当前位置:文档之家› 数学分析之函数列与函数项级数

数学分析之函数列与函数项级数

数学分析之函数列与函数项级数
数学分析之函数列与函数项级数

第十三章函数列与函数项级数

教学目的:1.使学生理解怎样用函数列(或函数项级数)来定义一个函数;2.掌握如何利用函数列(或函数项级数)来研究被它表示的函数的性质。

教学重点难点:本章的重点是函数列一致收敛的概念、性质;难点是一致收敛的概念、判别及应用。

教学时数:20学时

§1 一致收敛性

函数列及极限函数:对定义在区间I上的函数列,介绍概念:

一.

收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念.

”定义.

逐点收敛( 或称为“点态收敛”)的“

例1 对定义在

义验证其收敛域为

例2 .用“”定义验证在内.

例3 考查以下函数列的收敛域与极限函数: .

⑴.

.

⑵.

.

⑶设

为区间上的全体有理数所成数列. 令

, .

⑷. , .

, , . (注意.)

二. 函数列的一致收敛性:

问题: 若在数集D上, . 试问: 通项

的解析性质是否必遗传给极限函数

? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但

.

用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解析性

质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果.

定义( 一致收敛)

一致收敛的几何意义.

在数集D上一致收敛,

Th1 (一致收敛的Cauchy准则) 函数列

.

,

( 介绍另一种形式.)

证( 利用式)

,……,有

易见逐点收敛. 设

, 对D成立,

. 令

, ,D.

, ,.

推论1 在D上

D ,

推论2 设在数集D上, . 若存在数列

使, 则函数列

应用系2 判断函数列

―在数集D上的最值点.

. 证明函数列在R内一致收敛.

例4

. 证明在R内, 但不一致收敛.

例5

,在点处取得极

证显然有

. 由系2 , 不一致收敛.

大值,

内, .

例6. 证明在

内成立.

由系1 , ……

上的函数列

例7 对定义在区间

上不一致收敛. P38—39 例3, 参图13-4.

证明: , 但在

, 就有. 因此, 在上有

证时, 只要

. ,

, ,

. 但由于

因此, 该函数列在

. 考查函数列在下列区间上的一致收

例8

敛性:

⑴; ⑵.

三. 函数项级数及其一致收敛性:

, 前项部分和函数列,

1.函数项级数及其和函数:,

内的函数项级数( 称为几何级数)

例9 定义在

.

的部分和函数列为, 收敛域为

2.一致收敛性: 定义一致收敛性.

Th2 (Cauchy准则) 级数在区间D上一致收敛,

,

D成立.

在区间D上一致收敛, , .

推论级数

Th3 级数在区间D上一致收敛,

.

例10 证明级数在R内一致收敛 .

证令

=, 则时

R成立. ……

在区间上一致收敛;但在

例11几何级数

上, 有

证在区间

, .

一致收敛;

内, 取, 有

而在区间

, .

非一致收敛.

在区间内非一致收敛于零,非一致

( 亦可由通项

收敛.)

虽然在区间内非一致收敛, 但在包含于内

几何级数

的任何闭区间上却一致收敛 . 我们称这种情况为“闭一致收敛”. 因此, 我们说

在区间内闭一致收敛 .

几何级数

四.函数项级数一致收敛判别法:

1.M - 判别法:

Th 4 ( Weierstrass判别法) 设级数定义在区间D上, 是

充分大时, 对D有|, 则在D上

收敛的正项级数.若当

一致收敛 .

证然后用Cauchy准则.

亦称此判别法为优级数判别法. 称满足该定理条件的正项级数是级

数的一个优级数.于是Th 4 可以叙述为: 若级数在区间D上

存在优级数, 则级数在区间D上一致收敛 . 应用时, 常可试取

.但应注意, 级数

在区间D上不存在优级数, 级

数在区间D上非一致收敛.

注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在.

例12判断函数项级数和在R内的一致收敛性 .

是区间上的单调函数. 试证明:

例13 设

都绝对收敛, 则级数在区间上绝对

若级数与

并一致收敛 .

简证,留为作业. .……

2. Abel判别法:

在区间上收敛; ⅱ> 对每个, 数列

Th 5 设ⅰ> 级数

单调; ⅲ> 函数列

, 有. 则级数在区间上一致收

敛 . ( [1]P43 )

2.Dirichlet判别法:

的部分和函数列在区间上一致

Th 6 设ⅰ> 级数

有界;

, 数列单调; ⅲ> 在区间上函数列

ⅱ> 对于每一个

在区间上一致收敛 .

