当前位置:文档之家› 圆锥曲线及性质教案

圆锥曲线及性质教案

圆锥曲线及性质教案
圆锥曲线及性质教案

圆锥曲线方程及性质教案

一、教材分析

(一)、课标分析

1,了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;

2,经历从具体情境中抽象出椭圆到抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;

3,了解双曲线的定义、几何图形和标准方程,理解双曲线的有关性质.。(二)、考纲,考点分析

圆锥曲线与方程在考试大纲中的要求:

①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题

中的作用。

②掌握椭圆的定义、几何图形、标准方程及简单几何性质。

③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何

性质。

④理解数形结合的思想。

⑤了解圆锥曲线的简单应用。

(三)、重难点分析

解析几何是高中数学的主干知识之一,其特点是用代数的方法研究、解决几何问题。重点是用“数形结合”的思想把几何问题转化为代数问题,其命题一般紧扣课本,考查全面,突出重点主干知识,注重“知识交汇处”,强化思想方法,突出创新意识。“圆锥曲线与方程”一向是高考解析几何考点中的重点和难点,掌握好圆锥曲线与方程这部分的考查重点和解题策略将是高考取得好成绩的重要保证。

(四)、命题走向分析

本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法..

二、教学过程

(一)、热身练习

(1)求适合下列条件的椭圆的标准方程:焦距为6,1

a b

-=;

(2)(13全国卷Ⅰ理)设双曲线

22

22

1

x y

a b

-=(a>0,b>0)的渐近线与

抛物线y=x2 +1 相切,则该双曲线的离心率等于( ) 356

(3)已知双曲线()22

2210,0x y C a b a b

-=>>:的右焦点为F ,过F 直线交C 于A B 、两点,若4AF FB =,则C 的离心率为 ( )

A .65 B. 75

C. 58

D. 95

学生活动:(1)快速解答上述小题,学生自己纠错,合作练习;

(2)回顾圆锥去曲线定义及标准方程;

(3)类比复习圆锥曲线的性质,列表综合。

(二)强化过程

强化圆锥曲线几何性质

例1.(13宁夏文)已知抛物线220()y px p =>的焦点为F ,点11

1P x y (,), 222333P x y P x y (,),(,)在抛物线上,且2132x x x =+,则有( )

A .123||||||PF P F P F +=

B .222123

||||||PF P F P F += C .2132||||||P F PF P F =+ D .2213

||||||P F PF P F =? 例2.(13.福建文理)双曲线22

22:1(0,0)x y C a b a b

-->>的两个焦点为F 1、F 2, 若P 为 其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )

A.(1,3) B.(1,3] C.(3,)+∞ D.[3,)+∞

点评:圆锥曲线中的基本元素:长轴、短轴长,焦距,渐近线,离心率等,在多 处综合就会演变成中档题,要求熟练掌握其关系,灵活运用图形帮助分析。

强化基本思想和方法

例3.(13广东文19)在平面直角坐标系xoy 中,已知圆心在第二象限、

半径为C 与直线y x =相切于坐标原点O .椭圆22

219

x y a +=与圆 C 的一个交点到椭圆两焦点的距离之和为10.

(1)求圆C 的方程;

(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等 于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.

解:(2)由已知得210a =,5a =,椭圆的方程为221259x y +=,右焦点为,F(4,0). 假设存在Q 点()222cos ,222sin θθ-++,使QF OF =,

即()()22222cos 4222sin 4θθ-+-++=,

整理得sin 3cos 22θθ=+,代入22sin cos 1θθ+=得,

210cos 122cos 70θθ++=,122812222cos 110

θ-±-±==<-, 因此不存在符合题意的Q 点.

点评:由存在性问题引入方程思想,并利用参数方程进行转化,简化了运算过程。 解析几何的基本思想是在平面直角坐标系中,把点与实数对,曲线与方程, 区域与不等式统一起来,用代数方法研究平面上的几何问题.因此在复习 中应让学生逐步掌握函数与方程、数形结合、转化与化归、特殊与一般、 分类讨论等数学思想与方法。

强化综合应用能力

例4.(13深圳一模理)设平面区域D 是由双曲线22

14y x -=的两条渐近线和直线680x y --=所围成三角形的边界及内部.当,x y D ∈()时,222x y x ++的最大值为

A .24

B .25

C .4

D .7

例5.(14广东文理)设0b >,椭圆方程为22

2212x y b b

+=,抛物线方程为28(),x y b =-如图6所示,过点(0,2)F b +作x 轴

的平行线,与抛物线在第一象限的交点为G ,已

知抛物线在点G 的切线经过椭圆的右焦点1F 。

(1)求满足条件的椭圆方程和抛物线方程;

