当前位置:文档之家› 现代分离富集技术的发展

现代分离富集技术的发展

现代分离富集技术的发展
现代分离富集技术的发展

现代分离富集技术的发展

目录 (1)

前言 (2)

第一章气相色谱法(GC) (3)

1.1 气-固吸附色谱柱 (3)

1.2 气-液分配色谱柱 (3)

第二章高效液相色谱法(HPLC) (4)

2.1液固吸附色谱法(LSC) (4)

2.2液液分配色谱法(LLC) (4)

2.3化学键合相色谱法(BPC) (5)

2.4离子交换色谱法(IEC) (6)

2.5空间排阻色谱法(SEC) (6)

2.6手性色谱法 (7)

第三章薄层色谱法(TLC) (10)

结论 (12)

参考文献 (13)

前言

当前,虽然高分辨和可自动的分析测试仪器不断的发展和完善,对各类样品中多元素的快速定量测定起到了巨大的作用。但在实际工作中,由于很多样品组成复杂,待测元素含量低,就不能得到高质量的结果,甚至无法进行测量[1-3]。

多年来,对分离富集技术已进行了大量的研究,开发和应用。目前进展的特点可归纳为:

1.经典的分离富集集数的改进提高,新的分离富集技术的开发应用;

2.新的分析试剂研制和应用,旧的分析试剂开发新的用途;

3.分离富集集数与测量方法相结合形成连用方法;

4.由进样器,分离富集器,检测器和计算机等零部件组成性能良好的,多用途的,自动的心的分析仪器。

第一章气相色谱法(GC)

气相色谱法是进入50年代以后, 在柱层析的基础上发展起来的一种新型的仪器分析方法[4]。气相色谱法是以气体为流动相的柱色谱分离技术。按固定相分为气-固色谱和气-液色谱;按分离原理分为吸附色谱和分配色谱;按柱子粗细分为填充柱色谱和毛细管柱色谱。

气相色谱法的特点有以下四点:

1.高效能:一般填充柱的理论塔板数可达数千,毛细管柱可达一百多万。

2.高选择性:可以使一些分配系数很接近的以及极为复杂、难以分离的物质,获得满意的分离。

3.高灵敏度:可以检测10-11~10-13 g物质,适合于痕量分析。

4.分析速度快:通常一个试样的分析可在几分钟到几十分钟内完成[5]。

气相色谱柱是由柱管和填充剂组成,柱管又分为填充柱和毛细管柱。填充柱多为2-4米柱长,2-6毫米内径;毛细管柱多为几十米到几百米柱长,0.1-0.5毫米内径。填充剂分为两种,气-固吸附色谱柱中使用的固体吸附剂和气-液分配色谱柱中的载体和固定液。

1.1 气-固吸附色谱柱

在气-固吸附色谱柱中固定相分为三种:吸附剂、分子筛和高分子多孔微球。吸附剂如硅胶、碱性Al2O3和活性炭等[6]。

1.2 气-液分配色谱柱[7]

在气-液分配色谱柱中载体的作用是承载固定液,要求其具有比表面积大、无吸附性、化学惰性、热稳定性好且具有一定的机械强度等性质。常见的载体分为硅藻土类和非硅藻土类,硅藻土类是具有一定粒度的多孔性固体微粒,非硅藻土类包括玻璃微球,石英微球,氟塑载体,含氟化合物。对于载体的处理方法主要是钝化以减弱其吸附性,分为酸洗、碱洗和硅烷化。对于固定液有四点要求:(1)操作柱温下固定液呈液态(易于形成均匀液膜)。(2)操作条件下固定液热稳定性和化学稳定性好。(3)固定液的蒸气压要低(柱寿命长,检测本底低)。(4)固定液对样品应有较好的溶解度及选择性。

第二章高效液相色谱法(HPLC)

2.1液固吸附色谱法(LSC)

液固吸附色谱法[8]是流动相为不同极性的溶剂,固定相为固体吸附剂的色谱法。这种分离要求其固定相即吸附剂是多孔极性微粒,表面具有活性吸附中心。

LSC的固定相分为极性固定相和非极性固定相。极性固定相包括硅胶、硅酸镁等酸性固定相,氧化铝、氧化镁等碱性固定相和分子筛。非极性固定相包括高分子多孔微球、高强度多孔微粒活性炭、多孔石墨化炭黑、碳多孔小球。

流动相的选择与固定相是否是极性有关,极性固定相如硅胶或氧化铝,通常选择己烷、庚烷等弱极性溶剂做底剂加二氯甲烷、氯仿、乙醚、异丙醚等中等极性溶剂作改性剂或加四氢呋喃、乙腈、异丙醇、甲醇、水等极性溶剂作改性剂。非极性固定相则选择水、甲醇、乙醇作为底剂加乙腈、四氢呋喃作改性剂。

LSC的优点:

1.柱填料价格便宜、对样品的负载量大。

2.在pH=3-8的范围内稳定性好,至今仍是大多数制备色谱分离中优先选用的方法。

LSC的应用:

1.对于中等分子量的油溶性样品可获得满意分离

2.对于强极性或离子型样品因不可逆吸附常常不能获得满意分离

3.对不同极性取代基的化合物或异构体混合物表现出较高选择性,对同系物的分离能力较差。凡是能用TLC成功分离的化合物,都可用LSC分离。

2.2液液分配色谱法(LLC)

液液分配色谱法[9-10]的分离要求是:

1.固定相:机械吸附在惰性载体上液体

2.流动相:必须与固定相不为互溶

3.载体:惰性,性质稳定,不与固定相和流动相反应

LLC的分离机制是利用组分在流动相和固定液间溶解度差异实

现分离(即相似相溶),其分离过程是连续萃取的过程。

LLC的固定相是由惰性载体和固定液组成的。惰性载体是全多孔球形或无定形微粒硅胶、全多孔氧化铝,要注意载体比表面积太大会引起吸附现象,而造成色谱峰拖尾。固定液涂渍方法分为物理涂渍或机械涂渍法。其中,物理涂渍法缺点是固定液易流失,使保留值减小,柱效下降。防固定液流失可以针对固定液选择对其溶解度小的溶剂为流动相,流动相进柱前预先以固定液饱和,流动相保持低流速流经柱子,并保持柱温恒定,若溶解样品的溶剂对固定液有较大溶解度,应避免进样量过大。

LLC的流动相分两种:

NLLC——类似LSC使用极性吸附剂时的流动相。

流动相底剂为己烷,庚烷加小于20%的极性改性剂如1-氯丁烷,异丙醚,二氯甲烷,四氢呋喃,氯仿,乙酸乙酯,乙醇,甲醇,乙腈等从而使k减小,混合溶剂的洗脱强度增强。

2.RLLC——类似LSC使用非极性吸附剂时的流动相。

流动相底剂为水加小于10%的改性剂如二甲基亚砜,乙二醇,乙腈,甲醇,丙酮,对二氧六环,乙醇,四氢呋喃,乙丙醇等从而使k 减小,混合溶剂的洗脱强度增强。

NLLC和RLLC都可以分离同系物或者含有不同官能团的多组分混合物。NLLC用于分离极性较强的水溶性样品,洗脱顺序是极性小的组分先出柱,极性大的组分后出柱,靠组分极性差别产生的溶解度差异而分离。RLLC用于分离极性弱的油溶性样品,洗脱顺序是极性大的组分先出柱,极性小的组分后出柱。其中要注意LLC是靠组分极性差别产生的溶解度差异而分离(不同官能团物质的分离),极性差别小的组分选用LSC(结构异构体的分离)。

2.3化学键合相色谱法(BPC)

化学键合相色谱法是以化学键合相为固定相的液相色谱分析方法。

化学键合相的特点有如下四点:

1.对各种不同性质的溶剂有良好的化学稳定性和热稳定性好(70℃以下不变性)。

2.不易流失,重现性好,使用寿命长。

3.载样量大(高于硅胶色谱法一个数量级)。

4.柱效高,分离选择性好,适于梯度洗脱(宽范围k值样品的分离)。

2.4离子交换色谱法(IEC)

离子交换色谱法是以高效微粒离子交换剂为固定相,以具有一定pH值的缓冲溶液为流动相,分离、分析阴、阳离子和两性化合物的色谱法。

离子色谱法分为抑制型离子色谱和非抑制型离子色谱。其分离机制实依据被测组分与离子交换剂表面带电基团进行可逆性离子交换能力(亲和力)不同实现分离。离子交换剂分为离子交换树脂和键合型离子交换剂。离子交换树脂是以苯乙烯为单体,二乙烯苯为交联剂形成的网状立体结构的聚合物为骨架,通过化学反应在骨架上引入离子交换基团。键合型离子交换剂是以全多孔球形或无定形硅胶为基体,表面化学键合上所需要的离子交换基团。

离子交换树脂按聚苯乙烯树脂骨架上引入离子交换基团的不同分为:

1.阳离子交换树脂:在骨架上引入能电离出H+的酸性基团,如磺酸基、羧基和酚羟基,强酸型阳离子交换树脂:含有磺酸基-SO3H+的树脂。

2.阴离子交换树脂:在骨架上引入能电离出OH-的碱性基团,如季铵基、氨基、仲胺基、叔胺基,强碱型阳离子交换树脂:含有季铵基-N(CH3)3+的树脂。

2.5空间排阻色谱法(SEC)

空间排阻色谱法是以具有化学惰性的多孔凝胶为固定相,利用固定相对样品中各组分分子体积阻滞作用的差别而实现分离的色谱法。

SEC的分离依据是空间排斥理论。其分离机制是利用凝胶的孔径与被分离组分分子线团尺寸相对大小关系而对高分子溶液进行分离分析(类似分子筛)。

保留体积与待测分子尺寸有关,同一物质的高分子化合物,其分子尺寸与分子量成正比。可用于测定高分子化合物分子量的分布。

2.6手性色谱法[11-12]

手性色谱法:利用手性固定相(CSP)或含手性添加剂(CMPA)的流动相分离、分析立体异构体的色谱法。

色谱手性分离的两种形式:

1.间接法:对映体先与一种光学纯的试剂反应生成非对映体,然后在非手性环境下分离。

2.直接法:采用手性固定相或手性添加剂直接进行对映体的分离与测定。

手性液相色谱:

一、手性固定相法(按化学类型分类)

1.“刷型”手性固定相:将单分子层的手性有机分子通过适宜的连接基团键合到硅胶载体上而形成的固定相。

特点:

(1)容易制备、拆分选择性好、柱载量高。

(2)适于含有芳香基团的手性化合物的分离。

(3)对于不含有芳香基团的手性化合物进行拆分时,必须先进行衍生化作用,引入芳香基团。

(4)流动相系统均为极性较小的有机溶剂(二氯乙烷-乙醇-甲醇)。

2.手性聚合物固定相(天然多糖衍生物、合成高分子化合物)

(1)稳定性好、柱制备简单,无需键合。

(2)适于多种手性药物拆分(尤其是含有芳香环的药物)。

(3)流动相系统均为极性较小非卤代烃的有机溶剂(乙醇-正己烷)。

3.环糊精手性固定相(α-环糊精, β-环糊精,γ-环糊精)。

特点:

(1)α-环糊精适于较小分子药物对映体分离;γ-环糊精适于较大分子药物分离;β-环糊精适于分离萘环、双环和多取代苯环的手性药物分离。

(2)环糊精固定相既可以采用以水为介质的反相溶剂系统,也可以采用非水极性有机流动相系统。

(3)温度、pH、流速和离子强度对拆分和保留影响较大。

4.大环抗生素手性固定相(利托菌素、万古霉素、替考拉宁、利福霉素)

5.蛋白质手性固定相(α-酸性糖蛋白,AGP;人血清白蛋白,HSA;牛血清白蛋白,BSA;纤维素二糖水解酶,CBH )

特点:

(1)操作条件苛刻。

(2)适用范围广。

(3)主要在反相条件下分离,流动相为近似生理条件的缓冲溶液和有机溶剂。

6.手性配体交换固定相

Davankov[13]通过手性金属配合物与对映异构体作用形成非对映异构体金属配合物,建立了手性配体交换色谱拆分技术。

用于形成金属配合物的离子有:Cu2+、Ni2+、Cd2+、Zn2+、Hg2+。

特点:主要用于α-氨基酸及类似药物的手性拆分。

二、手性流动相添加剂法

1.拆分原理:

(1)流动相中手性试剂与对映体形成非对映配合物,在固定相中保留时间和分配不同而拆分。

(2)手性试剂吸附在柱上形成动态的手性固定相,对映体与之作用不同而拆分。

2.优点:

(1)使用常规色谱柱;

(2)无需手性试剂衍生;

(3)手性添加剂选择范围宽;

(4)可在柱后收集纯异构体。

3.缺点:

(1)手性添加剂消耗大;

(2)拆分方法的建立较困难;

(3)系统平衡时间长;

(4)拆分制备时需分离手性添加剂

4.常用的手性添加剂:

离子对试剂、配体交换试剂、蛋白质亲和试剂、环糊精及冠醚包合试剂合手性氢键作用试剂

三、手性试剂衍生化法

将对映体经手性试剂衍生,生成非对映体后,利用常规HPLC分离测定的手性拆分方法。

1.手性试剂衍生化法需满足的条件:

(1)手性衍生化试剂具有高的光学纯度。

(2)手性衍生化试剂与反应产物具有高的稳定性。

(3)衍生化反应过程中产物不发生消旋化现象。

(4)待测手性药物具有易于衍生化的基团(氨基、羟基、羧基)。

2.常用的手性衍生化试剂:

(1)手性羧酸类(酰氯、磺酰氯、酸酐和氯甲酸酯),用于衍生手性醇、胺和氨基酸。

(2)手性胺类(苯乙胺、二甲氨基萘乙胺和对硝基苯乙胺),用于羧酸、N-保护氨基酸和醇类药物。

(3)异(硫)氰酸酯类(苯乙基异氰酸酯、萘乙基异氰酸酯、吡喃葡萄糖异氰酸酯和阿拉伯糖异氰酸酯),用于含有氨基酸、氨基或醇羟基药物得对映体手性拆分。

(4)邻苯二醛和手性硫醇组合衍生化试剂,用于氨基酸及其衍生物基胺的拆分。

第三章薄层色谱法(TLC)

1938年有俄国人首先是现在氧化铝薄层上分离一种天然药物,1965年德国化学家出版了“薄层色谱分析”一书,推动了这一技术的发展。[14-17]

因TLC法设备简单,分析速度快,分离效率高,结果直观,很快被用作定性和半定量的方法。70年代中后期发展了高效薄层色谱。80年代以后发展了薄层色谱光密度扫描仪,和各步操作的仪器化,并实现了计算机化。分离过程中样品与固定相、流动相之间相互作用的性质,有三种TLC:

1.吸附色谱:利用样品中各组分对吸附剂(固定相)的吸附能力不同,将其分离。

Rf值大──溶质对吸附剂的吸附能力小。

Rf值小──溶质对吸附剂的吸附能力大。

2.分配色谱:利用样品中各组分对固定液与流动相的分配系数不同,将其分离,原则上与液-液连续萃取相似。

Rf值大──溶质易溶于流动相,不易溶于固定相。

Rf值小──溶质易溶于固定相,不易溶于流动相。

3.离子交换色谱:样品中某组分与离子交换剂进行离子交换作用。

吸附色谱的原理是基于样品溶液与固定相表面发生了吸附作用。在吸附剂固体表面,溶质分子(A)与溶剂分子(S)以占据吸附剂表面的位置可以互相竞争,A可以顶出S,S也可以顶出A。

