当前位置:文档之家› 红外吸收光谱实验报告材料

红外吸收光谱实验报告材料

红外吸收光谱实验报告材料
红外吸收光谱实验报告材料

实验三、红外吸收光谱实验报告

姓名:张瑞芳

班级:化院413班

培养单位:上海高等研究院

学号:2013E8003561147

指导教师:李向军

实验日期:2103年12月18日第2组

一、实验目的

1、掌握红外光谱分析法的基本原理。

2、掌握智能傅立叶红外光谱仪的操作方法。

3、掌握用KBr 压片法制备固体样品进行红外光谱测定的技术和方法。

4、了解基本且常用的KBr 压片制样技术在红外光谱测定中的应用。

5、 通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。

二、实验原理

红外光谱法又称“红外分光光度分析法”。简称“IR ”,是分子吸收光谱的一种。它利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。被测物质的分子在红外线照射下,只吸收与其分子振动、转动频率相一致的红外光谱。对红外光谱进行剖析,可对物质进行定性分析。化合物分子中存在着许多原子团,各原子团被激发后,都会产生特征振动,其振动频率也必然反映在红外吸收光谱上。据此可鉴定化合物中各种原子团,也可进行定量分析。

(1)红外光谱产生条件

1)辐射应具有能满足物质产生振动跃迁所需的能量:即)λhc/(λ)

νh(νΔE ΔE ΔE 转动振动转动振动转动

振动分子+=+=+=

2)辐射与物之间有相互耦合作用,产生偶极矩的变化。(没有偶极矩变化的振动跃迁,无红外活性,没有偶极矩变化、但是有极化度变化的振动跃迁,有拉曼活性。)

(2)应用范围

红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能用该方法进行分析,无机、有机、高分子化合物也都可检测。

1)红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。

2)红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。

3)利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。

4)红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。

(3)定性分析

传统的利用红外光谱法鉴定物质通常采用比较法,即与标准物质对照和查阅标准谱图的方法,但是该方法对于样品的要求较高并且依赖于谱图库的大小。如果在谱图库中无法检索到一致的谱图,则可以用人工解谱的方法进行分析,这就需要有大量的红外知识及经验积累。大多数化合物的红外谱图是复杂的,即便是有经验的专家,也不能保证从一张孤立的红外谱图上得到全部分子结构信息,如果需要确定分子结构信息,就要借助其他的分析测试手段,如核磁、质谱、紫外光谱等。尽管如此,红外谱图仍是提供官能团信息最方便快捷的方法。

(4)定量分析

定量分析依据是比尔定律:ecl=log(I

/I)或A=ecl。如果有标准样品,并且

标准样品的吸收峰与其它成分的吸收峰重叠少时,可以采用标准曲线法以及解联立方程的办法进行单组分、多组分定量。对于两组分体系,可采用比例法。

三、实验仪器和试剂

(1)实验仪器:769YP-15A粉末压片机及配套压片模具、玛瑙研钵、VERTEX70傅立叶变换红外光谱仪。

(2)仪器构成:红外光谱仪是由光源、样品室、单色器以及检测器等部分组成。如下图所示:光源发出的光被分束器分为两束,一束经反射到达动镜,另一束经透射到达定镜。两束光分别经定镜和动镜反射再回到分束器。动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差d,产生干涉。干涉光在分束器会合后通过样品池,然后被检测。傅立叶变换红外光谱仪的检测器有TGS,MCT等。

图1,红外光谱仪的组成

(3)实验试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。

四、实验步骤

1、软件参数设置。

1)打开红外光谱仪电源开关,待仪器稳定30分钟以上,方可测定;

2)打开电脑,选择win98系统,打开opus7.0软件;在Collect菜单下的Experiment Set-up中设置实验参数;