(2)设A ,B 分别是椭圆长轴的左、右端点,

试探究在抛物线上是否存在点P,使得ABP ?为

直角三角形?若存在,请指出共有几个这样的

点?并说明理由(不必具体求出这些点的坐

标)。

点评:本题主要考查直线、椭圆、抛物线等平面解析几何的基础知识,考查学生综合运用数学知识进行推理的运算能力和解决问题的能力。在第一问中涉及到切线问题,与导数相联系,难度不大,第二问中涉及到方程的解的问题,同时

考查向量知识运用,也可以灵活运用圆的基本性质巧妙解决问题。在向量、导数、函数、方程交汇处设计题目,也是近几年来高考的热点之一。

(三)教学小结

解析几何是将几何与代数结合起来的一门学科,也可以说是用代数的方法研究几何图形的一门学科。而代数是“数”,几何是“形”,即代数中的运算、几何中的画图和识图,是基本技能。运算就是我们通常所说的计算、方程的变形等。画图是根据所给方程绘出曲线,而识图指的是根据给出的曲线来判断方程的特点。通过画图、识图及数形关系分析,培养学生的数与形结合能力。其次,高中解析几何主要研究直线、圆及三种圆锥曲线的方程和性质,所以对这些图形的方程和性质必须做到熟练掌握。所以要求学生一定要熟练地掌握公式并会灵活运用。最后,要培养学生形象的、逻辑的、辩证的思维能力,从而提高学生分析和解决数学问题的能力,其中数形结合能力是一个主要能力。

鉴于高考要求及对高考题型特征的认识,“圆锥曲线与方程”这部分内容的复习,应牢牢把握:直线与圆锥曲线的几何性质和综合应用,注重能力的培养。

三、教学反思

1、考题中对双曲线的要求不高,这一点与新课程版的考试大纲是吻合的。

2、客观题主要考查直线与圆的位置关系,圆锥曲线的定义、标准方程、简单几何性质,注重考查基础知识、基本方法;解答题一般分为两个问,第一问一般为求轨迹方程、圆锥曲线的方程,第二问主要考查直线与圆锥曲线的位置关系这一热点内容,围绕最值、定值、存在性、位置关系等设置问题。

3、选择题、填空题均属容易中等题,解答题计算量较少,思维量较大。特别是韦达定理的应用已难寻踪影,加大了与相关知识的联系(如向量、函数、方程、不等式、数列等),凸现教材中研究性学习的能力要求,加大探索性题型的份量。

4、将开口向上或向下的抛物线与二次函数进行综合考查,一方面对抛物线的性质有所要求,另一方面对二次函数的性质、导数的几何意义等也可进行相应的考查。

5、前两年文理题目基本相同,主要是通过改变题目在试卷中的位置来体现区别;后两年渐显差异,可能是考虑到文理科考生数学基础要求不同,而且理科考查的内容相对较多,需要在考题内容上体现一定的差异。

6,强化基础包括强化基础知识、基本方法、基本技能和基本活动经验,强化基础的关键是把握好教材,教材是高考考试内容的具体化,是高考命题的基本依据,客观题一般直接来源于课本,往往是课本的原题或变式题,主观试题的生长点也是课本,所以在复习中要精通课本,贯彻“源于课本,高于课本”的原则。

解析几何-- 圆锥曲线的概念及性质

4.2 解析几何-- 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2 -2y 2 =1,则它的右焦点坐标为 ( ) A. ????22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为????6 2 ,0. 答案:C 2.(2010·天津)已知双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个 焦点在抛物线y 2 =24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2 108-y 2 36=1 D.x 2 27-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=() A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴PA∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4, ∴F A=8,∴P A=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为() A.圆B.椭圆C.双曲线D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆 顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,BA P A DC PC ,从而 PC=2P A.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2),则A(-5,0),C(5,0),设P(x,y),得(x-5)2+y2=2(x+5)2+y2 化简得x2+y2+50 3 x+25=0,显然,P点的轨迹为圆.