吸附有物理吸附和化学吸附[18]:

物理吸附的特点是无选择性、吸附速度快、可逆、吸附热小。

化学吸附的特点是有选择性、吸附速度慢、不可逆、吸附热大。在吸附色谱中主要发生物理吸附。

在吸附薄层色谱中,展开剂(溶剂)是不断供给的。所以,原点上A与S(展开剂)之间的平衡不断遭到破坏,吸附在原点上的溶质不断解吸,解吸出来的A溶于S中并随之向前移动,遇到新的吸附剂表面,A与S又建立起新的平衡,但又立刻遭到不断移动上来的展开剂(S)的破坏,又有一部分A解吸并随之向前移动。如此吸附-解吸-吸附

-解吸-吸附-……的交替过程就构成了色谱法的分离基础。吸附力弱的组分容易解吸而溶于展开剂中,并随之向前移动,Rf值较大;吸附力强的组分不易解吸,也不易随着展开剂向前移动,Rf值较小TLC优点[19]:

1.操作容易,设备简单,易于掌握。

2.分离迅速(PC需几个小时到几十个小时,TLC只需十几分钟到几十分钟)。

3.灵敏度高(可检测10-5μg物质)。

4.固定相(与PC相比)、流动相(与GC相比)、显色剂(与PC相比)均可灵活选用。

5.样品用量可小(几微克-几十微克)可大(几毫克-几百毫克),可用于备色谱。

6.特别适用于热不稳定及难挥发样品。

7.技术多样化(如双向展开、多次展开等),可分离复杂样品。

8.不存在样品堵塞柱子而使柱效下降或柱子报废的问题。

缺点[20]:

1.不适合挥发性样品

2.自动化程度低于GC、HPLC

3.分离效果不及GC、HPLC,不能分离过于复杂的样品。

结论

1.对于大批量的的分析测试样品可采用多元素快速定点测定。有些样品虽然可以采用一起方法直接测量,但仍存在样品的分离腹肌过程,特别是对复杂的含量神帝的样品则不可避免的进行适当的分离富集,其重要性不容忽视。因而,分离富集集数在分析过程中,是一个不可忽视的重要环节。

2.分离富集技术较多,分析测试人员善于选择适宜的操作方案,在选择分离富集集数是,应考虑到:分析对象的性质,分离元素和腹肌元素的含量;分离富集过程中的污染以及对环境的要求;分离富集剂的纯度,其可能存在的杂质对待测元素的影响;分离富集剂商品化的程度。

3.由进样器,分离富集器,检测器和计算机等部件组成的分析测试仪器极受欢迎,已有的商品还在不断完善,提高。新的正在研究。因而,对各类分离富集技术制成的分离富集器应尽可能的规格化和通用化,使其适用于与多种测量仪器联用。

4.分离富集过程应尽量短,引入的药品试剂尽量少。操作过程尽可能封闭。

参考文献

[1] 袁玄晖,曾惠芳,伍新宇等.岩石矿物及侧试.1983,2(1):71.

[2] 陈仁逊,艾军.岩石矿物及测试.1983,2(4):297.

[3] 邹骏城,查美雄,王鹤岭等.岩石矿物及测试.1984,3(2):149

[4]沈小婉主编.色谱法在食品分析中的应用.北京:北京大学出版社,1992,1.

[5]孙传经.气相色谱分析原理与技术.北京:化学工业出版社, 1981,192.

[6]M C Bow man et al. GLC retention time of pesticides and metabolites containing phosphorus and sulfur on four thermally stable columns, AOAC, 1970, 53 ( 3): 499.

[7]M C Bow man et al. Use of dex sil 300 o n a specially washed chromosorb w for multicomponent residue determinations o f phosphorus and sulfur-containing pesticides by flame photometric GLC, AO AC, 1971,54 (5): 1086.

[8] J.R.Li, Y. Tao, Q. Yu,X.H. Bu, H. Sakamoto, S.Kitagawa. Chem. Eur.J.,2008,14(9):2771-2776.

[9]J.W.Jiang,R.Babarao,Z.Q.Hu.Chem.Soc.Rev.,2011,40(7):3599-3612.

[10]S.M.Xie,Z.J.Zhang,Z.Y.Waiig,L.M.Yuan.J.Am.Chem.Soc.,2011,133:11892-11895

[11]陈兴连.手性金属有机骨架化合物作高效液相色谱固定相的研究[硕士学位论文],昆明:云南师范大学,2012, 14-41.

[12]龚晓丽.金属有机骨架化合物作为高效液相色谱手性固定相的研宂[硕士学位论文],昆明:云南师范大学,2012,14-47.

[13]普自杰.手性金属-有机骨架材料作为高效液相色谱固定相的研究丨硕士学位论文1,昆明:云南师范大学,2013,14-44.

[14]M.Padmanaban, P.Muller, C.Lieder, K.Gedrich, R.Grunker, V.Bo-n,I.Senkovska,

S.Baumgartiier, S.Opelt,S.Paasch, E.Brunner, F. Glorius, E.Klemm,

https://www.doczj.com/doc/7c5132917.html,mun.2011,47:12089-12091.

[15]K.Tanaka,T,Muraoka, D.Hirayama, A.Ohnish. https://www.doczj.com/doc/7c5132917.html,mun. 2012,48;8577-8579. [17]M.Zhang.Z.J,Pu,X.L.Chen,X.L.Gong,A.X.Zhu,L.M.Yuan.Chem.

Commun.,2013,49:5201-5203.

[18]S.M.Xie, X.H.Zhang, Z.J.Zhang, M.Zhang, J.Jia, L.M.Yuan. Anal. Bioanal. Chem.

2013,405:3407-3412.

[19]S.M.Xie, X.H.Zhang, Z.J.Zhang, L.M.Yuan.Anal.Lett. 2013,46:753- 763.

[20]X.H.Zhang, S.MXie, A.H.Duan, B.J.Wang, L.M.Yuan. Chromatogra -phia, 2013,76:831-836.

分析化学中常用的分离和富集方法教案

第8章 分析化学中常用的分离和富集方法 教学目的:学习各种常用分离和富集方法的原理、特点及应用,掌握复杂体系的 分离与分析;分离法的选择、无机和有机成分的分离与分析。 教学重点:掌握各种常用分离和富集方法的原理、特点及应用。 教学难点:萃取分离的基本原理、实验方法和有关计算。 8.1 概述 干扰组分指样品中原有杂质(溶解)或加入试剂引入的杂质,当杂质量少时可加掩蔽剂消除干扰,量大或无合适掩蔽剂时可采用分离的方法。 分离完全的含义:(1)干扰组分少到不干扰;(2)被测组分损失可忽略不计。 完全与否用回收率表示 100?分离后测得的量回收率=%原始含量 对回收率的要求随组分含量的不同而不同: 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物 蒸馏法:N -NH 4+-NH 3↑(酸吸收) 利用沸点不同,进行有机物的分离和提纯。 8.2 液-液萃取分离法 8.2.1萃取分离法的基本原理 萃取:把某组分从一个液相(水相)转移到互不相溶的另一个液相(有机相)的过程。 反萃取:有机相→水相

现代分离科学与技术复习题(1)