3)实验参数设置:分辨率 4 cm-1,扫描次数16次,扫描范围 4000-400 cm-1。

2、样品制备:压片法。

1)用乙醇洗涤压片所用器具,然后在红外灯下烤干,以下各步骤都在红外灯下完成。

2)研磨被测物体和溴化钾的混合物,取月1.5mg样品,按1:100的比例加入溴化钾,研磨混合物成粉末状,越细越均匀越好。

3)取适量被测物质和溴化钾的混合物倒入模具中。

4)将压模器整体放入压机上,锁上油压开关,推动摇杆,将压力压到10MPa 下保持3min,打开油压开关,取出压模器,小心取出样品(均匀透明即可),将压后的薄膜片放入磁性样品架。

3、进行背景测量。

4、进行样品测量。

5、保存数据。

6、重复1-5步骤进行测量(每次样品测量前都要进行背景测量),整理仪器,完成实验。

五、实验数据记录和处理

(1)固体苯酚的结构分析

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

4000380036003400320030002800260024002200200018001600140012001000800600

图2.固体苯酚的红外光谱图

图谱分析:

1)波数在3650cm-1-3200cm-1之间出现强宽峰,说明有酚羟基;

2)波数在1600cm-1、1510cm-1、1499cm-1处的强吸收谱带为苯环骨架的伸缩振动,是苯环的特征吸收谱带;

3)波数在1380cm-1处的中等强度吸收谱带为苯环C-H面内弯曲振动;

4)波数在1225cm-1处的强吸收谱带为酚类C-O伸缩振动;

5)波数在1930-1760cm-1处的多个弱吸收峰,及830cm-1、750cm-1、700cm-1处的三个中等强度吸收峰,是苯环单取代的特征吸收峰。

(2)固体苯甲酸的结构分析

1.0

0.8

0.6

0.4

0.2

0.0

42003900360033003000270024002100180015001200900600300

图3.固体苯甲酸的红外吸收光谱

图谱分析:

1)波数在3250-2500cm-1处有中等强度的吸收带,谱带宽,峰形不尖锐。由于羧酸在固体样品中通常以二聚体形式存在,所以存在分子间氢键,该区域内宽、散谱带二聚体羧基中O-H伸缩振动的特征谱带;

2)波数在1770cm-1处的强吸收峰为C=O伸缩振动吸收峰;

3)波数在1650-1510cm-1处的中等强度吸收峰为苯环骨架伸缩振动;

4)波数在1921cm-1、1796cm-1、910cm-1、720cm-1处的吸收峰为苯环单取代的特征吸收峰。

六、思考与讨论

1、比较苯甲酸和苯酚IR图谱的差异,并思考产生差异的原因。

答:

左图为苯酚,右图为苯甲酸

苯酚和苯甲酸的结构式如上图所示。其结构很相似,都有一个苯环,都具有羟基。最大的不同是苯甲酸多了一个羰基。结构的不同导致了IR谱图的不同。

(1)最为明显的差异就是在苯甲酸的IR图谱中在1770cm-1处有一个强吸收峰,这是羰基的特征吸收峰;

(2)另外,从IR谱图中明显可以看出,在官能团区两种物质的宽吸收峰的形状不同,相比较而言,苯甲酸的羟基伸缩振动较苯酚处于更低波数,这是由于在苯甲酸中羟基与羰基相连;

(3)苯环取代基不同,对苯环的影响不同。羧基与苯环存在共轭效应,而羟基与苯环存在诱导效应和共轭效应,且诱导效应占主导地位,最终使得苯环骨架的伸缩振动不同,其中苯酚由于羟基的强吸电子作用使的1500cm-1处的吸收峰很弱。

2、用FT-IR仪测试样品的红外光谱时为什么要先测试背景?