一致收敛于零. 则级数

在区间上的一致收敛性.

例14判断函数项级数

解记. 则有ⅰ> 级数收敛;

, ↗;ⅲ> 对

ⅱ> 对每个

成立. 由Abel判别法, 在区间上一致收敛.

单调收敛于零 . 试证明: 级数在

例15设数列

区间

上一致收敛.

证在

.

的部分和函数列在区间上一致有界 . 取

可见级数

的部分和函数列在区间

, . 就有级数

上一致有界, 而函数列

致收敛于零.由Dirichlet判别法,级数

在区间上一致收

敛.

单调收敛于零的条件下, 级数在不包含

其实, 在数列

习题课

设,, . 且,

例1

―|对成立, 则函数列

若对每个自然数有|

{

}在上一致收敛于函数.

例2

证明函数列在区间上非一致收敛.

例3

, . 讨论函数列{}的一致收敛性.

―0|. 可求得

.

函数列{

例4

设函数在区间上连续 . 定义. 试

证明函数列{

有界 . 设在区间上||

证法一由

|;

|

|

|;

|.

|

, .

注意到对

证法二

.

有界. 设在区间上||. 把函数

在点展开成具Lagrange型余项的

,

,

就有

, , .

所以, 0, , .

设. 且, . 令

例5

, ,

. …….

试证明: 若对

和, 有, 则函数列

{

证对

取, 使时, 有. 于是对任何自然

和, 有

.

由Cauchy收敛准则, 函数列{

}在区间上一致收敛 .

上函数列{}一致收敛于函数. 若每个

在数集

证( 先证函数

||,

|

|<

. 即函数

在数集

上有

界.

( 次证函数列{

}在数集

上一致有界 )

时, 对 ,有

|

|―|

|

| ―

|< , | |

.

取 易见对

有|

|

.

即函数列{

}在数集

上一致有界 .

例7 设{

}为定义在区间

上的函数列, 且对每个

, 函数

在点

右连续 , 但数列{ } 发散. 试证明: 对 ),

函数列{

}在区间

内都不一致收敛.

证 反设

, 使{

}在区间 内一致收敛. 则对

, 有

成立.

.

{

}为Cauchy

列,即{

}收敛. 与已知条件矛盾.

§ 2 一致收敛函数列和函数项级数的性质

一. 一致收敛函数列极限函数的解析性质:

1. 连续性:

上,且对,函数在上连续,

Th 1 设在

证( 要证: 对

, 当|

估计上式右端三项. 由一致收敛, 第一、三两项可以任意小; 而由函数

推论设在

上一致收敛和所有

註Th1表明: 对于各项都连续且一致收敛的函数列{

即极限次序可换 .

2. 可积性:

上函数列{}一致收敛, 且每个在

Th 2若在区间

上连续. 则有.

上, 由Th1, 函数在区间上连

证设在

续,因此可积. 我们要证. 注意到

在上成

, 可见只要

立.

Th2的条件可减弱为: 用条件“

在上( R )可积”代替条件“

关于函数列逐项积分条件的减弱有一系列的工作. 其中之一是:

}是定义在区间上的函数列. 若{}在上

Th 设{

收敛且一致可积, 则其极限函数

.

3. 可微性:

}定义在区间上, 在某个点收敛.

Th 3 设函数列{

上一致收敛, 则函数列{

.

,. , .

证设

, 注意到函数连续和+, 就有

+ (对第二项交换极限与积分次

序)

+ +.

估计|

+――

―| + |,可证得.

|

.

即. 亦即求导运算与极限运算次序可换.

例1 P38 例1 ( 说明定理的条件是充分的, 但不必要. )

例2 P39例2( 说明定理的条件是充分的, 但不必要. )

Ex P42 9,11 P43 4 .

二. 一致收敛函数项级数和函数的解析性质:

把上述Th1—3表为函数项级数的语言,即得关于和函数解析性质的相应结果.

例3P40例3

证明函数在区间内连续.

例4

在区间内闭一致收敛.)对,

证( 先证

有,

;又,在一致

收敛.

, 在点连续) 对, 由上

( 次证对

上一致收敛; 又函数连续,

段讨论, 在区间

在区间

在区间内连续.

, . 计算积分.