1、名词解释 1)分配系数,指一定温度下,处于平衡状态时,组分在流动相中的浓度和在固 定相中的浓度之比,以K表示。分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,为选择性系数(或称交换系数),凝胶色谱法为渗透参数 2)絮凝,使水或液体中悬浮微粒集聚变大,或形成絮团,从而加快的,达到固 -液分离的目的,这一现象或操作称作 3)层析分离,是利用各组分(、、分子的形状与大小、分子的电荷性与)的不 同,将多组分混合物进行分离的方法。主要是利用不同物质在固定和流动相上的亲和性差异,利用移动速度的不同进行分离。 4)吸附分离,吸附是利用吸附剂对液体或气体中某一组分具有选择性吸附的能 力,使其富集在吸附剂表面,再用适当的洗脱剂将其解吸达到分离纯化的过程 5)分子印迹技术分子印迹技术是指为获得在空间结构和结合位点上与某一分 子(印迹分子) 完全匹配的聚合物的实验制备技术。 6)反渗析,利用反渗透膜选择性的只能通过溶剂(通常是水)的性质,对溶液 施加压力,克服溶液的渗透压,使溶剂通过反渗透膜而从溶液中分离出来的过程。 7)共沉淀分离,共分离法是富集痕量组分的有效方法之一,是利用溶液中主沉 淀物(称为)析出时将共存的某些微量组分载带下来而得到分离的方法 8)离子交换分离,通过分子中的活性离子将溶液中带相反电荷的物质吸附在离 子交换剂上,然后用适当的洗脱溶剂将吸附物质再从离子交换剂上洗脱下来,达到分离的目的。 9)沉降分离,在外力场作用下,利用分散相和连续相之间密度差,使之发生相 对运动而实现非均相混合物分离。 10)液膜分离,液膜萃取,也称液膜分离,是将第三种液体展成膜状以隔开两个 液相,使料液中的某些组分透过液膜进入接收液,从而实现料液组分的分离。 11)临界胶团浓度,分子在溶剂中缔合形成的最低浓度 12)液膜分离, 13)反相色谱,根据流动相和相对不同,液相色谱分为和反相色谱。流动相大于 固定相极性的情况,称为反相色谱。合相色谱可作反相色谱。

现代分离方法与技术期末复习

一、名词解释: 分离:利用混合物中各组分在物理或化学性质上的差异,通过适当的装置或方法,使各组分分配至不同的空间区域或者在不同的时间依次分配至同一空间区域的过程。 富集:通过分离,使目标组分在某空间区域的浓度增大。 浓缩:将溶剂部分分离,使溶质浓度提高的过程。 纯化:通过分离使某种物质的纯度提高的过程 分离科学:研究从混合物中分离、纯化或富集某些组分以获得相对纯物质的过程的规律、仪器制造技术及其应用的一门学科。 回收率:0 100Q R Q ?实际回收量回收率=%欲回收总量 富集倍数:富集倍数=待分离组分的回收率/基体回收率 分离因子S :两种物质被分离的程度。回收率R 相差越大,分离效果越好。设A 为目标组分,B 为共存组分,则A 对B 的分离因子S A,B 为,0,0,//A A B A B B A B R Q Q S R Q Q == 氢键:氢原子在分子中与电负性较大的原子X 形成共价键时,还可以吸引另一个电负性较大、且含有孤对电子的原子Y ,形成较弱化学结合。 分配平衡常数:在一定温度下,当某一溶质在互不相容的两种溶剂中达到分配平衡时,该溶质在两相中的浓度之比 分配比(D ):某种物质在两相之间各形态总浓度的比值[][]A i org org i A aq i aq i A C D C A ==∑∑ 相比:有机相和水相两相体积之比 直接溶剂萃取:可溶于水的有机分子(如羧酸、醇类、糖)因具有明显疏水性,可以直接从水相萃取到有机相。 间接溶剂萃取:无机离子通过与萃取剂形成疏水化合物后,再被有机相萃取。 协同萃取效应:混合萃取剂同时萃取某一物质时,其分配比显着大于相同浓度下各单一萃取剂分配比之和。 相对保留值:组分2与组分1调整保留值之比:r 21 = t′R2 / t′R1= V′R2 / V′R1 分配系数:在某温度T 时,组分在两相间达到分配平衡时的浓度之比。即s m c K c = 保留时间(t R ):组分从进样到柱后出现浓度极大值时所需的时间; 死时间(t M ):不与固定相作用的气体(如空气)的保留时间; 高效毛细管电泳色谱:是指离子或带电粒子以毛细管为分离室,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的液相分离分析技术。 复合膜:是以微孔膜或超滤膜作支称层,在其表面覆盖以厚度仅为0.1~0.25μm 的致密的均质膜作壁障层构成的分离膜。使得物质的透过量有很大的增加。 泡沫吸附分离:泡沫分离根据表面吸附的原理,利用通气鼓泡在液相中形成的气泡为载体 对液相中的溶质或颗粒进行分离,因此又称泡沫吸附分离。 超分子分离:超分子是两种以上的化学物种通过分子间的非共价键相互作用缔结而成的具有特定空间结构和功能的聚集体。利用超分子对不同分子的选择性不同进行的分离为超分子分离。 分子蒸馏:是基于不同物质分子运动的平均自由程的差异而进行的分离。 分子印迹:是合成对某种特定分子具有特异选择性结合的高分子聚合物的技术。 加速溶剂萃取:ASE 用溶剂从固体或半固体样品中快速提取目标物质;通过高温(50?200OC )和高压(10?20MPa )加快提取速度。 双水相萃取:将两种聚合物水溶液混合时,当聚合物浓度达到一定值,体系会自然分成互不相溶的两相,称为双水相,被萃取物在两个水相之间的分配就是双水相萃取。 超临界流体萃取:以超临界流体为流动相,直接从固体(粉末)或液体样品中萃取目标物质的分离方法。 调整保留值:调整保留时间为色谱保留时间与死时间之差,即 ,同理 峰底宽:即色谱峰宽,用来衡量色谱峰宽度的参数,Wb 分离度:两相邻组分色谱峰保留值之差与色谱峰平均底宽之比 二、问答题 罗氏极性参数:对于一种溶剂,可得到3种模型化合物在该溶剂中的相对溶解能He,Hd 和Hn 。它们的和即为此种溶剂的总极性p',即:p' = He + Hd + Hn 溶剂选择性三角形的作用:尽管溶剂种类很多,但可以归于有限的几个选择性组。在同一选择性组中的各种溶剂,都具有非常接近的3个选择性参数,因此在分离过程中都有类似的性能,若要通过选择溶剂改善分离,就要选择不同组的溶剂。 选择溶剂的一般步骤:1. 选择与溶质极性相等的溶剂:要使溶质在溶剂中溶解度达到最大,首先要使溶质和溶剂的极性相等。2. 调整溶剂的选择性:在维持极性相等的前提下,更换溶剂种类,使分离选择性达到最佳。 微滤、超滤、纳滤和反渗透膜分离技术的异同:相同点:推动力都是压力差。不同点:微孔膜是均匀的多孔薄膜,膜孔径在0.02~10μm 之间,可以截留悬浮粒子,操作压强在0.01~0.2MPa ;超滤膜为不对称膜,其膜孔径在1-20nm 之间,操

分离富集思考题

第10章分析化学中常用的分离和富集方法 【思考题解答】 1. 在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。 在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。2.常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a. 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b. 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c. 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+, Fe3+,Ti(IV)等的分离。 d. ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3. 某矿样溶液含有等离子,加入NH4Cl和氨水后,哪些离子以什么形式存在于沉淀中?哪些离子以什么形式存在于溶液中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+, Mg2+,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 4.如将上述矿样用Na2O2熔融,以水取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-

