当前位置:文档之家› 第十二讲函数列与函数项级数

第十二讲函数列与函数项级数

第十二讲函数列与函数项级数
第十二讲函数列与函数项级数

第11讲 一次函数应用及综合问题(讲练)(解析版)

备战2020年中考数学总复习一轮讲练测 第三单元函数 第11讲一次函数的应用及综合问题

1、了解:一次函数的概念; 2、理解:图象中横纵坐标表示的意义,及结合实际问题中的意义; 3、会:结合函数图象确定图形面积;并根据面积确定点的坐标,进而求出一次函数解析式;会解决一次函数有关的实际问题; 4、能:解决一次函数与几何综合,并根据整数点及公共点的个数确定参数的值或范围。 1.(2019春?石景山区期末)甲、乙两名同学骑自行车从A 地出发沿同一条路前往B 地,他们离A 地的距离()s km 与甲离开A 地的时间()t h 之间的函数关系的图象如图所示,根据图象提供的信息,有下列说法: ①甲、乙同学都骑行了18km ②甲、乙同学同时到达B 地 ③甲停留前、后的骑行速度相同 ④乙的骑行速度是12/km h 其中正确的说法是( ) A .①③ B .①④ C .②④ D .②③ 【解答】解:由图象可得, 甲、乙同学都骑行了18km ,故①正确, 甲比乙先到达B 地,故②错误, 甲停留前的速度为:100.520/km h ÷=,甲停留后的速度为:(1810)(1.51)16/km h -÷-=,故③错误, 乙的骑行速度为:18(20.5)12/km h ÷-=,故④正确, 故选:B . 2.(2018春?平谷区期末)某区中考体育加试女子800米耐力测试中,同时起跑的甲和乙所跑的路程S (米

)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是() A.甲的速度随时间的增大而增大 B.乙的平均速度比甲的平均速度大 C.在起跑后50秒时,甲在乙的前面 D.在起跑后180秒时,两人之间的距离最远 【解答】解:由题意可得, 甲对应的函数图象是线段OA,由图象可知甲在匀速跑步,故选项A错误, 由图象可知,甲先跑完800米,则甲的平均速度比乙的平均速度大,故选项B错误, 在起跑后50秒时,乙在甲的前面,故选项C错误, 由图象可知,在起跑后180秒时,甲在乙的前面,此时两人之间的距离最远为200米,故选项D正确, 故选:D. 3.(2019春?海淀区校级期中)已知等腰三角形的周长为20,腰长为x,底边长为y,则y与x的函数关系式为,自变量x的取值范围是. 【解答】解:220 Q, += x y ∴=-,即10 202 y x x<, Q两边之和大于第三边 ∴>, 5 x 综上可得510 <<. x 故答案为:220 =-+,510 y x <<. x 4.(2019春?海淀区校级月考)若一条直线与函数31 =-的图象平行,且与两坐标轴所围成的三角形的 y x

(中考复习)第12讲 一次函数及其图象

课时跟踪训练12:一次函数及其图象 A组基础达标 一、选择题 1.(2013·重庆)已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则正比例函数的解析式为(B) A.y=2x B.y=-2x C.y=1 2x D.y=- 1 2x 2.(2013·徐州)下列函数中,y随x的增大而减少的函数是(C) A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x 3. 中国电信公司最近推出的无线市话小灵通的通话收费标准为:前3分钟(不足3 分钟按3分钟)为0.2元;3分钟后每分钟收0.1元,则一次通话实际那为x分钟(x>3)与这次通话的费用y(元)之间的函数关系是(C) A.y=0.2+0.1x B.y=0.1x C.y=-0.1+0.1x D.y=0.5+0.1x 4. A,B两点在一次函数图象上的位置如图12-1所示,两点的坐标分别为A(x+ a,y+b),B(x,y),下列结论正确的是(B) 图12-1 A.a>0 B.a<0 C.b=0 D.ab<0 解析:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确.