例5

教学目的:1.理解幂级数的有关概念,掌握其收敛性的有关问题;2.理解幂级数的运算,掌握函数的幂级数展开式并认识余项在确定函数能否展为幂级数时的重要性。

教学重点难点:本章的重点是幂级数的收敛区间、收敛半径、展开式;难点是收敛区间端点处敛散性的判别。

教学时数:12学时

§1 幂级数(4 时)

幂级数的一般概念. 型如和的幂级数 . 幂级数由系数数列

唯一确定. 幂级数至少有一个收敛点. 以下只讨论型如

的幂级数.幂级数是最简单的函数项级数之一.

一. 幂级数的收敛域:

1. 收敛半径 、收敛区间和收敛域:

Th 1 ( Abel ) 若幂级数

在点

收敛 , 则对满足不等

的任何

,幂级数

收敛而且绝对收敛 ;若在点 发散 ,

则对满足不等式

的任何

,幂级数

发散.

收敛, {

}有界. 设|

|

, 有

|

, 其中 .

.

定理的第二部分系第一部分的逆否命题.

幂级数

的收敛域的结构.

定义幂级数的收敛半径 R.

收敛半径 R 的求法.

Th 2 对于幂级数

, 若

, 则

ⅰ> 时,

;ⅱ>

; ⅲ>

.

的次数是一

证, ( 强调开方次数与

致的).……

, 因此亦可用比值法求收敛半径.

由于

的收敛区间: .

幂级数

幂级数的收敛域: 一般来说, 收敛区间收敛域. 幂级数

的收敛域是区间

、、或之一.

的收敛域 .

例1求幂级数

的收敛域 .

例2求幂级数

⑴; ⑵.

: 令, 则化为幂级数.设该

2. 复合幂级数

幂级数的收敛区间为

,则级数的收敛区间由不等式

特称幂级数为正整数)为缺项幂级数 .其中. 应注意

为第项的系数 . 并应注意缺项幂级数并不是复合幂级数, 该级

数中,为第项的系数 .

例4求幂级数的收敛域 .

解是缺项幂级数 .

. 收敛区间为

. 时,

. 因此, 该幂级数的收敛域为.

通项

例5 求级数的收敛域 .

解令, 所论级数成为幂级数.由几何级数的敛

散性结果, 当且仅当

时级数收敛. 因此当且仅当

, 即时级数收敛. 所以所论级数的收敛域

为.

例6 求幂级数的收敛半径 .

解.

二.幂级数的一致收敛性:

的收敛半径为,则该幂级数在区间

Th 3 若幂级数

, 则对, 有

证, 设

数学分析教案(华东师大版)第十三章函数列与函数项级数

第十三章函数列与函数项级数 教学目的:1.使学生理解怎样用函数列(或函数项级数)来定义一个函数;2.掌握如何利用函数列(或函数项级数)来研究被它表示的函数的性质。 教学重点难点:本章的重点是函数列一致收敛的概念、性质;难点是一致收敛的概念、判别及应用。 教学时数:20学时 §1 一致收敛性 函数列及极限函数:对定义在区间I上的函数列,介绍概念: 一. 收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. ”定义. 逐点收敛( 或称为“点态收敛”)的“ 例1 对定义在 义验证其收敛域为 例2 .用“”定义验证在内. 例3 考查以下函数列的收敛域与极限函数: .

⑴. . ⑵. . ⑶设 为区间上的全体有理数所成数列. 令 , . ⑷. , . ⑸ 有 , , . (注意.) 二. 函数列的一致收敛性: 问题: 若在数集D上, . 试问: 通项 的解析性质是否必遗传给极限函数 ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 .

用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解析性 质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果. 定义( 一致收敛) 一致收敛的几何意义. 在数集D上一致收敛, Th1 (一致收敛的Cauchy准则) 函数列 . , ( 介绍另一种形式.) 证( 利用式) ,……,有 易见逐点收敛. 设 , 对D成立, . 令 , ,D. 即 , ,. 推论1 在D上 D , 推论2 设在数集D上, . 若存在数列 使, 则函数列 应用系2 判断函数列

《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限

第三章 函数极限 引言 在《数学分析》中,所讨论的极限基本上分两 部分,第一部分是“数列的极限”,第二部分是“函数的极限”。二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。 通过数列极限的学习。应有一种基本的观念:“极 限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势。 我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即 :() n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =. 研究数列{}n a 的极限,即是研究当自变量n →+∞时, 函数()f n 变化趋势。 此处函数()f n 的自变量n 只能取正整数!因此自变 量的可能变化趋势只有一种,即n →+∞。但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢? 为此,考虑下列函数:

1,0;()0,0.x f x x ≠?=?=? 类似于数列,可考虑自变量x →+∞时,()f x 的变化趋 势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势, L 由此可见,函数的极限较之数列的极限要复杂得 多,其根源在于自变量性质的变化。但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。而在各类极限的性质、运算、证明方法上都类似于数列的极限。 下面,我们就依次讨论这些极限。 §1 函数极限的概念 一、x →+∞时函数的极限 1. 引言 设函数定义在[,)a +∞上,类似于数列情形,我们研 究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A。这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质。 例如 1(),f x x x =无限增大时,()f x 无限地接近于 0;(),g x arctgx x =无限增大时,()f x 无限地接近于2 π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近。正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势。

复变函数项级数

§4.2 复变函数项级数 教学目的:1.理解复变函数项级数收敛的概念,掌握其收敛的常用 判别法,以及收敛复函数项级数的和函数的基本性质. 2. 能正确灵活运用相关定理判断所给级数的敛散性. 3.掌握幂级数收敛半径的计算公式、幂级数的运算性质以及幂级数和函数的解析性,能灵活正确求出所给级 数的收敛半径;能用 1 (1)1n n z z z ∞ ==<-∑将简单函数表示为级数. 教学重点:掌握阿贝尔定理以及级数收敛半径的计算方法;能用间 接法和 01 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学难点:正确利用 1 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学方法:启发式讲授与指导练习相结合 教学过程: §4.2.1 复变函数项级数 设{()n f z }是定义在平面点集E 上的一列复变函数,(书上为其中各项在区域D 内有定义,)则式子: 12()()()n f z f z f z ++++L L 称为E 上的复函数项级数,记为 1 ()n n f z ∞ =∑. 【定义】※设1 ()n n f z ∞ =∑是定义在E 上的复函数项级数, ()S z 是E

的一个复函数,如果对E 内的某一点0z ,极限 00lim ()() n n S z S z →∞ =存在,则称复变函数项级数在0z 收敛.若对E 上的每一点z E ∈,都有级数 1 ()n n f z ∞ =∑收敛, 则它的和一定是一个z 的函数()S z ,则称 1 ()n n f z ∞ =∑在E 上收敛于()S z ,此时()S z 也称为1 ()n n f z ∞ =∑在E 上的 和函数.记为1 ()()n n S z f z ∞ == ∑或者()lim ()n n S z S z →∞ =, {}()n S z 称为 1 ()n n f z ∞ =∑的部分和函数列. §4.2.2 幂级数 1.【幂级数的定义】通常把形如: 20 010200 () ()()n n n C z z C C z z C z z ∞ =-=+-+-∑ 0()n n C z z ++-+L L 的复函数项级数称为(一般)幂级数, 其中0C ,1C ,L n C ,L .和0z 都 是复常数, 分别称为幂级数 () n n n C z z ∞ =-∑的系数与中心点. 若00z =, 则幂级数0 () n n n C z z ∞ =-∑可简化为 n n n c z ∞ =∑(标准幂级

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

函数列与函数项级数

Ch 13 函数列与函数项级数 ( 1 2 时 ) § 1 一致收敛性( 6 时 ) 一. 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念: 收敛点,收敛域( 注意定义域与收敛域的区别 ),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x , 用“N -ε”定义 验证其收敛域为] 1 , 1 (-, 且 ∞→n lim )(x f n = ∞→n lim n x =? ??=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n =n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0. 例3 考查以下函数列的收敛域与极限函数: ) (∞→n . ⑴ )(x f n =x x x x n n n n --+-. )(x f n →,sgn x R ∈x . ⑵ )(x f n =1 21+n x . )(x f n →,sgn x R ∈x . ⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令 )(x f n =???≠∈=. ,,, ] 1 , 0 [ , 0, ,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [. ⑷ )(x f n =2 22 2x n xe n -. )(x f n →0, R ∈x .

