过程——电化学反应过程 混凝土空隙中的水分通常以饱和的氢氧化钙的溶液形式存在,其中还含有一些氢氧化钠和氢氧化钙,pH值为12.5。在这样的强碱性的环境中,钢筋表面形成钝化膜,它是厚度为2×10-9~6×10-9m的水化氧化物(nFe3O3·mH2O),阻止钢筋进一步腐蚀。因此,施工质量良好、没有裂缝的钢筋混凝土结构,即使处在海洋环境中,钢筋基本上也能不发生腐蚀。但是,当钢筋表面的钝化膜受到破坏,成为活化态时,钢筋就容易腐蚀。 呈活化态的钢筋表面所发生的腐蚀反应的电化学机理是,当钢筋表面有水分存在时,就发生铁电离的阳极反应和溶液态氧还原的阴极反应,相互以等速度进行,其反应式如下:阳极反应2Fe-4e-→2Fe2+ 阴极反应O2+2H2O+4e-→4OH- 腐蚀过程的全反应是阳极反应和阴极反应的组合,在钢筋表面析出氢氧化铁,其反应式为 2Fe+ O2+2H2O→2Fe2++4OH-→2Fe(OH2) 4 Fe(OH2)+ O2+2H2O→4 Fe(OH)3 该化合物被溶解氧化后生成氢氧化铁Fe(OH)3,并进一步生成nFe3O3·mH2O(红锈),一部分氧化不完全的变成Fe3 O4(黑锈),在钢筋表面形成锈层。红锈体积可大到原来体积的4倍,黑锈体积可大到原来的两部。铁锈体积膨胀,对周围混凝土产生压力,将使混凝土沿钢筋方向开裂(通常称之为“顺筋开裂”、“先锈后裂”),进而使保护层成片脱落,而裂缝及保护层的剥落又进一步导致钢筋更剧烈的腐蚀。 2.1.2裂缝状态下钢筋的腐蚀 当结构出现横向裂缝,根据电化腐蚀机理,裂缝处的钢筋表现为阴极,氧主要是通过未裂区域混凝土传递到阴极。 根据电化学作用原理,钢筋锈蚀须具备4个条件:

钢筋混凝土桥梁腐蚀机理与防护

钢筋混凝土桥梁腐蚀机理与防护 发表时间:2019-12-31T09:13:13.037Z 来源:《科学与技术》2019年第16期作者:周忠振 [导读] 现阶段,我国经济迅速发展,建设成了很多钢筋混凝土结构的桥梁 摘要:现阶段,我国经济迅速发展,建设成了很多钢筋混凝土结构的桥梁、码头等,但是在几十年的运营过程中很多钢筋混凝土桥梁出现了不同程度的耐久性问题,其中最为突出的就是混凝土的腐蚀。长期的腐蚀会导致钢筋混凝土的承受力下降、耐久性能降低,使用寿命缩短,所以对钢筋混凝土桥梁防腐进行分析十分必要。 关键词:钢筋混凝土;桥梁;腐蚀机理;防护 1导言 近些年,由于环境污染的问题越来越严重,原本非常坚固的钢筋混凝土桥梁也出现了不同程度的腐蚀。而桥梁腐蚀的出现,不仅会影响桥梁的整体美观,同时还会影响桥梁的使用寿命,甚至引发安全事故。因此,必须采取一定的措施加强对钢筋混凝土桥梁的防护,以此提高桥梁建筑的使用寿命和安全性。 2桥梁腐蚀机理研究现状 现阶段对于桥梁腐蚀机理的研究主要认为:由于混凝土受到腐蚀性介质的作用,混凝土被腐蚀,对钢筋造成了破坏,钢筋在外界因素的作用下遭受破坏,对于混凝土会产生一定的应力变形,进而导致混凝土的裂缝。这些裂缝会导致钢筋腐蚀进一步加重。 3钢筋混凝土桥梁腐蚀机理 3.1钢筋混凝土桥梁碳化作用腐蚀 碳化作用腐蚀顾名思义就是指空气中的二氧化碳与钢筋混凝土桥梁表面和内部毛细孔道中的氢氧化钙和水化硅酸钙发生反应,当碳化反应达到一定程度后,就会破坏掉钢筋表面的钝化膜,从而导致钢筋混凝土桥梁的腐蚀,这将对桥梁的使用安全和寿命造成严重的影响。 3.2钢筋混凝土桥梁硫酸盐腐蚀 空气中的二氧化硫和硫化氢同样会对钢筋混凝土桥梁造成腐蚀,当空气中的二氧化硫和硫化氢与水接触会产生一些酸类的物质,这些酸类物质会破坏掉混凝土表面的钝化膜,达到一定程度后,就会腐蚀到桥梁中的钢筋,从而对桥梁的质量和使用寿命造成严重影响。 4钢筋混凝土桥梁防腐蚀处理的问题 4.1处理意识不高 现代化的交通建设体系中,钢筋混凝土桥梁是非常有代表性的组成部分,自身所产生的影响非常显著,想要在日后工作的开展上创造出较高的价值,必须坚持在处理意识上良好的提升,但是从调查的结果来看,该方面的工作并没有达到理想的成绩。首先,钢筋混凝土桥梁的防腐蚀处理工作,未能够在方案设定上有效健全,日常调查研究存在很大的疏漏现象,各项工作的实践并没有按照协调原则来开展。这种问题的出现,直接导致钢筋混凝土桥梁的防腐蚀处理体系,未能够达到健全效果,而且各项工作的部署与落实,都存在较多的挑战;其次,防腐蚀处理工作的进行,缺乏持续性的干预,有些小问题表现为严重忽视现象,影响到了未来工作的全面进步。 4.2处理制度不健全 从客观的角度来分析,钢筋混凝土桥梁的建设、运营、发展等,都具有非常远大的目标,但是防腐蚀工作是具有敏感性较高的内容,倘若在处置和安排的过程中,没有遵循严格的制度来完成,势必会导致前后工作难以得到良好的衔接,各自内容和技术指标,也会表现出较大的矛盾、冲突现象。首先,钢筋混凝土桥梁的防腐蚀处理制度,并没有结合桥梁自身的特点、规模、位置、环境来完成,大部分情况下,防腐蚀处理工作的实施,都是按照传统的标准来操作,在经验的依赖方面较高,此种情况下,容易导致防腐蚀的问题不断增加,而且在后续工作的实践上,难以创造出较高的价值。其次,处理制度长久表现出不健全的现象后,全局防腐蚀的部署,以及最终目标的实现,都遭遇到了较大的阻碍。 5钢筋混凝土桥梁腐蚀防护措施 5.1合理的增加混凝土的厚度 钢筋混凝土桥梁之所以经常被腐蚀最主要的一个原因就在于混凝土保护层经常在碳化作用和硫酸盐下发生钝化,致使混凝土遭到腐蚀。因此,若想有效的防护钢筋混凝土桥梁腐蚀,可以合理的增加混凝土的厚度,加大钢筋混凝土桥梁的混凝土保护层,以此有效的避免混凝土保护层经常被腐蚀。在混凝土中掺加一些火山灰、粉煤灰等,使得混凝土中氯离子的渗透速率降低,而混凝土的电阻率会随之增加,就可以使腐蚀的时间和腐蚀的速度降低。其中超细材料微硅粉在混凝土中能够有效降低孔隙尺寸和阻断毛细孔,因此能够大幅度提高混凝土的抗掺性,降低氯离子的渗透对于钢筋的损害。在拌和混凝土的过程中,可以加入防钢筋生锈的物质,对于钢筋有很好的保护作用,阻碍有害物质对于钢筋的进一步腐蚀,在工程中这种高性能的混凝土应用比较广泛。 5.2涂刷防腐涂层 钢筋混凝土桥梁经常发生碳化和硫酸盐反应的一个重要原因就是桥梁的混凝土很容易与空气中的水分、二氧化碳、二氧化硫等发生反应。因此,在防护混凝土桥梁腐蚀时,就需要防止这些反应的发生,可以在钢筋混凝土桥梁的表面涂刷防腐涂层,经常使用的涂料有纯丙乳液、叔碳酸盐乳液、有机硅和苯丙乳液等。在钢筋混凝土桥梁的表面涂刷防腐涂层可以有效的防止混凝土与空气直接接触,避免发生碳化和硫酸盐反应,从而实现对钢筋混凝土桥梁腐蚀的防护。 5.3多种防护措施的设计和使用 为了实现钢筋混凝土桥梁腐蚀防护,在设计钢筋混凝土桥梁时,设计师和相关管理工作人员应该结合桥梁建设当地的实际情况设计多种腐蚀防护方案。例如:工业发展较快的地区在建设钢筋混凝土桥梁时,在选择防腐涂层的涂料时需要谨慎,尽量选择一些比较好的涂料,因为对于工业发展较快的地区来说,其环境污染相对也比较严重,若想达到桥梁防护的目的,就需要选择好一点的涂料。而一些建筑行业发展较快的地区在建设钢筋混凝土桥梁时,因为这些地区经常出现超载的现象,所以在设计桥梁时应该合理的增加混凝土的厚度,这样不仅可以达到防腐的目的,同时还可以有效的避免因为超载而出现裂缝,从而达到延长桥梁使用寿命和提高桥梁质量的目的。 5.4采取阴极防护措施 这种防护措施主要是应用在沿海地区或者北方,因为这里的气候条件等因素,会对混凝土桥梁的钢筋造成损害。阴极防护可以阻碍海水中或者空气中的离子对钢筋所造成的腐蚀,在国外有很多国家已经尝试了使用阴极防护来对桥梁进行保护,这种防护措施虽有一定的局

相关主题
文本预览
相关文档 最新文档