常用的分离和富集方法

第十章常用的分离和富集方法 1.试说明定量分离在定量分析中的重要作用。 答:在实际的分析工作中,遇到的样品往往含有各种组分,当进行测定时常常彼此发生干扰。不仅影响分析结果的准确度,甚至无法进行测定,为了消除干扰,较简单的方法是控制分析条件或采用适当的掩蔽剂,但在有些情况下,这些方法并不能消除干扰,因此必须把被测元素与干扰组分分离以后才能进行测定。所以,定量分离是分析化学的主要内容之一。 2.何谓回收率?在回收工作中对回收率要求如何? 答:回收率是用来表示分离效果的物理量,回收率越大,分离效果越好,一般要求R A>90~95%即可。 3.何谓分离率?在分析工作中对分离率的要求如何? 答:分离率表示干扰组分B与待测组分A的分离程度,用表示S B/A,S B/A越小,则R B越小,则A与B之间的分离就越完全,干扰就消除的越彻底。通常,对常量待测组分和常量干扰组分,分离率应在0.1%以下;但对微量待测组分和常量干扰组分,则要求分离率小于10-4%。 4.有机沉淀剂和有机共沉淀剂有什么优点。 答:优点:具有较高的选择性,沉淀的溶解度小,沉淀作用比较完全,而且得到的沉淀较纯净。沉淀通过灼烧即可除去沉淀剂而留下待测定的元素。 5.何谓分配系数、分配比?二者在什么情况下相等? 答:分配系数:是表示在萃取过程中,物质进入有机溶剂的相对大小。 分配比:是该物质在有机溶剂中存在的各种形式的浓度之和与在水中各存在形式的浓度之和的比值,表示该物质在两相中的分配情况。 当溶质在两相中仅存在一种形态时,二者相等。 6.为什么在进行螯合物萃取时控制溶液的酸度十分重要? 答:在萃取过程中,溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取,但酸度过低则可能引起金属离子的水解,或其他干扰反应发生,应根据不同的金属离子控制适宜的酸度。 7.解释下列各概念:交联度,交换容量,比移值。 答:交联度:在合成离子交换树脂的过程中,将链状聚合物分子相互连接而形成网状结构的过程中,将链状聚合物分子连接而成网状结构的过程称为交联。 交换容量:表示每克干树脂所能交换的相当于一价离子的物质的量。是表征树脂交换能力大小的特征参数,通常为3~6 mmol/g。 比较值R f:表示某组分再滤纸上的迁移情况。 8.在离子交换分离法中,影响离子交换亲和力的主要因素有那些? 答:离子亲和力的大小与离子所带电荷数及它的半径有关,在交换过程中,价态愈高,亲和力越大,对于同价离子其水化半径越大,(阳离子原子序数越大)亲和力越小。 9.柱色谱、纸色谱、薄层色谱和离子交换色谱这几种色谱分离法的固定相和流动相各是什么?试比较它们分离机理的异同。

分离富集技术在岩矿分析中的应用

分离富集技术在岩矿分析中的应用 在岩矿分析过程中,现代仪器分析技术发挥着非常重要的作用,可以说是推动岩矿分析快速发展的主要动力源泉,然而,在岩矿分析过程中,依然有很多问题存在。如岩矿分析中如何对测试样品进行分离富集,便是其中的重要工作内容。在分离富集技术下,能够大大改善样品的检出限,同时,对提高测定的精准度有着非常重要的作用。下文,笔者结合自己的工作实践,对岩矿分析过程中分离富集技术的应用展开详细分析。 标签:离子;分离;富集;岩矿分析;应用 1经典法的改进几新方法的开发应用 随着科学技术的不断发展,在岩矿分析过程中,分离富集技术也有了很大发展,如沉淀、萃取,电沉积以及挥发蒸馏和离子交换吸附等技术发展很快,并在逐步的进行提高,并基于此基础,有许多先进的分离富集技术被逐渐开发出来,同时,分离富集剂的使用也越来越广泛。 1.1沉淀、吸附 1.1.1经典沉淀、吸附的改进 目前为止,沉积分离基体元素(共沉淀富集痕量元素)应用还较为普遍,如样品熔块儿通过水浸,并利用碱熔进行分解的过程中,便可进行沉淀分离。倘若将三乙醇安加入到浸取液内,便可有效提升沉淀的选择性,因此被普遍应用于稀土元素痕量测定过程之中。随着分离富集技术的不断发展,沉淀,吸附技术也有了很大的发展。 1.1.2负载沉淀、吸附 在硅胶,碳粉以及吸附树脂、泡沫塑料、纤维素上进行有机、无机沉淀吸附剂的负载,在吸附某些离子上,发挥着重要的作用。这些负载的沉淀吸附剂,将其本身所具有的作用充分的体现出来,不仅使试剂的剂量大幅减少,同时,其接触面积不断扩大,能够在单体吸附作用的前提下,使得分离富集效果大大增强,促进相关操作工作的开展,有的在色谱法以及柱滤法中有着广泛的应用。 1.1.3沉淀浮选 通过该技术,待测元素是通过胶状沉淀进行吸附,或者将有机试剂和无机试剂在进行pH值调节之后加入其中,待测元素与之发生反应,并形成沉淀,接着将表面活性剂加入其中,将小气泡(惰性气体)加入其中,进而上浮沉淀,使之停留在表面。通过这种技术对样品进行分离富集,不仅应用的试剂非常少,而且效率非常高,对于大体积的试液有着良好的应用效果。

分离与富集

人胎盘组织造血干/祖细胞的分离富集 【摘要】为了探索从胎盘组织中分离富集造血干/祖细胞(HSPC)的标化流程,采用机械法加胶原酶消化法制备人胎盘组织单个细胞悬液,用羟乙基淀粉(6% HES)法从中分离出单个核细胞(MNC),再经免疫磁珠分选法分选出CD34-、CD34+CD38-、CD34+CD38+ 3个细胞亚群,用流式细胞术对各阶段分选细胞进行表型分析并计算分选细胞的富集度和回收率。结果表明:机械法加胶原酶消化法制备的人胎盘组织单个细胞悬液中单个核细胞(MNC)数达(12.30±3.51)×108,与脐血初始样品所含的MNC数(8.86±5.38)×108 比较差异无统计学意义,而其CD34+细胞所占百分率[(3.93±2.31)%]则明显高于脐血[(0.44±0.29)%]。胎盘组织单个细胞悬液经6% HES分离后MNC和CD34+细胞的回收率分别为(45.3±11.7)%和(51.1±9.8)%;MNC经免疫磁珠分选后,其CD34+细胞的纯度和回收率分别为(73.4±14.1)%和(52.7±11.7)%。结论:本实验所建立的"机械法加胶原酶消化法-HES分离MNC-MACS分选目标细胞"的分离纯化方法可从胎盘组织获得高丰度、高富集度、高活性的HSPC,为进一步研究胎盘HSPC提供了比较经济、效果较好的分离富集方案。【关键词】

CD34抗原;造血干细胞;胎盘;免疫磁珠细胞分选;脐血【材料和方法】 造血干/祖细胞(hematopoietic stem/ progenitor cells,HSPC)存在于人骨髓、动员的外周血和脐血等组织中。新近,有学者提出人胎盘组织中含有比脐血更为丰富的造血干细胞;人胎盘组织中CD34+ HSPC的百分率是脐血的8.8倍,并且人胎盘组织中免疫细胞成分较少,极有希望成为今后HSPC 的新来源。从人胎盘组织分离出高活性、高丰度的HSPC是对其进行相关生物学特性等研究的前提,目前尚无有关人胎盘组织HSPC分离的优化方案可循。本研究旨在建立从胎盘组织中分离、 纯化HSPC的标化流程,为今后人胎盘组织HSPC的深入研究打下良好的基础。 主要试剂 胶原酶(collagenase Ⅳ)、羟乙基淀粉(hydroxyethyl starch,HES)为Sigma公司产品。RPMI 1640、新生牛血清(FCS)购自于Gibco公司。荧光标记单克隆抗体 CD38-FITC、CD34-PE及CD34绝对计数试剂盒为Becton Dickinson公司产品。免疫磁珠细胞分选试剂盒购自Miltenyi Biotec公司。