156 ⑸ )(x f n =?? ? ? ? ? ???≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,41 11x x x x x n n n n n n n 有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意 ? ≡1 1)(dx x f n .) 二. 函数列的一致收敛性: 问题: 若在数集D 上 )(x f n →)(x f , ) (∞→n . 试问: 通项)(x f n 的解析性质是否必遗传给极限函数)(x f ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 ∞ →n lim () ? ?∞ →≠1 1 0)(lim )(dx x f dx x f n n n . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一 种手段. 对这种函数, ∞ →n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限 函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极 限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓 “整体收敛”的结果. 定义 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy 准则 ) 函数列}{n f 在数集D 上一致收敛,? N , 0?>?ε, , , N n m >?? ε<-n m f f . ( 介绍另一种形式ε<-+n p n f f .) 证 )? ( 利用式 .f f f f f f n m n m -+-≤-)

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

第十三章函数列和函数项级数

第十三章 函数列与函数项级数 目的与要求:1.掌握函数序列与函数项级数一致收敛性的定义,函数列与函数项级数一致收敛性判别的柯西收敛准则,函数项级数一致收敛性的判别法. 2. 掌握一致收敛函数序列与函数项级数的连续性、可积性、可微性的结论. 重点与难点:本章重点是函数序列与函数项级数一致收敛性的定义,判别法和性质;难点则是利克雷判别法和阿贝尔判别法. 第一节 一致收敛性 我们知道,可以用收敛数列(或级数)来表示或定义一个数,在此,将讨论如何用函数列(或函数项级数)来表示或定义一个函数. 一 函数列及其一致收敛性 设 ,,,,21n f f f (1) 是一列定义在同一数集E 上的函数,称为定义在E 上的函数列.也可简记为: }{n f 或 n f , ,2,1=n . 设E x ∈0,将0x 代入 ,,,,21n f f f 得到数列 ),(,),(),(00201x f x f x f n (2) 若数列(2)收敛,则称函数列(1)在点0x 收敛,0x 称为函数列(1)的收敛点. 若数列(2)发散,则称函数列(2)在点0x 发散. 若函数列}{n f 在数集E D ?上每一点都收敛,则称}{n f 在数集D 上收敛.

这时对于D x ∈?,都有数列)}({x f n 的一个极限值与之对应,由这个对应法则就确定了D 上的一个函数,称它为函数列}{n f 的极限函数.记作f .于是有 )()(lim x f x f n n =∞ →, D x ∈,或 )()(x f x f n →)(∞→n ,D x ∈. 函数列极限的N -ε定义是: 对每一个固定的D x ∈,对0>?ε,0>?N (注意:一般说来N 值的确定与ε和x 的值都有关),使得当N n >时,总有 ε<-)()(x f x f n . 使函数列}{n f 收敛的全体收敛点的集合,称为函数列}{n f 的收敛域. 例1 设n n x x f =)(, ,2,1=n 为定义在),(∞-∞上的函数列,证明它的收敛域是]1,1(-,且有极限函数 ? ??=<=1,11 ,0)(x x x f (3) 证明:因为定义域为),(∞-∞,所以根据数列收敛的定义可以将),(∞-∞分为四部分 (i) 10<ε(不妨设1<ε),当10<时,就有ε<-)()(x f x f n . (ii)0=x 和1=x 时,则对任何正整数n ,都有 ε<=-0)0()0(f f n ,ε<=-0)1()1(f f n . (iii) 当1>x 时,则有)(∞→+∞→n x n , (iv) 当1-=x 时,对应的数列为 ,1,1,1,1--,它显然是发散的. 这就证得{}n f 在]1,1(-上收敛,且有(3)式所表示的极限函数.所以函数列{}n x 在区

数学分析 数项级数

第十二章数项级数 教学目的:1.明确认识级数是研究函数的一个重要工具;2.明确认识无穷级数的收敛问题是如何化归为部分和数列收敛问题的;3.理解并掌握收敛的几种判别法,记住一些特殊而常用的级数收敛判别法及敛散性。 教学重点难点:本章的重点是级数敛散性的概念和正项级数敛散性的判别;难点是一般级数敛散性的判别法。 教学时数:18学时 § 1 级数的收敛性 一.概念: 1.级数:级数,无穷级数 ; 通项 ( 一般项 , 第项 ), 前项部分和等概念 ( 与中学的有关概念联系 ). 级数常简记为 . 2.级数的敛散性与和 : 介绍从有限和入手, 引出无限和的极限思 想 . 以在中学学过的无穷等比级数为蓝本 , 定义敛散性、级数的 和、余和以及求和等概念 . 例1讨论几何级数的敛散性.(这是一个重要例题!)解时, . 级数收敛 ; 时, 级数发散 ;

时, , , 级数发散 ; 时, , , 级数发散 . ( 注意从 综上, 几何级数当且仅当时收敛, 且和为 0开始 ). 例2讨论级数的敛散性. 解(利用拆项求和的方法) 例3讨论级数的敛散性. 解设, , = , . , . 例4 讨论级数的敛散性.