答:FT-IR仪测试样品的红外光谱时要先测试背景是因为空气中含有较多量

的CO

2和H

2

O会影响测定结果的准确性,所以在测定样品之前需要先测定背景。

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

原子吸收光谱实验报告

一、基本原理 1.原子吸收光谱的产生 众所周知,任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级。因此,一个原子核可以具有多种能级状态。能量最低的能级状态称为基态能级(E 0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。正常情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。如果将一定外界能量如光能提供给该基态原子,当外界光能量E 恰好等于该基态原子中基态和某一较高能级之间的能级差△E 时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。核外电子从基态跃迁至第一激发态所吸收的谱线称为共振吸收线,简称共振线。电子从第一激发态返回基态时所发射的谱线称为第一共振发射线。由于基态与第一激发态之间的能级差最小,电子跃迁几率最大,故共振吸收线最易产生。对多数元素来讲,它是所有吸收线中最灵敏的,在原子吸收光谱分析中通常以共振线为吸收线。 2.原子吸收光谱分析原理 2.1谱线变宽及其原因 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中被待测元素的基态原子吸收后,测定发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合吸收定律: ()0k l I I e νν-= (1.1) 0log 0.434I K l A I ν ν=-=- (1.2) 其中:K v 为一定频率的光吸收系数,K v 不是常数,而是与谱线频率或波长有关,I v 为透射光强度,I 0为发射光强度。

原子吸收分光光度计培训试题(答案)

ZEEnit 700原子吸收分光光度计培训试题 一、选择题 1原子吸收光谱法常用的光源是:(D) A. 氢灯; B. 火焰; C. 电弧; D. 空心阴极灯 2、原子吸收分光光度法适宜于:(B) A. 元素定性分析; B. 痕量定量分析; C. 常量定量分析; D. 半定量分析 3、在原子吸收分析中,影响谱线宽度的最主要因素是:(A) A. 热变宽; B. 压力变宽; C?场致变宽; D.自吸变宽 4、石墨炉原子吸收光度法的特点是。(A ) A灵敏度 B速度快 C操作简便 5、在原子吸收法中,原子化器的分子吸收属于(3 ) A.光谱线重叠的干扰 B?化学干扰 C背景干扰 D物理干扰 二、填空题 1、石墨炉原子吸收分光光度法的特点是 答案:灵敏度高,取样量少,在炉中直接处理样品 2、使用原子吸收光度法分析时,灯电流太高会导致、,使_____________ 下降。 答案:谱线变宽、谱线自吸收、灵敏度 3、在原子吸收法中校正背景干扰的主要方法有:、、答案:双波长法、氘灯法、塞曼效应法、自吸收法 4、原子吸收仪用作为光电转换元件和光信号的。 答案:光电倍增管、检测器 5、根据观察是否稳定、是否稳定和是否稳定来

确定空心阴极灯的预热时间。 答案:发射能量、仪器的基线、灵敏度 二、判断题 1塞曼效应校正背景,其校正波长范围广。 2、原子吸收光度法测量高浓度样品时,应选择最灵敏线。()答案:X 3、在高温原子化器内,如不通入2或Ar气,即不能进行升温测定。()答案:“ 4、原子吸收分光光度计的分光系统,可获得待测原子的单色光。()答案:X 5、原子吸收分光光度计使用时,空心阴极灯不需预热。()答案:X 四、问答题 1简述原子吸收分光光度法的原理? 答:由光源发出的特征辐射能被试样中被测元素的基态原子吸收,使辐射强度减弱,从辐射强度减弱的程度求出试样中被测元素的含量。 2、如何解决石墨炉原子吸收分光光度法的记忆效应? 答:(1)用较高的原子化温度。 (2)用较长的原子化时间。 (3)增加清洗程序。 (4)测定后空烧一次。 (5)改用涂层石墨管。