圆锥曲线教案

直 线 与 圆 锥 曲 线 的 位 置 关 系 题型归纳: 题型1向量与圆锥曲线相结合的问题 1.设12F F ,分别是双曲线2 2 19y x +=的左、右焦点.若点P 在双曲线上,且120PF PF ?=,则12PF PF += 2.设P 为双曲线2 2 112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为 题型2变量取值范围问题 3、设 1F ,2F 分别是椭圆14 22 =+y x 的左右焦点。1)若P 是该椭圆上的一个动点,求21PF PF ?的最值; (2)设过定点()2,0M 的直线l 与椭圆交于不同的两点A,B,且AOB ∠为锐角(O 为坐标原点),求直线l 的斜率k 的范围 题型3圆锥曲线中的最值问题 4、设P 是椭圆()2 2211x y a a +=>短轴的一个端点,Q 为椭圆上一个动点,求PQ 的最大值. 5、已知椭圆C:22 221(0)x y a b a b +=>>,F 为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2(1)求椭圆C 的方程;(2)直线l :y=kx+m (0km ≠)与椭圆C 交于A 、B 两点,若线段AB 中点在直线x+2y=0上,求?FAB 的面积的最大值。 … 题型4定值问题 6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 题型5 存在性问题 7.椭圆)0(12222>>=+b a b y a x 的离心率23e =,A 、B 是椭圆上关于,x y 轴均不对称的两点,线段AB 的垂直平分线与x 轴交于(1,0)P ,点 F 是椭圆的右焦点.Ⅰ)设AB 的中点为00(,)C x y ,求0x 的值; (Ⅲ)过P 的直线交椭圆于,C D 两点,在x 轴上是否存在定点E ,使得CED ∠总被x 轴平分,若存在,求出点E 的坐标;若不存在,请说明理由. 题型6对称性问题 8.已知双曲线2 213y x -=上存在关于直线:4l y kx =+的对称点,求实数k 的取值范围.

高考圆锥曲线基本性质综合复习

第一节焦点三角形 一、焦点三角形的周长 知识点:(1)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,P 是椭圆上的动点,则21F PF ?的周长恒为c a 22+; (2)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,l 过焦点1F 且与椭圆交于B A ,两点,则2ABF ?的周长恒为. 4a 例1,已知21,F F 分别为椭圆1:22 22=+b y a x E 的左、右焦点,过1F 斜率为1的直线l 与E 相交于B A ,两点,且22,,BF AB AF 成等差数列,求E 的离心率.变式1,在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点21,F F 在x 轴上,离心率为2 2,过点1F 的直线l 交C 于B A ,两点,且2ABF ?的周长为16,求椭圆的方程.二、焦点三角形的面积 知识点:(1)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,M 是椭圆上的动点,则21F MF ?的面积为)(2 tan 212MF F b y c S M ∠===θθ;(2)已知21,F F 分别为双曲线1-22 22=b y a x 的左、右焦点,M 是双曲线上的动点,则21F MF ?的面积为).(2 tan 212MF F b y c S M ∠===θθ

例2,已知双曲线122 2 =-y x 的焦点为21,F F ,点M 在双曲线上且021=?MF MF ,则点M 到x 轴的距离为_______. 变式2,已知双曲线1:22=-y x C 的焦点为21,F F ,点P 在C 上,02160=∠PF F ,则21PF PF ?=___________. 三、焦点三角形的角平分线 知识点:(1)在ABC ?中,AD 为ABC ?的角平分线,则CD BD AC AB =;(2)已知点P 是椭圆122 22=+b y a x 上的动点,21,F F 为椭圆的两个焦点,21F PF ?的内切圆的半径为r ,则). (21c a r S F PF +=?例3,已知21,F F 为椭圆112 162 2=+y x 的左右焦点,点)3,2(A 在椭圆上,求21AF F ∠的角平分线所在直线的方程. 变式3,已知21,F F 分别为双曲线127 9:2 2=-y x C 的左右焦点,A 为C 上一点,点M 的坐标为)0,2(-,AM 为21AF F ∠的角平分线,则._____2=AF

最新圆锥曲线的概念及性质

圆锥曲线的概念及性 质

第二讲 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.?? ??22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为??? ? 62,0. 答案:C 2.(2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一 个 焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 2 27=1 C.x 2108-y 236=1 D.x 227-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴ b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|= () A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴P A∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4,

圆锥曲线解题技巧教案整理后1

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 --- ) ; (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2y x +的最小值是 ___2) (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5

圆锥曲线经典性质总结材料及证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆切.(第二定义) 4. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

圆锥曲线的定义性质与结论(解析版)