解, . 级数发散. 3.级数与数列的关系 : }, 收敛 {}收敛; 对应部分和数列{ }, 对应级数, 对该级数, 有=. 对每个数列{ }收敛级数收敛. 于是,数列{ 可见 , 级数与数列是同一问题的两种不同形式 . 4. 级数与无穷积分的关系 : , 其中. 无穷积分可化为级数 ; 对每个级数, 定义函数 , 易见有 =.即级数可化为无穷积分. 综上所述 , 级数和无穷积分可以互化 , 它们有平行的理论和结果 . 可以用其中的一个研究另一个 . 级数收敛的充要条件——Cauchy准则:把部分和数列{} 二. 收敛的Cauchy准则翻译成级数的语言,就得到级数收敛的Cauchy准则 . 和N, Th ( Cauchy准则 ) 收敛

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

第十二讲函数列与函数项级数

第十二讲函数列与函数项级数 12 . 1 函数列与函数项级数的收敛与一致收敛 一、函数列 (一)函数列的收敛与一致收敛 1 .逐点收敛 函数列(){}I x x f n ∈,,若对I x ∈?,数列(){}x f n 都收敛,则称函数列在区间 I 上逐点收敛,记 ()()I x x f x f n n ∈=∞ →,lim ,称()x f 为(){}x f n 的极限函数.简记为 ()()()I x n x f x f n ∈∞→→, 2 .逐点收敛的N -ε定义 对I x ∈? ,及 0>?ε,()0,>=?εx N N ,当N n > 时,恒有()()ε<-x f x f n 3 .一致收敛 若函数列(){}x f n 与函数()x f 都定义在区间 I 上,对 0,0>?>?N ε,当N n > 时,对一切I x ∈恒有()()ε<-x f x f n ,则称函数列(){}x f n 在区间 I 上一致收敛于()x f .记为()()()I x n x f x f n ∈∞→?, . 4 .非一致收敛 00>?ε,对N n N >?>?0,0,及I x ∈?0,使得 ()()0000ε≥-x f x f n 例 12 . 1 证明()n n x x f =在[]1,0逐点收敛,但不一致收敛. 证明:当[]1,0∈x 时,()0lim lim ==∞ →∞ →n x n n x x f ,当1=x 时,()11lim =∞ →n n f ,即极限函数 为()[)???=∈=1 ,11,0,0x x x f .但 ()x f n 非一致收敛,事实上,取031 0>=ε。对0>?N ,取 N N n >+=10,取()1,02101 0∈? ? ? ??=n x · 此时()()00002100ε>==-n x x f x f n , 即()()()[]1,0,∈∞→≠>x n x f x f n 5 .一致收敛的柯西准则 函数列(){}x f n 在 I 上一致收敛?对 0,0>?>?N ε,当 n , m > N 时,对一切I x ∈,

数学分析之函数极限

第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和 ,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:14学时 § 1 函数极限概念 (2学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的δε-定义的清晰概念。会应用函数极限的δε-定义证明函数的有关命题,并能运用δε-语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的δε-定义及其应用。 一、 复习:数列极限的概念、性质等 二、 讲授新课: (一) 时函数的极限:

以时和为例引入. 的直观意义. 介绍符号: 的意义, 定义 ( 和 . ) 几何意义介绍邻域 其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1 验证 例2 验证 例3 验证 证…… 时函数的极限: (二) 由考虑时的极限引入. 定义函数极限的“”定义. 几何意义. 用定义验证函数极限的基本思路.