二、填空题 5.(2013·永州)已知一次函数y=kx+b的图象经过A(1,-1),B(-1,3)两点,则k__<__0(填“>”或“<”). 6. 如果点(-2,m)和(1.5,n)都在直线y=4 3x+4上,则m、n的大小关系是__n> m__. 7.(2013·黔东南州)直线y=-2x+m与直线y=2x-1的交点在第四象限,则m 的取值范围是__-1<m<1__. 8.(2013·威海)甲、乙两辆摩托车同时从相距20 km的A,B两地出发,相向而行.图12-2中的l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是__③__. 图12-2 ①乙摩托车的速度较快;②经过0.3小时甲摩托车行驶到A,B两地的中点; ③经过0.25小时两摩托车相遇;④当乙摩托车到达A地时,甲摩托车距离A 地__50 3__km. 三、解答题 9.(2012·湘潭)已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的解析式. 解:此函数的解析式为:y=x+2或y=-x+2 10.(2013·内江)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.

复变函数项级数

§4.2 复变函数项级数 教学目的:1.理解复变函数项级数收敛的概念,掌握其收敛的常用 判别法,以及收敛复函数项级数的和函数的基本性质. 2. 能正确灵活运用相关定理判断所给级数的敛散性. 3.掌握幂级数收敛半径的计算公式、幂级数的运算性质以及幂级数和函数的解析性,能灵活正确求出所给级 数的收敛半径;能用 1 (1)1n n z z z ∞ ==<-∑将简单函数表示为级数. 教学重点:掌握阿贝尔定理以及级数收敛半径的计算方法;能用间 接法和 01 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学难点:正确利用 1 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学方法:启发式讲授与指导练习相结合 教学过程: §4.2.1 复变函数项级数 设{()n f z }是定义在平面点集E 上的一列复变函数,(书上为其中各项在区域D 内有定义,)则式子: 12()()()n f z f z f z ++++L L 称为E 上的复函数项级数,记为 1 ()n n f z ∞ =∑. 【定义】※设1 ()n n f z ∞ =∑是定义在E 上的复函数项级数, ()S z 是E

的一个复函数,如果对E 内的某一点0z ,极限 00lim ()() n n S z S z →∞ =存在,则称复变函数项级数在0z 收敛.若对E 上的每一点z E ∈,都有级数 1 ()n n f z ∞ =∑收敛, 则它的和一定是一个z 的函数()S z ,则称 1 ()n n f z ∞ =∑在E 上收敛于()S z ,此时()S z 也称为1 ()n n f z ∞ =∑在E 上的 和函数.记为1 ()()n n S z f z ∞ == ∑或者()lim ()n n S z S z →∞ =, {}()n S z 称为 1 ()n n f z ∞ =∑的部分和函数列. §4.2.2 幂级数 1.【幂级数的定义】通常把形如: 20 010200 () ()()n n n C z z C C z z C z z ∞ =-=+-+-∑ 0()n n C z z ++-+L L 的复函数项级数称为(一般)幂级数, 其中0C ,1C ,L n C ,L .和0z 都 是复常数, 分别称为幂级数 () n n n C z z ∞ =-∑的系数与中心点. 若00z =, 则幂级数0 () n n n C z z ∞ =-∑可简化为 n n n c z ∞ =∑(标准幂级

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

函数列与函数项级数

Ch 13 函数列与函数项级数 ( 1 2 时 ) § 1 一致收敛性( 6 时 ) 一. 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念: 收敛点,收敛域( 注意定义域与收敛域的区别 ),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x , 用“N -ε”定义 验证其收敛域为] 1 , 1 (-, 且 ∞→n lim )(x f n = ∞→n lim n x =? ??=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n =n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0. 例3 考查以下函数列的收敛域与极限函数: ) (∞→n . ⑴ )(x f n =x x x x n n n n --+-. )(x f n →,sgn x R ∈x . ⑵ )(x f n =1 21+n x . )(x f n →,sgn x R ∈x . ⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令 )(x f n =???≠∈=. ,,, ] 1 , 0 [ , 0, ,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [. ⑷ )(x f n =2 22 2x n xe n -. )(x f n →0, R ∈x .