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

原子吸收实验报告

原子吸收光谱法 原子吸收光谱法是基于含待测组分的原子蒸汽对自己光源辐射出来的待测元素的特征谱线(或光波)的吸收作用来进行定量分析的。由于原子吸收分光光度计中所用空心阴极灯的专属性很强,所以,原子吸收分光光度法的选择性高,干扰较少且易克服。而且在一定的实验条件下,原子蒸汽中的基态原子数比激发态原子数多的多,故测定的是大部分的基态原子,这就使得该法测定的灵敏度较高。由此可见,原子吸收分光光度法是特效性、准确性和灵敏度都很好的一种金属元素定量分析法。 一.实验目的 1.熟悉原子吸收光度计的基本构造及使用方法。 2.掌握原子吸收光谱仪中的石墨炉原子化法和火焰原子化法。 二.实验原理 原子光谱是由于其价电子在不同能级间发生跃迁而产生的。当原子受到外界能量的激发时,根据能量的不同,其价电子会跃迁到不同的能级上。电子从基态跃迁到能量最低的第一激发态时要吸收一定的能量,同时由于其不稳定,会在很短的时间内跃迁回基态,并以光波的形式辐射现同样的能量。根据△E=hυ可知,各种元素的原子结构及其外层电子排布的不同,则核外电子从基态受激发而跃迁到其第一激发态所需要的能量也不同,同样,再跃迁回基态时所发射的光波频率即元素的共振线也就不同,所以,这种共振线就是所谓的元素的特征谱线。加之从基态跃迁到第一激发态的直接跃迁最易发生,因此,对于大多数的元素来说,共振线就是元素的灵敏线。在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源辐射的共振线的吸收来进行的。 三火焰原子化器与石墨炉原子化器 原子化系统的作用是将待测试液中的元素转变成原子蒸汽。具体方法有火焰原子化法和无火焰原子化法两种,前者较为常用。

原子吸收习题及参考答案

原子吸收习题及参考答案 一、填空题 1、电子从基态跃迁到激发态时所产生的吸收谱线称为,在从激发态跃迁回基态时,则发射出一定频率的光,这种谱线称为,二者均称为。各种元素都有其特有的,称为。 2、原子吸收光谱仪和紫外可见分光光度计的不同处在于,前者是,后者是。 3、空心阴极灯是原子吸收光谱仪的。其主要部分是,它是由或 制成。灯内充以成为一种特殊形式的。 4、原子发射光谱和原子吸收光谱法的区别在于:原子发射光谱分析是通过测量电子能级跃迁时和对元素进行定性、定量分析的,而原子吸收光谱法师测量电子能级跃迁时的强度对元素进行分析的方法。 5、原子吸收光谱仪中的火焰原子化器是由、及三部分组成。 6、分子吸收光谱和原子吸收光谱的相同点是:都是,都有核外层电子跃迁产生的 ,波长范围。二者的区别是前者的吸光物质是,后者是。 7、在单色器的线色散率为0.5mm/nm的条件下用原子吸收分析法测定铁时,要求通带宽度为0.1nm,狭缝宽度要调到。 8、分别列出UV-Vis,AAS及IR三种吸收光谱分析法中各仪器组成(请按先后顺序排列):UV-Vis: AAS: IR: 9、在原子吸收光谱仪上, ______产生共振发射线, ________产生共振吸收线。 在光谱分析中,灵敏线是指一些_________________________________的谱线,最后线是指 ____________________________________________。 二、选择题 1、原子发射光谱分析法可进行_____分析。 A.定性、半定量和定量, B.高含量, C.结构, D.能量。 2、原子吸收分光光度计由光源、_____、单色器、检测器等主要部件组成。 A.电感耦合等离子体; B.空心阴极灯; C.原子化器; D.辐射源. 3、C2H2-Air火焰原子吸收法测定较易氧化但其氧化物又难分解的元素(如Cr)时,最适宜的火焰是性质:_____ A.化学计量型 B.贫燃型 C.富燃型 D.明亮的火焰 4、贫燃是助燃气量_____化学计算量时的火焰。 A.大于;B.小于C.等于 5、原子吸收光谱法是基于光的吸收符合_______,即吸光度与待测元素的含量成正比而进行分析检测的。 A.多普勒效应; B.朗伯-比尔定律; C.光电效应; D.乳剂特性曲线. 6、原子发射光谱法是一种成分分析方法,可对约70种元素(包括金属及非金属元素)进行分析,这种方法常用于______。 A.定性; B.半定量; C.定量; D.定性、半定量及定量. 7、原子吸收光谱法是基于气态原子对光的吸收符合_____,即吸光度与待测元素的含量成正比而进行分析检测的。 A.多普勒效应, B.光电效应, C.朗伯-比尔定律, D.乳剂特性曲线。 8、在AES中, 设I为某分析元素的谱线强度, c为该元素的含量, 在大多数的情况下, I 与c具有______的函数关系(以下各式中a、b在一定条件下为常数)。 A. c = abI; B. c = bI a ; C. I = ac/b; D. I = ac b.