例4 验证 例5验证 例6 验证 证由= 为使需有 为使需有 于是, 倘限制 , 就有 例7 验证 例8 验证 ( 类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

然后介绍等的几何意义. 例9 验证 证考虑使的 2.单侧极限与双侧极限的关系: Th 类似有: 例10 证明: 极限不存在. 例11 设函数 在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(2学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。 教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学:

函数列与函数项级数

第十三章 函数列与函数项级数 §1 一致收敛性 (一) 教学目的: 掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (二) 教学内容: 函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法. 基本要求: 1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致 收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. (三) 教学建议: (1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项 级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法. ———————————————————— 一 函数列及其一致收敛性 对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。 使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。 若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值

函数项级数一致收敛的判定开题报告

一、本课题研究现状及可行性分析 目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M 判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。 函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()n u x 一致收敛性的判别法,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而此课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。 二、本课题研究的关键问题及解决问题的思路 关键问题:对函数项级数一致收敛性判别法总结和推广。 基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

高等数学函数与极限试的题目

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1)(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1 -,x ≠0,1,则f [)(1 x f ]= ( ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) lim + →x )x 1 +1(x =1 B ) lim + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0-+→=( ) A.0; B.∞; C 2 1; D.2.

中科院数学分析考研

读书破万卷下笔如有神 中科院研究生院硕士研究生入学考试 《数学分析》考试大纲 本《数学分析》考试大纲适用于中国科学院研究生院数学和系统科学等学科各专业硕士研究生入学考试。数学分析是一门具有公共性质的重要的数学基础课程,由分析基础、一元微分学和积分学、级数、多元微分学和积分学等部分组成。要求考生能准确理解基本概念,熟练掌握各种运算和基本的计算、论证技巧,具有综合运用所学知识分析和解决问题的能力。 一、考试基本要求 要求考生比较系统地理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法。要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。 二、考试方法和考试时间 数学分析考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。 三、考试内容和考试要求 (一)考试内容 1. 分析基础 (1) 实数概念、确界 (2)函数概念 (3) 序列极限与函数极限 (4) 无穷大与无穷小 (5)上极限与下极限 (6) 连续概念及基本性质,一致连续性 (7)收敛原理 2. 一元微分学 (1) 导数概念及几何意义 (2) 求导公式求导法则 (3) 高阶导数 (4) 微分 (5) 微分中值定理 (6) L'Hospital法则 (7) Taylor公式 (8) 应用导数研究函数 一元积分学3. 读书破万卷下笔如有神 (1) 不定积分法与可积函数类 (2) 定积分的概念、性质与计算 (3) 定积分的应用

(4) 广义积分 4. 级数 (1) 数项级数的敛散判别与性质 (2) 函数项级数与一致收敛性 (3) 幂级数 (4) Fourier级数 5. 多元微分学 (1) 欧氏空间 (2) 多元函数的极限 (3) 多元连续函数 (4) 偏导数与微分 (5) 隐函数定理 (6) Taylor公式 (7) 多元微分学的几何应用 (8) 多元函数的极值 6. 多元积分学 (1) 重积分的概念与性质 (2)重积分的计算 (3)二重、三重广义积分 (4)含参变量的正常积分和广义积分 (5)曲线积分与Green公式 (6)曲面积分 (7)Gauss公式、Stokes公式及线积分与路径无关 (8)场论初步 (二)考试要求 1.分析基础 (1)了解实数公理,理解上确界和下确界的意义。掌握绝对值不等式及平均值不等式。 (2)熟练掌握函数概念(如定义域、值域、反函数等)。 (3)掌握序列极限的意义、性质(特别,单调序列的极限存在性定理)和运算??N方法。法则,熟练掌握求序列极限的 (4)掌握函数极限的意义、性质和运算法则(自变量趋于有限数和趋于无限两???方法,了解广义极限和单侧极限种情形),熟练掌握求函数极限的的意义。 (5)熟练掌握求序列极限和函数极限的常用方法(如初等变形、变量代换、两边夹法则等),掌握由递推公式给出的序列求极限的基本技巧,以及应用Stolz公式求序列极限的方法。 (6)理解无穷大量和无穷小量的意义,了解同阶和高(低)阶无穷大(小)量的意义。 (7)了解上极限和下极限的意义和性质。 理解函数两类间断点的熟练掌握函数在一点及在一个区间上连续的概念,(8). 读书破万卷下笔如有神 意义,掌握初等函数的连续性,理解区间套定理和介值定理。理解一致连续和不一致连续的概念。 (9)掌握序列收敛的充分必要条件及函数极限(当自变量趋于有限数及趋于无穷两种情形)存在的充分必要条件。 2.一元微分学 (1)掌握导数的概念和几何意义,了解单侧导数的意义,解依据定义求函 数在给定点的导数。

相关主题
文本预览
相关文档 最新文档