156 ⑸ )(x f n =?? ? ? ? ? ???≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,41 11x x x x x n n n n n n n 有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意 ? ≡1 1)(dx x f n .) 二. 函数列的一致收敛性: 问题: 若在数集D 上 )(x f n →)(x f , ) (∞→n . 试问: 通项)(x f n 的解析性质是否必遗传给极限函数)(x f ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 ∞ →n lim () ? ?∞ →≠1 1 0)(lim )(dx x f dx x f n n n . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一 种手段. 对这种函数, ∞ →n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限 函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极 限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓 “整体收敛”的结果. 定义 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy 准则 ) 函数列}{n f 在数集D 上一致收敛,? N , 0?>?ε, , , N n m >?? ε<-n m f f . ( 介绍另一种形式ε<-+n p n f f .) 证 )? ( 利用式 .f f f f f f n m n m -+-≤-)

初二第三讲 “一次函数”的解题方法与技巧

精锐教育名师大讲堂讲义 初二第三讲 “一次函数”的解题方法与技巧 ● 学习要求 1.理解一次函数的意义,会根据已知条件确定一次函数表达式; 2.会画一次函数的图像,根据一次函数的图像和解析式(0)y kx b k =+≠,理解其性质(k >0或k <0时图 像的变化情况); 3.能用一次函数解决实际问题. ● 方法点拨 考点1:确定一次函数解析式 1.已知一次函数y ax b =+的图象过(02), 点,它与坐标轴围成的图形是等腰直角三角形,则a 的值为( ) A.1± B.1 C.1- D.不确定 2.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂物体的质量x (kg )有下面的关系: 那么弹簧总长y (cm )与所挂物体质量x (kg )之间的函数关系式为_____________. 3.经过点()20,且与坐标轴围成的三角形面积为2的直线解析式是___________. 4.平面直角坐标系中,点A 的坐标是(4,0),点P 在直线y =x -+m 上, 且AP =OP =4.求m 的值. 考点2:一次函数的图像与性质

1.已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数的图像经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 2.如图:三个正比例函数的图像分别对应的解析式是①y ax =,② y bx =,③y cx =,则a b c ,,的大小关系是( ) A .a b c >> B .c b a >> C .b a c >> D .b c a >> 3.点111()P x y ,,点222()P x y ,是一次函数43y x =-+图像上的两个点,且12x x <,则1y 与2y 的大小关系是( ) A.12y y >; B.120y y >>; C.12y y <; D.12y y =. 4.直线l 1是正比例函数的图像,将l 1沿y 轴向上平移2个单位得到的直线l 2经过点P (1,1),那么( ) A .l 1过第一、三象限; B .l 2过第二、三、四象限; C .对于l 1,y 随x 的增大而减小; D .对于l 2,y 随x 的增大而增大. 5.函数11y x =+与2y ax b =+(0a ≠)的图像如图所示,这两个函数图象的交点在y 轴上,那么使1y ,2y 的值都大于零的x 的取值范围是___________. 6.如图,有一种动画程序,屏幕上正方形ABCD 是黑色区域(含正方形边界),其中(11) (21)(22)(12)A B C D ,,,,,,,,用信号枪沿直线2y x b =-+发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b 的取值范围为_________________. 考点3:一次函数与方程、不等式的关系 1.已知一次函数y ax b =+(a 、b 是常数),x 与y 的部分对应值如下表: 那么方程0ax b +=的解是___________;不等式0ax b +>的解集是_______________. x x (第5题) (第6题)

第十三章函数列和函数项级数

第十三章 函数列与函数项级数 目的与要求:1.掌握函数序列与函数项级数一致收敛性的定义,函数列与函数项级数一致收敛性判别的柯西收敛准则,函数项级数一致收敛性的判别法. 2. 掌握一致收敛函数序列与函数项级数的连续性、可积性、可微性的结论. 重点与难点:本章重点是函数序列与函数项级数一致收敛性的定义,判别法和性质;难点则是利克雷判别法和阿贝尔判别法. 第一节 一致收敛性 我们知道,可以用收敛数列(或级数)来表示或定义一个数,在此,将讨论如何用函数列(或函数项级数)来表示或定义一个函数. 一 函数列及其一致收敛性 设 ,,,,21n f f f (1) 是一列定义在同一数集E 上的函数,称为定义在E 上的函数列.也可简记为: }{n f 或 n f , ,2,1=n . 设E x ∈0,将0x 代入 ,,,,21n f f f 得到数列 ),(,),(),(00201x f x f x f n (2) 若数列(2)收敛,则称函数列(1)在点0x 收敛,0x 称为函数列(1)的收敛点. 若数列(2)发散,则称函数列(2)在点0x 发散. 若函数列}{n f 在数集E D ?上每一点都收敛,则称}{n f 在数集D 上收敛.