圆锥曲线的基本定义性质与结论 考点一 圆锥曲线的定义 (一) 椭圆及其标准方程 1.椭圆的定义:平面内与两个定点21,F F 的距离之和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. 2.椭圆的标准方程: ①x 2a 2+y 2 b 2=1(a >b >0),焦点是()()0,0,21 c F c F ,-,且c 2=a 2?b 2. ② y 2a 2+ x 2b 2 =1(a >b >0),焦点是()()0,0,21c F c F ,-,且c 2=a 2?b 2. 3.椭圆的几何性质(用标准方程x 2 a 2+y 2 b 2=1(a >b >0)研究): 1)范围:?a ≤x ≤a ,?b ≤y ≤b ; 2)对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,椭圆的对称中心又叫做椭圆的中心; 3)椭圆的顶点:椭圆与它的对称轴的四个交点,如图中的2121,,,B B A A ; 4)长轴与短轴:焦点所在的对称轴上,两个顶点间的线段称为椭圆的长轴,如图中线段的A 1A 2;另一对顶点间的线段叫做椭圆的短轴,如图中的线段B 1B 2. 5)椭圆的离心率:e =c a ,焦距与长轴长之比,0>=-b a b y a x ,焦点坐标为()()0,0,21c F c F ,-,c 2=a 2+b 2; ②)0,0(122 22>>=-b a b x a y ,焦点坐标为()()c F c F ,0,021,-,c 2=a 2+b 2; 3.双曲线的几何性质 1)范围:x ≥a 或x ≤?a ;如图. 2)对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,这个对称中心又叫做双曲线的中心.

圆锥曲线优秀教案

与圆锥曲线有关的几种典型题 一、教案目标 (一)知识教案点 使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线相交问题等. (二)能力训练点 通过对圆锥曲线有关的几种典型题的教案,培养学生综合运用圆锥曲线知识的能力. (三)学科渗透点 通过与圆锥曲线有关的几种典型题的教案,使学生掌握一些相关学科中的类似问题的处理方法. 二、教材分析 1.重点:圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题. (解决办法:先介绍基础知识,再讲解应用.) 2.难点:双圆锥曲线的相交问题. (解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.) 3.疑点:与圆锥曲线有关的证明问题. (解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.) 三、活动设计 演板、讲解、练习、分析、提问. 四、教案过程 (一)引入

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“与圆锥曲线有关的几种典型题”. (二)与圆锥曲线有关的几种典型题 1.圆锥曲线的弦长求法 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为: (2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. A、B两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解. 由学生演板完成.解答为: ∵抛物线方程为x2=-4y,∴焦点为(0,-1). 设直线l的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入x2=-4y中得:x2+4kx-4=0. ∴x1+x2=-4,x1+x2=-4k. ∴ k=±1.

高考数学圆锥曲线的经典性质50条

For pers onal use only in study and research; not for commercial use 1. 2. 3. 4. 5. 6. 7. 8 . For pers onal use only in study and research; not for commercial use 椭圆与双曲线的对偶性质--(必背的经典结论) 椭圆 点P处的切线PT平分△ PF1F2在点P处的外角. PT平分△ PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点 以焦点弦PQ为直径的圆必与对应准线相离. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 若 F0(X 若 P0(X0 2 x ,y0)在椭圆一亍 a 2 、x ,y0)在椭圆一2 a 2 2 2 2 y - b y - b =1上,则过P0的椭圆的切线方程是一0厂?辔=1. a b =1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦 2 x 椭圆 一2 a 2 x 椭圆一 2 a 2 2 2 2 y b y - b =1 (a>b> 0)的左右焦点分别为F1, F2,点P为椭圆上任意一点一RPF2 - =1 ( a > b> 0)的焦半径公式: P1P2的直线方程是°2 - =1. a b 戈,则椭圆的焦点角形的面积为S A:1PF2 = b2 tan—