常用的分离和富集方法

第十一章 常用的分离和富集方法 【教学目标】 1.学习各种常用分离和富集方法的原理、特点及应用 2.掌握复杂体系的分离与分析 3.了解分离法的选择、无机和有机成分的分离与分析 【重点难点】 掌握各种常用分离和富集方法的原理、特点及应用 【课时安排】计划4课时 【教学内容】共五节 第一节 概述 一、回收率 100 分离后测得的量回收率=%原始含量 对回收率的要求(随组分含量的不同而不同): 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物

现代分离技术

看看现代分离技术整理 1.传质分离过程分为哪两个分离过程? 平衡分离过程和速率分离过程 2.从不同的角度对分离效率有不同的评价指标 ①分离方法和角度②产品纯度 分离速率,分辨率,浓缩比,纯化程度,回收率。 3.写出5种使用能量媒介和5种使用物质媒介的分离操作。 能量媒介:精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏、结晶 物质媒介:萃取、浸提、吸收、吸附、液液萃取 4.萃取精馏的定义。 1)定义:加入的新组分不和原物系中的组分形成恒沸物,只改变组分间的相对挥发度,而其沸点比物系中其它组分的沸点高的分离过程。 2)萃取剂的作用:改变组分的相对挥发度。加入萃取剂与其中一个组分形成正偏差溶液(非理想溶液),与另外一个组分形成理想溶液(负偏差溶液),来改变相对挥发度。 3)萃取精馏塔中对萃取剂的要求: 不形成恒沸物 沸点要高 改变相对挥发度 不能分层 选择性强 溶解度大 沸点高,挥发度小 热稳定性和化学稳定性好 适宜的物性 使用安全无毒,对设备不腐蚀,污染小,环境友好,价格低廉,来源丰富 5)萃取精馏塔中回收段的作用: 使溶剂不在塔顶出现,达到回收效果。 如果不设回收段会使塔顶物料中含有高浓度的溶剂。 去除塔顶产品中可能夹带的溶剂,对于某些沸点很高的溶剂可不使用

6)萃取精馏塔塔顶产品不合格能否通过加大回流比的方法来使塔顶产品合格? 不能,因为加大回流比会使塔顶到塔底溶剂的浓度降低,液相流率增加, 将使液相中溶剂浓度xS 下降, 而使被分离组分间的相对挥发度 (a12)S 减小,分离效果变差。 7)精馏段萃取剂浓度的公式推导: 萃取剂的挥发度比所处理物料的挥发度低得多,用量较大,故在塔板上基本维持一固定的浓度值,“恒定浓度”即 假定:a 恒摩尔流;b 精馏段总物料衡算: 萃取剂物料衡算: (A ) 设萃取剂S 对被分离组分的相对挥发度为 (B) A=B (C ) 8) 提馏段萃取剂浓度的公式推导: 溶剂对被分离组分的相对挥发度一般很小,当β≈0 时,式(C)可简化为: 类似地,提馏段溶剂浓度: 1 ,,+=n s n s x x 0 =sD x D L S V +=+sD s s Dx Lx S Vy +=+S D L S Lx y S S -+-=β s s s s s s s s s y y y y x x x x x x y y y x x y y 21212121111++=++=--=βs s s s s x x x x x x x 2211211αα++=221121x x x x s s αα++=i is i x x α∑∑=1)1(,11+-=∴--=s s s s s s s x x y x x y y βββ 1)1(+-?=-+-s s s x x S D L S Lx ββRD S S L S L S x S +=≈-≈)1(β???? ??-'+-=S S x W L S x 1)1(ββ )1()1(S S x D L S x ---=ββ

分析化学中常用的分离富集方法

分析化学中常用的分离富集方法 思考题 11-1 在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何?答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 11-2 常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 11-3 某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 11-4 如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因此溶液有AlO22-,ZnO22-,MnO4-和CrO42-和少量Ca2+,在沉淀中有:Fe(OH)3,Mg(OH)2和Cu(OH)2和少量Ca(OH)2

现代分离方法与技术期末复习资料

一、名词解释: 分离:利用混合物中各组分在物理或化学性质上的差异,通过适当的装置或方法,使各组分分配至不同的空间区域或者在不同的时间依次分配至同一空间区域的过程。 富集:通过分离,使目标组分在某空间区域的浓度增大。 浓缩:将溶剂部分分离,使溶质浓度提高的过程。 纯化:通过分离使某种物质的纯度提高的过程 分离科学:研究从混合物中分离、纯化或富集某些组分以获得相对纯物质的过程的规律、仪器制造技术及其应用的一门学科。 回收率:0 100Q R Q ?实际回收量回收率=%欲回收总量 富集倍数:富集倍数=待分离组分的回收率/基体回收率 分离因子S :两种物质被分离的程度。回收率R 相差越大,分离效果越好。设A 为目标组分,B为共存组分,则A 对B的分离因子S A ,B为,0,0,//A A B A B B A B R Q Q S R Q Q == 氢键:氢原子在分子中与电负性较大的原子X 形成共价键时,还可以吸引另一个电负性较大、且含有孤对电子的原子Y,形成较弱化学结合。 分配平衡常数:在一定温度下,当某一溶质在互不相容的两种溶剂中达到分配平衡时,该溶质在两相中的浓度之比 分配比(D ):某种物质在两相之间各形态总浓度的比值[][]A i org org i A aq i aq i A C D C A ==∑∑ 相比:有机相和水相两相体积之比 直接溶剂萃取:可溶于水的有机分子(如羧酸、醇类、糖)因具有明显疏水性,可以直接从水相萃取到有机相。 间接溶剂萃取:无机离子通过与萃取剂形成疏水化合物后,再被有机相萃取。 协同萃取效应:混合萃取剂同时萃取某一物质时,其分配比显著大于相同浓度下各单一萃取剂分配比之和。 相对保留值:组分2与组分1调整保留值之比:r21 = t′R 2 / t′R1= V′R2 / V′R1 分配系数:在某温度T 时,组分在两相间达到分配平衡时的浓度之比。即s m c K c = 保留时间(t R ):组分从进样到柱后出现浓度极大值时所需的时间; 死时间(tM ):不与固定相作用的气体(如空气)的保留时间; 高效毛细管电泳色谱:是指离子或带电粒子以毛细管为分离室,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的液相分离分析技术。 复合膜:是以微孔膜或超滤膜作支称层,在其表面覆盖以厚度仅为0.1~0.25μm 的致密的均质膜作壁障层构成的分离膜。使得物质的透过量有很大的增加。 泡沫吸附分离:泡沫分离根据表面吸附的原理,利用通气鼓泡在液相中形成的气泡为载体 对液相中的溶质或颗粒进行分离,因此又称泡沫吸附分离。 超分子分离:超分子是两种以上的化学物种通过分子间的非共价键相互作用缔结而成的具有特定空间结构和功能的聚集体。利用超分子对不同分子的选择性不同进行的分离为超分子分离。 分子蒸馏:是基于不同物质分子运动的平均自由程的差异而进行的分离。 分子印迹:是合成对某种特定分子具有特异选择性结合的高分子聚合物的技术。 加速溶剂萃取:ASE 用溶剂从固体或半固体样品中快速提取目标物质;通过高温(50~200OC )和高压(10~20MPa)加快提取速度。 双水相萃取:将两种聚合物水溶液混合时,当聚合物浓度达到一定值,体系会自然分成互不相溶的两相,称为双水相,被萃取物在两个水相之间的分配就是双水相萃取。 超临界流体萃取:以超临界流体为流动相,直接从固体(粉末)或液体样品中萃取目标物质的分离方法。 调整保留值:调整保留时间为色谱保留时间与死时间之差,即 ,同理 峰底宽:即色谱峰宽,用来衡量色谱峰宽度的参数,Wb 分离度:两相邻组分色谱峰保留值之差与色谱峰平均底宽之比 二、问答题 罗氏极性参数:对于一种溶剂,可得到3种模型化合物在该溶剂中的相对溶解能He ,H d和Hn 。它们的和即为此种溶剂的总极性p',即:p' = H e + Hd + Hn 溶剂选择性三角形的作用:尽管溶剂种类很多,但可以归于有限的几个选择性组。在同一选择性组中的各种溶剂,都具有非常接近的3个选择性参数,因此在分离过程中都有类似的性能,若要通过选择溶剂改善分离,就要选择不同组的溶剂。 选择溶剂的一般步骤:1. 选择与溶质极性相等的溶剂:要使溶质在溶剂中溶解度达到最大,首先要使溶质和溶剂的极性相等。2. 调整溶剂的选择性:在维持极性相等的前提下,更换溶剂种类,使分离选择性达到最佳。 微滤、超滤、纳滤和反渗透膜分离技术的异同:相同点:推动力都是压力差。不同点:微孔膜是均匀的多孔薄膜,膜孔径在0.02~10μm之间,可以截留悬浮粒子,操作压强在0.01~0.2MPa;超滤膜为不对称膜,其