这时对于D x ∈?,都有数列)}({x f n 的一个极限值与之对应,由这个对应法则就确定了D 上的一个函数,称它为函数列}{n f 的极限函数.记作f .于是有 )()(lim x f x f n n =∞ →, D x ∈,或 )()(x f x f n →)(∞→n ,D x ∈. 函数列极限的N -ε定义是: 对每一个固定的D x ∈,对0>?ε,0>?N (注意:一般说来N 值的确定与ε和x 的值都有关),使得当N n >时,总有 ε<-)()(x f x f n . 使函数列}{n f 收敛的全体收敛点的集合,称为函数列}{n f 的收敛域. 例1 设n n x x f =)(, ,2,1=n 为定义在),(∞-∞上的函数列,证明它的收敛域是]1,1(-,且有极限函数 ? ??=<=1,11 ,0)(x x x f (3) 证明:因为定义域为),(∞-∞,所以根据数列收敛的定义可以将),(∞-∞分为四部分 (i) 10<ε(不妨设1<ε),当10<时,就有ε<-)()(x f x f n . (ii)0=x 和1=x 时,则对任何正整数n ,都有 ε<=-0)0()0(f f n ,ε<=-0)1()1(f f n . (iii) 当1>x 时,则有)(∞→+∞→n x n , (iv) 当1-=x 时,对应的数列为 ,1,1,1,1--,它显然是发散的. 这就证得{}n f 在]1,1(-上收敛,且有(3)式所表示的极限函数.所以函数列{}n x 在区

【2017年初二数学春季课程】 第12.2讲 一次函数的图像教案

考点一:函数的图像 1、甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是() A.甲、乙两人的速度相同 B.甲先到达终点 C.乙用的时间短 D.乙比甲跑的路程多

2、已知点A (2,3)在函数21y ax x =-+的图象上,则a 等于( ) A.-1 B.1 C.2 D.-2 考点二:正比例函数的图像和性质 【例题】 1、 正比例函数y kx =的图象是过点(0,______)与点(1,_____)的一条直线,当0k >时, 图象经过第___________象限;当0k <时,图象经过第___________象限. 2、 当0k >时,正比例函数y kx =的图象大致是( ) A B C D 3、已知函数y kx =的函数值随x 值的增大而增大,则函数y kx =的图象经过( ) A .第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 4、已知()11,x y 和()22,x y 是直线3y x =-上的两点,且12x x >,则1y 与2y 的大小关系 是( ) A. 12y y > B. 12y y = C. 12y y < D.无法比较 【练习】 1、下列四个点中,在正比例函数2 5y x =-的图象上的点事( ) A .(2,5) B.(5,2) C.(2,-5) D.(5,-2) 2、已知正比例函数 ()0y kx k =≠,当x=-1时,y=-2,则它的图象大致是图中的( ) 、

3、 正比例函数①y ax =;②y bx =;③y cx =的图象如图,则a ,b ,c 的大小关系是( ) A. a b c >> B. c b a >> C. b a c >> D. b c a >> 4、 已知函数()31y k x =-,若y 随x 的增大而减小,则k 的取值范围是( ) A.0k < B. 0k > C. 13k < D. 1 3k > 5、 关于函数2y x =-,下列判断正确的是( ) A. 图象经过第一、三象限 B. y 随x 的增大而增大 C. 若()11,x y ,()22,x y 是该函数图象上的两点,则当12x x <时,12y y > D. 不论x 为何值,总有0y < 6、已知函数()231m y m x -=-是正比例函数. (1)若函数关系式中y 随x 的增大而减小,求m 的值; (2)若函数的图象过第一、三象限,求m 的值.