|MF i |=a ex o ,|MF 2p a-( Fj-c,0) , F 2(c,0) M (心 y °)). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M 、N 两点,贝U MF 丄NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点 P 、Q, A i 、A 2为椭圆长轴上的顶点, A i P 和A 2Q 交于点M , A 2P 和A i Q 交于点N ,则MF 丄NF. 2 2 2 2 -2 y ^ = 1内,则过Po 的弦中点的轨迹方程是一2 y^ - ―02 - a b a b a b 双曲线 1. 点P 处的切线PT 平分△ PF 1F 2在点P 处的内角. 2. PT 平分△ PF 1F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 3. 以焦点弦PQ 为直径的圆必与对应准线 相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆 相切.(内切:P 在右支;外切:P 在左支) 2 2 5. 若F 0(x 0, y 0)在双曲线 令-占=1( a > 0,b > 0)上,则过F 0的双曲线的切线方程是 彎一呼 =1. a b a b 2 2 6. 若i =0(x 0, y 0)在双曲线—~2 ^2 -1(a >0,b >0)外,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程是■X 0,__y°y = 11. AB 是椭圆 即 K AB 2 2 a 2 b 2 b 2X 0 —2 。 a y ° =1的不平行于对称轴的弦, M (x 0, y 0)为AB 的中点,_则k OM k AB = b 2 ~2 , a 12. F 0(X o , y o )在椭圆 2 2 7占=1内,则被Po 所平分的中点弦的方程是翠晋色 止 a 2 b 2 13. F 0(x 0,y °)在椭圆

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

高考数学圆锥曲线的经典性质50条

椭圆与双曲线的对偶性质--(必背的经典结论) 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是002 21x x y y a b +=. 6. 若000 (,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为12 2 tan 2F PF S b γ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2 OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

2011年高考数学二轮考点专题突破:圆锥曲线的概念及性质

第二讲 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.?? ??22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为??? ? 62,0. 答案:C 2.(2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个 焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 2 27=1 C.x 2108-y 236=1 D.x 227-y 2 9=1 解析:∵渐近线方程是y =3x ,∴b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=() A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴P A∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形.

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

圆锥曲线经典性质总结及证明!!!

Gandongle 椭圆双曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

怎样学好圆锥曲线知识讲解

怎样学好圆锥曲线(解析几何的高考热点与例题解析)圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始. 高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容. 2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等. 3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查. 4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想 解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量. (2)用好函数思想方法 对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效. (3)掌握坐标法 坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练. 考点一求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题。 解决这类问题常用定义法和待定系数法。 ●思路方法:一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0). 定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 【例题1】某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点。 已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m. 建立坐标系并写出该双曲线方程。

人教版高中数学《圆锥曲线和方程》全部教案

椭圆及其标准方程 一、教学目标 (一)知识教学点 使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程. (二)能力训练点 通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力. (三)学科渗透点 通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力. 二、教材分析 1.重点:椭圆的定义和椭圆的标准方程. (解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.) 2.难点:椭圆的标准方程的推导. (解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.) 3.疑点:椭圆的定义中常数加以限制的原因. (解决办法:分三种情况说明动点的轨迹.) 三、活动设计 提问、演示、讲授、详细讲授、演板、分析讲解、学生口答. 四、教学过程 (一)椭圆概念的引入 前面,大家学习了曲线的方程等概念,哪一位同学回答: 问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?

对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识. 提出这一问题以便说明标准方程推导中一个同解变形. 问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索? 一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如: “到两定点距离之和等于常数的点的轨迹.” “到两定点距离平方差等于常数的点的轨迹.” “到两定点距离之差等于常数的点的轨迹.” 教师要加以肯定,以鼓励同学们的探索精神. 比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图: 取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆. 教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等…… 在此基础上,引导学生概括椭圆的定义: 平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.

圆锥曲线性质

圆锥曲线的性质 、基础知识 (一)椭圆: 1定义和标准方程: (1)平面上到两个定点F U F2的距离和为定值(定值大于F1F2)的点的轨迹称为椭圆,其中F1, F2称为椭圆的焦点,F1F2称为椭圆的焦距 (2)标准方程: ①焦点在x轴上的椭圆:设椭圆上一点P x,y ,F1 -c,0 , F2C,0,设距离和 2 2 PF i PF2 = 2a,则椭圆的标准方程为:-y2 =1,其中a b 0,b2二a2 - c2 a b ②焦点在y轴上的椭圆:设椭圆上一点P x,y ,F10^C ,F20,C,设距离和 2 2 PFi +|PF2;=2a,则椭圆的标准方程为:专+令二丨,其中(a Ab>0,b2=a2—c2) a b 焦点在哪个轴上,则标准方程中哪个字母的分母更大 2 2 2、椭圆的性质:以焦点在x轴的椭圆为例:笃?爲=1 a b 0 a b (1)a:与长轴的顶点有关:A - a,0 ,A a,0 ,A A =2a称为长轴长 b :与短轴的顶点有关: BdO,-b),B2(0,b ),IB1B2 =2b称为短轴长 C :与焦点有关:斤(—c,O )F? (c,O ), F1F2 =2c称为焦距 (2)对称性:椭圆关于x轴,y轴对称,且关于原点中心对称 (3)椭圆上点的坐标范围:设P x O,y O,则-a乞x O空a,-b乞y O乞b (4)通径:焦点弦长的最小值 ①焦点弦:椭圆中过焦点的弦 2b2 ②过焦点且与长轴垂直的弦,PQ|=—— a 说明:假设PQ过F r;_c,O ,且与长轴垂直,则P:L c, y O ,Q1. —c, - y O,所以