现代分离技术试题

填空部分: 1、我们测定气相色谱仪灵敏度时,如果用102-白色担体,邻苯二甲酸二壬酯固定液, 此时按两相所处的状态属于(气—液) 色谱;按固定相性质属于(填充柱) 色谱; 按展示方式属于(冲洗) 色谱;按分离过程所依据的物理化学原理属于(分配)色谱。2、液相色谱分析中常用以低压汞灯为光源,波长固定式的紫外(UV)检测器,它是以 低压汞灯的最强发射线(253.8)nm做为测定波长。 3、根据分离原理的不同,液相色谱可分为(液—液);(液—固);(离子交换);(凝胶)色谱法。 4、固定相分为(液体)和(固体)固定相两大类。固体固定相可分为(吸附剂), (高分子多孔小球),(化学键合)固定相三类。 5、保留值大小反映了(组分)与(固定相)之间作用力的大小,这些作用力包括 (定向力),(诱导力),(色散力),(氢键作用力)等。 6、柱温选择主要取决于样品性质。分析永久性气体,柱温一般控制在(50℃以上); 沸点在300℃以下的物质,柱温往往控制在(150℃以下);沸点300℃以上的物质, 柱温最好能控制在(200℃以下);高分子物质大多分析其裂解产物。若分析多组分 宽沸程样品,则可采用(程序升温);检测器可采用(FID)。

7、在气相色谱分析中,载气钢瓶内贮存气体都有明显的标记,如氮气,瓶外漆(黑色),用黄色标写“氮”;氢气漆(深绿色),红色标写“氢”。 8、固定液按相对极性可粗分为(五)类,异三十烷是(非极性)固定液,属(0)级;β,β,—氧二丙腈是(强极性)固定液,属(5)级。 9、采用TCD检测器时,要注意先(通载气)后(加桥电流)并且(桥电流)不可过大,否则易烧损铼钨丝。 10、色谱基本参数测量与计算的关键是(控制色谱操作条件的稳定)。 11、气相色谱中,对硫、磷化合物有高选择性和高灵敏度的检测器是火焰光度检测器(FPD)和硫磷检测器(SPD); 对大多数有机化合物有很高灵敏度的是氢火焰离子化检测器(FID)。 12、某色谱峰峰底宽为50秒,它的保留时间为50分,在此情况下,该柱子理论板数有(57600)块。 13、液相色谱中较常用的检测器有(紫外UV),(示差折光),(荧光)三种;而我校GC—16A气相色谱仪带有(热导检测器TCD),(氢火焰离子化检测器FID),(火焰光度检测器FPD),(电子捕获检测器ECD)四种检测器。 15、高效液相色谱根据样品与固定相,流动相的相互作用大致可分为(吸附色谱),(分配色谱),(离子交换色谱),(凝胶色谱)四种分离方式。

分离与富集

分离与富集 读书报告 题名:共沉淀分离富集法的应用与新进展姓名:樊红霞 指导老师:陈建荣 学院:化学与生命科学学院 专业:分析化学 班级:10级 学号:2010210638 成绩:

共沉淀分离富集法的应用与新进展 姓名:樊红霞学号:2010210638 专业:分析化学 摘要:对共沉淀分离富集法的应用与新进展进行了综述。近年来,由于其与固体进样分析仪器的结合而得到了迅速发展,从自然水样到高纯和其它特殊材料曲分析,从空属元素到非空属乃至有机物的测定,越来越多、越来越好的有机和无机的共沉淀体系正被研究和广泛应用。关键词:共沉淀;分离;富集;进展 引言 沉淀法是一种传统的分离富集方法,但共沉淀法能在60年代迅速发展得益于Luke C L 的技能:在溶液中加入沉淀剂和一点点金属(称为载体)离子共沉淀溶液中的痕量金属元素,另一方面得益于其与具有高选择性的固体进样仪器的结合,使富集倍数极大提高而被应用于超痕量分析,近年来又与流动注射分析结合克服了耗时多的缺点。科学技术的发展对共沉淀方法提出了更高要求,新型沉淀剂的研究,两种或数种沉淀剂的联合使用以及传统沉淀剂与其他分离富集技术的联用等方面的研究非常活跃。另外由于其操作相对简便,实验条件容易满足,经济可行,正在被广泛应用于材料物质的改性方面,利用共沉淀合成纳米材料已见报道。因此探索新型高选择性共沉淀剂和将理论与经验规律结合,寻找特定的沉淀剂和与之相配的载体离子以及寻求简单、快速的共沉淀技术是最新的发展动向。 1新共沉淀捕集剂的研究与应用[1] Luke C L等最初使用的沉淀剂主要是金属氢氧化物和二乙基硫代氨基甲酸盐,研究了它们共沉淀痕量金属离子的实验条件。而后30年间,大多数研究致力于开发新的共沉淀捕集剂,以适应各种式样中不同组分的分离富集并达到尽可能高的回收率。 1.1新的金属氢氧化物和其它无机共沉淀捕集剂 金属氢氧化物作为共沉淀剂捕集剂以其不需要有机试剂、易于离心分离以及回收率高等优点而得到广泛应用,最早使用和用的最多的是Fe(OH)3、Al(OH)3、Mg(OH)2,进入80年代以后,新的无机共沉淀捕集剂不断涌现,日本学者在这方面处于领先地位,Yoshimura W等对Zr(OH)4、Harada Y等对La(OH)3、Ueda J等对Hf(OH)4做了较多研究。日本学者还对Be(OH)2、Ga(OH)3、Y(OH)3、Sn(OH)4作为共沉淀捕集剂进行了应用研究。其它的无机共沉淀捕集剂还有GaPO4、碱式碳酸锌、BaSO4、AlPO4等。以上这些新的无机氢氧化物共沉淀捕集剂大多以稀有元素作为载体离子,比起以前的无机捕集剂具有以下优点:

第十一章 常用分离富集方法

第八章 分析化学中常用的分离和富集方法 1. 0.020 mol/L Fe 2+溶液,加NaOH 进行沉淀时,要使其沉淀达99.99%以上。试问溶液中的pH 至少应为多少?若考虑溶液中除剩余Fe 2+外,尚有少量FeOH + (β=1×104),溶液的pH 又至少应为多少?已知16sp 108-?=K 。 解: 30.9H mol/L 100.2% 01.0020.0108][OH ]][OH [Fe 1) (516sp 22=??=??=?=--- -+p K () 34 .9H mol/L 1021.22 1044104104][OH 0104-][OH 104][OH 10 8][OH ] [OH 10110.01%0.020]][OH [Fe 2)(510 2 6610-6216 2-4sp 22=??=??+?+ ?= ?=??-??=???+?? =----- ------+p K 2. 若以分子状态存在99%以上时可通过蒸馏分离完全,而允许误差以分子状态存在1%以下,试通过计算说明在什么酸度下可挥发分离甲酸和苯酚? 解: 74 .5H mol/L 1084.1]H [%110 ]H [] H []H []H [%195.7H mol/L 1011.1]H [% 9910]H [] H []H []H [%9995 .974.3674 .3HCOOH a,89.95 OH H C a,OH H C a,HCOOH a,5656=??=?=+=+=??=?=+=+==-+-++++-+-++++p K p K pK pK 以分子状态存在,则甲酸以分子状态存在,则苯酚 因此可挥发分离甲酸和苯酚的酸度为5.74-7.95 3. 某纯的二元有机酸H 2A ,制备为纯的钡盐,称取0.3460 g 盐样,溶于100.0 mL 水中,将溶液通过强酸性阳离子交换树脂,并水洗,流出液以0.09960 mol/L NaOH 溶液20.20 mL 滴至终点,求有机酸的摩尔质量。 解:

化学中常用的分离和富集方法

分析化学中常用的分离和富集方法 1.在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 2.常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 4.如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因

现代分离技术

现代分离技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

看看现代分离技术整理 1.传质分离过程分为哪两个分离过程? 平衡分离过程和速率分离过程 2. 从不同的角度对分离效率有不同的评价指标 ①分离方法和角度②产品纯度 分离速率,分辨率,浓缩比,纯化程度,回收率。 3.写出5种使用能量媒介和5种使用物质媒介的分离操作。 能量媒介:精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏、结晶 物质媒介:萃取、浸提、吸收、吸附、液液萃取 4.萃取精馏的定义。 1)定义:加入的新组分不和原物系中的组分形成恒沸物,只改变组分间的相对挥发度,而其沸点比物系中其它组分的沸点高的分离过程。 2)萃取剂的作用:改变组分的相对挥发度。加入萃取剂与其中一个组分形成正偏差溶液(非理想溶液),与另外一个组分形成理想溶液(负偏差溶液),来改变相对挥发度。 3)萃取精馏塔中对萃取剂的要求: ?不形成恒沸物 ?沸点要高 ?改变相对挥发度 ?不能分层 选择性强 溶解度大 沸点高,挥发度小 热稳定性和化学稳定性好 适宜的物性

使用安全无毒,对设备不腐蚀,污染小,环境友好,价格低廉,来源丰富 5)萃取精馏塔中回收段的作用: 使溶剂不在塔顶出现,达到回收效果。 如果不设回收段会使塔顶物料中含有高浓度的溶剂。 去除塔顶产品中可能夹带的溶剂,对于某些沸点很高的溶剂可不使用 6)萃取精馏塔塔顶产品不合格能否通过加大回流比的方法来使塔顶产品合格? 不能,因为加大回流比会使塔顶到塔底溶剂的浓度降低,液相流率增加, 将使液相中溶剂浓度xS 下降, 而使被分离组分间的相对挥发度 (a12)S 减小,分离效果变差。 7)精馏段萃取剂浓度的公式推导: 萃取剂的挥发度比所处理物料的挥发度低得多,用量较大,故在塔板上基本维持一固定的浓度值,“恒定浓度”即 假定:a 恒摩尔流;b 精馏段总物料衡算: 萃取剂物料衡算: (A ) 设萃取剂S 对被分离组分的相对挥发度为 1 ,,+=n s n s x x 0 =sD x D L S V +=+sD s s Dx Lx S Vy +=+S D L S Lx y S S -+-= β s s s s s s s s s y y y y x x x x x x y y y x x y y 2 121212 1111++=++=--=βs s s s s x x x x x x x 2211211αα++=221121x x x x s s αα++=i is i x x α∑∑=1-s s s x y y β

现代分离富集技术的发展

现代分离富集技术的发展 目录 (1) 前言 (2) 第一章气相色谱法(GC) (3) 1.1 气-固吸附色谱柱 (3) 1.2 气-液分配色谱柱 (3) 第二章高效液相色谱法(HPLC) (4) 2.1液固吸附色谱法(LSC) (4) 2.2液液分配色谱法(LLC) (4) 2.3化学键合相色谱法(BPC) (5) 2.4离子交换色谱法(IEC) (6) 2.5空间排阻色谱法(SEC) (6) 2.6手性色谱法 (7) 第三章薄层色谱法(TLC) (10) 结论 (12) 参考文献 (13)

前言 当前,虽然高分辨和可自动的分析测试仪器不断的发展和完善,对各类样品中多元素的快速定量测定起到了巨大的作用。但在实际工作中,由于很多样品组成复杂,待测元素含量低,就不能得到高质量的结果,甚至无法进行测量[1-3]。 多年来,对分离富集技术已进行了大量的研究,开发和应用。目前进展的特点可归纳为: 1.经典的分离富集集数的改进提高,新的分离富集技术的开发应用; 2.新的分析试剂研制和应用,旧的分析试剂开发新的用途; 3.分离富集集数与测量方法相结合形成连用方法; 4.由进样器,分离富集器,检测器和计算机等零部件组成性能良好的,多用途的,自动的心的分析仪器。

第一章气相色谱法(GC) 气相色谱法是进入50年代以后, 在柱层析的基础上发展起来的一种新型的仪器分析方法[4]。气相色谱法是以气体为流动相的柱色谱分离技术。按固定相分为气-固色谱和气-液色谱;按分离原理分为吸附色谱和分配色谱;按柱子粗细分为填充柱色谱和毛细管柱色谱。 气相色谱法的特点有以下四点: 1.高效能:一般填充柱的理论塔板数可达数千,毛细管柱可达一百多万。 2.高选择性:可以使一些分配系数很接近的以及极为复杂、难以分离的物质,获得满意的分离。 3.高灵敏度:可以检测10-11~10-13 g物质,适合于痕量分析。 4.分析速度快:通常一个试样的分析可在几分钟到几十分钟内完成[5]。 气相色谱柱是由柱管和填充剂组成,柱管又分为填充柱和毛细管柱。填充柱多为2-4米柱长,2-6毫米内径;毛细管柱多为几十米到几百米柱长,0.1-0.5毫米内径。填充剂分为两种,气-固吸附色谱柱中使用的固体吸附剂和气-液分配色谱柱中的载体和固定液。 1.1 气-固吸附色谱柱 在气-固吸附色谱柱中固定相分为三种:吸附剂、分子筛和高分子多孔微球。吸附剂如硅胶、碱性Al2O3和活性炭等[6]。 1.2 气-液分配色谱柱[7] 在气-液分配色谱柱中载体的作用是承载固定液,要求其具有比表面积大、无吸附性、化学惰性、热稳定性好且具有一定的机械强度等性质。常见的载体分为硅藻土类和非硅藻土类,硅藻土类是具有一定粒度的多孔性固体微粒,非硅藻土类包括玻璃微球,石英微球,氟塑载体,含氟化合物。对于载体的处理方法主要是钝化以减弱其吸附性,分为酸洗、碱洗和硅烷化。对于固定液有四点要求:(1)操作柱温下固定液呈液态(易于形成均匀液膜)。(2)操作条件下固定液热稳定性和化学稳定性好。(3)固定液的蒸气压要低(柱寿命长,检测本底低)。(4)固定液对样品应有较好的溶解度及选择性。

相关主题
文本预览
相关文档 最新文档