第十二讲函数列与函数项级数

第十二讲函数列与函数项级数 12 . 1 函数列与函数项级数的收敛与一致收敛 一、函数列 (一)函数列的收敛与一致收敛 1 .逐点收敛 函数列(){}I x x f n ∈,,若对I x ∈?,数列(){}x f n 都收敛,则称函数列在区间 I 上逐点收敛,记 ()()I x x f x f n n ∈=∞ →,lim ,称()x f 为(){}x f n 的极限函数.简记为 ()()()I x n x f x f n ∈∞→→, 2 .逐点收敛的N -ε定义 对I x ∈? ,及 0>?ε,()0,>=?εx N N ,当N n > 时,恒有()()ε<-x f x f n 3 .一致收敛 若函数列(){}x f n 与函数()x f 都定义在区间 I 上,对 0,0>?>?N ε,当N n > 时,对一切I x ∈恒有()()ε<-x f x f n ,则称函数列(){}x f n 在区间 I 上一致收敛于()x f .记为()()()I x n x f x f n ∈∞→?, . 4 .非一致收敛 00>?ε,对N n N >?>?0,0,及I x ∈?0,使得 ()()0000ε≥-x f x f n 例 12 . 1 证明()n n x x f =在[]1,0逐点收敛,但不一致收敛. 证明:当[]1,0∈x 时,()0lim lim ==∞ →∞ →n x n n x x f ,当1=x 时,()11lim =∞ →n n f ,即极限函数 为()[)???=∈=1 ,11,0,0x x x f .但 ()x f n 非一致收敛,事实上,取031 0>=ε。对0>?N ,取 N N n >+=10,取()1,02101 0∈? ? ? ??=n x · 此时()()00002100ε>==-n x x f x f n , 即()()()[]1,0,∈∞→≠>x n x f x f n 5 .一致收敛的柯西准则 函数列(){}x f n 在 I 上一致收敛?对 0,0>?>?N ε,当 n , m > N 时,对一切I x ∈,

第12讲 一次函数的应用及综合问题(讲练)(解析版)

备战2021年中考数学总复习一轮讲练测 第三单元函数 第12讲一次函数的应用及综合问题 1.理解一次函数与方程(组)的关系,能利用一次函数求方程(组)的解; 2.理解一次函数与不等式(组)的关系,会利用一次函数的图象、性质解决不等式的有关问题; 3.会利用一次函数的性质解决实际问题. 4.一次函数与其他知识的综合运用 1.(2020春?庆云县期末)如图,直线y=ax+b过点A(0,3)和点B(﹣2,0),则方程ax+b=0的解是() A.x=3 B.x=0 C.x=﹣2 D.x=﹣3 【思路点拨】一次函数y=kx+b的图象与x轴的交点横坐标就是kx+b=0的解. 【答案】解:∵直线y=ax+b过点B(﹣2,0),

∴方程ax+b=0的解是x=﹣2, 故选:C. 【点睛】此题主要考查了一次函数与一元一次方程,关键是掌握任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b 确定它与x轴的交点的横坐标的值. 2.(2019?义乌市模拟)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则不等式(kx+b)(mx+n)>0的解集为() A.x>2 B.0<x<4 C.﹣1<x<4 D.x<﹣1或x>4 【思路点拨】看两函数交点坐标之间的图象所对应的自变量的取值即可. 【答案】解:∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4, 故选:C. 【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变. 3.(2019?杭州模拟)已知直线y1=kx+1(k<0)与直线y2=nx(n>0)的交点坐标为(,n),则不等式组nx﹣3<kx+1<nx的解集为. 【思路点拨】由nx﹣3<(n﹣3)x+1,即可得到x<;由(n﹣3)x+1<nx,即可得到x>,进而得出不等式组nx﹣3<kx+1<nx的解集. 【答案】解:把(,n)代入y1=kx+1,可得 n=k+1, 解得k=n﹣3,

函数列与函数项级数

第十三章 函数列与函数项级数 §1 一致收敛性 (一) 教学目的: 掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (二) 教学内容: 函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法. 基本要求: 1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致 收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. (三) 教学建议: (1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项 级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法. ———————————————————— 一 函数列及其一致收敛性 对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。 使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。 若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值

第11讲 一次函数及其应用(原卷版)