= (|PF i | +IPF 2I ) -2 PF 』PF 2 (1 +COSF 1PF2 ) .4c 2 =4a 2 -2 PF j|PF 2 1 cosFfF 2 PF 」|PF 2 = " _2c 1 +cosF 1PF 2 1 +cosF 1PF 2 比 2 .込各比出n 吐 1 COS RPF 2 2 F 1,F 2距离差为一个常数,则轨迹为双曲线的一支 2、标准方程: 厶 + 卑=1 二 y ; =3,可得 y 。-。则 PQ = a b a a 2b 2 (5) 离心率:e = c ,因为c a ,所以e - 0,1 a (6) 焦半径公式:称 P 到焦点的距离为椭圆的焦半径 ①设椭圆上一点 P(x 0,y 0 ),则 PR =a+ex), PF 2 ②焦半径的最值:由焦半径公式可得:焦半径的最大值为 (7)焦点三角形面积: S P FF 2二b 2 tan ;(其中n 1 证明:S PF ^- PF 1 - PF 2 sinRPF 2 2 + PF 且 F 1F 2 2 -2 PF 1H PF 2 cosRPF ? =a - e)(Q (可记为“左加右减”) a c ,最小值为a - c =PF 1F 2) 2b 2 1 〈PFf =2 PF 1 ' PF 2 1 sin F ]PF 2 : 2 1 cosPF F 2b 2 sin F |PF 2 1 因为 S PF/2 = 2 2c F 1PF 2 We%,所以2 =c y o ,由此得到的推论: ①.F 1PF 2的大小与 y 0之间可相互求出 ②? F 1 PF 2的最大值: F 1 PF 2 最大二 S PF 1 F 2 最大二 y o 最大=P 为短轴顶点 (二) 双曲线: 1、定义:平面上到两个定点 F 「F 2距离差的绝对值为一个常数(小于 F 1F 2)的点的轨迹 称为双曲线,其中 h,F 2称为椭圆的焦点, F 1F 2称为椭圆的焦距;如果只是到两个定点

解析几何-- 圆锥曲线的概念及性质

4.2解析几何--圆锥曲线的概念及性质 一、选择题 1.(2010·安徽双曲线方程为x2-2y2=1,则它的右焦点坐标为 ( A. B. C. D.(,0 解析:∵原方程可化为-=1,a2=1, b2=,c2=a2+b2=, ∴右焦点为. 答案:C 2.(2010·天津已知双曲线-=1(a>0,b>0的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为 ( A.-=1 B.-=1 C.-=1 D.-=1 解析:∵渐近线方程是y=x,∴=.① ∵双曲线的一个焦点在y2=24x的准线上, ∴c=6.② 又c2=a2+b2,③ 由①②③知,a2=9,b2=27, 此双曲线方程为-=1. 答案:B

4.(2010·辽宁设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|= ( A.4 B.8 C.8 D.16 解析:解法一:AF直线方程为: y=-(x-2, 当x=-2时,y=4,4A(-2,4. 当y=4时代入y2=8x中,x=6, 4P(6,4, 4|PF|=|PA|=6-(-2=8.故选B. 解法二:5PA∞l,4PA%x轴.

又5 AFO=60°,4 FAP=60°, 又由抛物线定义知PA=PF, 4≥PAF为等边三角形. 又在Rt≥AFF′中,FF′=4, 4FA=8,4PA=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为 ( A.圆 B.椭圆 C.双曲线 D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,=,从而 PC=2PA.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2,则A(-5,0,C(5,0,设P(x,y,得=2 化简得x2+y2+x+25=0,显然,P点的轨迹为圆. 答案:A 二、填空题 解析:由题知,垂足的轨迹为以焦距为直径的圆,则c

相关主题
文本预览
相关文档 最新文档