第11讲一次函数及其应用 1.一次函数的概念 一般地,形如的函数叫做一次函数,当b=0时,y=kx+b即为y=kx叫做正比例函数,所以说正比例函数是一种特殊的一次函数. 2.一次函数的图象与性质 (1)一次函数y=kx+b(k≠0)的图象是一条直线, 它与x轴的交点坐标为,与y轴的交点坐标为原点,正比例函数y=kx(k≠0)的图象是过(0,b) 的一条直线. (2)一次函数y=kx+b(k≠0)的图象所经过的象限及增减性. k、b的符号 k>0 函数图象图象的位置增减性 b>0 图象过第一、二、三象限y随x的增大而增大 b=0 图象过第一、三象限y随x的增大而增大 b<0 图象过第一、三、四象限y随x的增大而增大 k<0 函数图象图象的位置增减性 b>0 图象过第一、二、四象限y随x的增大而减小 b=0 图象过第二、四象限y随x的增大而减小

b <0 图象过第二、三、四 象限 y 随x 的增大而减小 3.待定系数法求一次函数解析式的一般步骤 (1)设:设出一次函数解析式一般形式y =kx +b(k≠0); (2)代:将已知条件中函数图象上的两点坐标代入y =kx +b 得到方程(组); (3)求:解方程(组)求出k ,b 的值; (4)写:写出一次函数的解析式. 4.一次函数与方程(组)的关系 (1)一次函数的解析式y =kx +b 就是一个二元一次方程; (2)一次函数y =kx +b 的图象与x 轴交点的__ __就是方程kx +b =0的解; (3)一次函数y =k 1x +b 1与y =k 2x +b 2的图象交点的横、纵坐标值就是方程组? ????y =k 1x +b 1 y =k 2x +b 2的解. 5.一次函数与不等式的关系 (1)函数y =kx +b 的函数值y 大于0时,自变量x 的取值范围就是不等式kx +b >0的解集,即函数图象位于x 轴的上方部分对应点的横坐标的取值范围; (2)函数y =kx +b 的函数值y 小于0时,自变量x 的取值范围 就是不等式 的解集,即函数图象位于x 轴的 部分对应点的横坐标的取值范围. 6.一次函数的实际应用 (1)常见类型:①费用问题;②销售问题;③行程问题;④容量问题; ⑤方案问题. (2)解一次函数实际问题的一般步骤: ①设出实际问题中的变量; ②建立一次函数关系式; ③利用待定系数法求出一次函数关系式; ④确定自变量取值范围; ⑤利用一次函数的性质求相应的值,对所得到的解进行检验,是否符合实际意义; ⑥答. 考点1: 一次函数的图象与性质 【例题1】(2018?江苏扬州?3分)如图,在等腰Rt △ABO ,∠A=90°,点B 的坐标为(0,2),若直线l :y=mx+m (m ≠0)把△ABO 分成面积相等的两部分,则m 的值为 .

函数项级数一致收敛的几个判别法及其应用

函数项级数一致收敛性判别法及其应用 栾娈 20111101894 数学科学学院 数学与应用数学11级汉班 指导老师:吴嘎日迪 摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数 1.函数列与一致收敛性 (1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞ =1 )(n n x u 的 部分和序列)。若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式 ε<-)()(x S x S n 对X 上一切x 都成立,则称{S n (x )}(∑∞ =1 )(n n x u )在X 上一致收敛于S (x ). 一致收敛的定义还可以用下面的方式来表达: 设 =-S S n X x ∈s u p )()(x S x S n -, 如果 0lim =-∞ →S S n n 就称S n (x )在X 上一致收敛于S(x ). 例1 讨论 = +=X x n nx x S n 在2 2 1)([0,1]的一致收敛性 由于S (x )=0, 故 2 11)(m a x 1 = ?? ? ??==-≤≤n S x S S S n n x o n , 不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n }一致收敛于的f 几何意义:对任 给的正数ε ,存 N ,对一切序号大于N 的曲线y=f n (x )都落在以曲 线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)

函数列与函数项级数

第十三章函数列与函数项级数 教学目的:1.使学生理解怎样用函数列(或函数项级数)来定义一个函数;2.掌握如何利用函数列(或函数项级数)来研究被它表示的函数的性质。 教学重点难点:本章的重点是函数列一致收敛的概念、性质;难点是一致收敛的概念、判别及应用。 教学时数:20学时 § 1 一致收敛性 一. 函数列及极限函数:对定义在区间I上的函数列,介绍概念:收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“ ”定义. 例1 对定义在 内的等比函数列, 用“”定义验证其收敛域为 , 且 例2 .用“”定义验证在内. 例3 考查以下函数列的收敛域与极限函数: . ⑴. .

⑵. . ⑶设 为区间上的全体有理数所成数列. 令 , . ⑷. , . ⑸ 有 , , . (注意.) 二. 函数列的一致收敛性: 问题: 若在数集D上, . 试问: 通项 的解析性质是否必遗传给极限函数 ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等 函数的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解 析性质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函

数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果. 定义( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy准则 ) 函数列 在数集D上一致收敛, , . ( 介绍另一种形式.) 证 ( 利用式) ,……,有 易见逐点收敛. 设 , 对D成立, . 令 , ,D. 即 推论1 在D上 , ,. D , 推论2 设在数集D上, . 若存在数列 使, 则函数列 在数集D上非一致收敛时, 常选为函数 ―在数集D上的最值点. . 证明函数列在R内一致收敛. 例4

2013年中考数学专题复习第12讲:一次函数(含答案)

2013年中考数学专题复习第十二讲:一次函数 【基础知识回顾】 一、一次函数的定义: 一般的:如果y = ( )即y 叫x 的一次函数 特别的:当b = 时,一次函数就变为y =kx (k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b =0时,它才是正比例函数】 二、一次函数的同象及性质: 1、一次函数y =kx +b 的同象是经过点(0,b )、(- b k ,0)的一条 , 正比例函数y = kx 的同象是经过点 和 的一条直线。 【名师提醒:因为一次函数的同象是一条直线,所以画函数图象只需取 个特殊的点,过这两个点画一条直线即可】 2、正比例函数y = kx (k ≠0)当k >0时,其同象过 、 象限,y 随x 的增大而 ; 当k <0时,其同象过 、 象限,y 随x 的增大而 3、 一次函数y = kx +b 的图象及性质 ①、k >0 b >0过 象限 k >0 b <0过 象限 k <0 b >0过 象限 k <0 b >0过 象限 4、若直线l 1: y = k 1x + b 1与l 2: y = k 2x + b 2平解,则k 1 k 2,若k 1≠k 2,则l 1与l 2 . 【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移只改变 的值, 的值不变】 三、用待定系数法求一次函数解析式: 关键:确定一次函数y = kx + b 中的字母 与 的值。 步骤:1、设一次函数表达式 2、将x ,y 的对应值或点的坐标代入表达式 Y 随x 的增大而 Y 随x 的增大而

3、解关于系数的方程或方程组 4、将所求的系数代入所设函数表达式中。 四、一次函数与一元一次方程,一元一次不等式和二元一次方程组 1、一次函数与一元一次方程:一般地将x= 或y解一元一次方程求直线与坐标轴的交点坐标,代入y= kx+ b中 2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数同象位于x轴上方或下方时相应的x的取值范围,反之也成立 3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标 【名师提醒:1、一次函数与三者之间的关系问题一定要结合同象去解决 2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解得问题】 五、一次函数的应用 一般步骤:1、设定问题中的变量2、建立一次函数关系式 3、确定取值范围 4、利用函数性质解决问题 5、作答 【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案涉及问题等】 【重点考点例析】 考点一:一次函数的同象和性质 例1 (2012?黄石)已知反比例函数y=x b (b为常数),当x>0时,y随x的增大而增大, 则一次函数y=x+b的图象不经过第几象限.() A.一B.二C.三D.四 思路分析:先根据反比例函数的增减性判断出b的符号,再根据一次函数的图象与系数的关系判断出次函数y=x+b的图象经过的象限即可. 解:∵反比例函数y=x b (b为常数),当x>0时,y随x的增大而增大, ∴b<0, ∵一次函数y=x+b中k=1>0,b<0,∴此函数的图象经过一、三、四限,

中考数学一轮复习第12讲一次函数的应用教案

第12讲: 一次函数的应用 一、复习目标 1. 复习一次函数的基本性质。 2. 利用数形结合探究一次函数图象与实际意义的对应,体会函数图象所反映出的函数性质。 二、课时安排 1课时 三、复习重难点 1、探究一次函数图象在实际中的应用。 2、一次函数图象的辨析。 四、教学过程 (一)知识梳理 一次函数的应用 的函数,确定出一次 实际问题中一 决某些问 (二)题型、技巧归纳 考点一:利用一次函数进行方案选择 技巧归纳:一次函数的方案决策题,一般都是利用自变量的取值不同,得出不同方案,并根据自变量的取值范围确定出最佳方案. 考点二:利用一次函数解决资源收费问题 技巧归纳:此类问题多以分段函数的形式出现,正确理解分段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段函数的分段点;(2)针对每一段函数关系,求解相应的函数解析式; (3)利用条件求未知问题.

考点三:利用一次函数解决其他生活实际问题 技巧归纳:结合函数图象及性质,弄清图象上的一些特殊点的实际意义及作用,寻找解决问题的突破口,这是解决一次函数应用题常见的思路.“图形信息”题是近几年的中考热点考题,解此类问题应做到三个方面:(1)看图找点,(2)见形想式,(3)建模求解. (三)典例精讲 例1 我市某医药公司把一批药品运往外地,现有两种运输方式可供选择. 方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元; 方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元; (1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式; (2)你认为选用哪种运输方式较好,为什么? [解析] (1)根据方式一、二的收费标准即可得出y1(元)、y2(元)与运输路程x(公里)之间的函数关系式. (2)比较两种方式的收费多少与x的变化之间的关系,从而根据x的不同选择合适的运输方式. 解:(1)由题意得,y1=4x+400, y2=2x+820. (2)令4x+400=2x+820,解之得x=210, 所以当运输路程小于210 km时,y1<y2,选择邮车运输较好; 当运输路程等于210 km时,y1=y2,选择两种方式一样; 当运输路程大于210 km时,y1>y2,选择火车运输较好 例2 为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图12-1中折线反映了每户居民每月用电电费y(元)与用电量x(度)间的函数关系. (1)根据图象,阶梯电价方案分为三个档次,请填写下表: 用电 (3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式; (4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290

2013年中考数学专题复习第十二讲:一次函数

2013年中考数学专题复习:一次函数 【基础知识回顾】 一、 一次函数的定义: 一般的:如果y = ( )即y 叫x 的一次函数 特别的:当b= 时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】 二、一次函数的图象及性质: 1、一次函数y=kx+b 的图象是经过点(0,b )(-b k ,0)的一条 正比例函数y= kx 的图象是经过点 和 的一条直线 【名师提醒:一次函数的图象是一条直线,所以画函数图象只需取 个特殊的点,过这两个点画一条直线即可】 2、正比例函数y= kx(k ≠0) 当k >0时,其图象过 、 象限,y 随x 的增大而 当k<0时,其图象过 、 象限,y 随x 的增大而 3、一次函数y= kx+b ,图象及函数性质 ① k >0 b >0过 象限 k >0 b<0过 象限 ② k<0 b >0过 象限 k<0 b >0过 象限 4、若直线l 1:y= k 1x+ b 1与l 2:y= k 2x+ b 2平行,则k 1 k 2 ,若k 1 ≠k 2 ,则l 1 与l 2 【名师提醒:y 随x 的变化情况,只取决于 的符号,与 无关,而直线的上下平移,只改变 的值, 的值不变】 三、用系数法求一次函数解析式: 关键:确定一次函数y= kx+ b 中的字母 与 的值 步骤:1、设一次函数表达式 2、将x ,y 的对应值或点的坐标代入表达式 3、解关于系数的方程或方程组 4、将所求的系数代入解设函数表达式中 四、一次函数与一元一次方程,一元一次不等式和二元一次方程组 1、一次函数与一元一次方程:一般地将x= 或y 代入y= k x+ b 中,解一元一次方程,可求出直线与坐标轴的交点坐标 2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立 3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标 【名师提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决 2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程 y 随x 的增大而 y 随x 的增大而

相关主题
文本预览
相关文档 最新文档