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告 班级:环科10-1 姓名:王强学号:27 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器 ~ mL及5 ~ 50 uL

2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长: nm 灯电流:3 mA 狭缝宽度: nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、 mL、 mL、 mL浓度为100 ng/mL的镉标准溶液,再各添加 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。 取水样500 mL于烧杯中,加入5 mL浓硝酸溶液,加热浓缩后转移至50 mL 容量瓶,以Milli-Q去离子水稀释至刻度,摇匀,此待测水样供原子吸收测定用。3.吸光度的测定 设置好测定条件参数,待仪器稳定后,升温空烧石墨管,用微量分液器由稀到浓向石墨管中依次注入40 uL标准溶液及待测水样,测得各份溶液的吸光度。 五、数据记录:

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基本原理; (2)了解原子吸收分光光度计的基本结构及其使用方法 (3)学习原子吸收光谱法操作条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量分析的方法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子变成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度符合比尔定律A=Kc 利用吸光度与浓度的关系,用不同浓度的铜离子标准溶液分别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样

(10)烧杯 四、实验步骤 (1)溶液的配制 准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml 容量瓶中,用去离子水稀释至刻度,使其浓度分别为0.25、0.50、 1.00、 2.50、 3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量1:1 燃烧器高度7.0nm 波长324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操作步骤进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,按照标准溶液浓度由稀到浓的顺序逐个测量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,测量水样的吸光度,并从标准曲线上查得水样中Cu的含量。 五、实验数据处理

食品仪器分析-原子吸收分光光度法参考答案

原子吸收分光光度法习题 一、填空题 1.原子吸收光谱分析是利用基态的待测原于蒸气对光源辐射的吸收进行分 析的。 答:特征谱线 2.原子吸收光谱分析主要分为类,一类由将试样分解成自由原子,称为分析,另一类依靠将试样气化及分解,称为分析。 答:两,火焰,火焰原子吸收,电加热的石墨管,石墨炉无火焰原子吸收。 3.一般原子吸收光谱仪分为、、、四个主要部分。 答:光源、原子化器,分光系统,检测系统。 4.空心阴极灯是原子吸收光谱仪的,其最主要部分是,它是由制成的。整个灯熔封后充以或成为一个特殊形式的。 答:光源,空心阴极灯,待测元素本身或其合金,低压氖,氢气,辉光放电管。 5.原子吸收光谱仪中的火焰原子化器是由、及三部分组成。 答:雾化器,雾化室,燃烧器。 6.原子吸收光谱仪中的分光系统也称,其作用是将光源发射的与分开。 答:单色器,待测元素共振线,其它发射线。 7.早期的原子吸收光谱仪使用棱镜为单色器,现在都使用单色器。前者的色散原理是,后者为。 答:光栅,光的折射,光的衍射。 8.在原子吸收光谱仪中广泛使用做检测器,它的功能是将微弱的信号转换成信号,并有不同程度的。 答:光电倍增管,光,电,放大。 9.原子吸收光谱分析时工作条件的选择主要有的选择、的选择、 的选择、的选择及的选择。 答:灯电流,燃烧器高度,助燃气和燃气流量比,吸收波长,单色器狭缝宽度。 10.原子吸收法测定固体或液体试样前,应对样品进行适当处理。处理方法可用、、、等方法。 答:溶解,灰化,分离,富集。 11.原子吸收光谱分析时产生的干扰主要有干扰,干扰,干扰三种。 答:光谱干扰,物理干扰,化学干扰。 二、判断题 1.原子吸收光谱分析定量测定的理论基础是朗伯一比尔定律。(√) 2.在原子吸收分析中,对光源要求辐射线的半宽度比吸收线的半宽度要宽的多。(×)

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:2010012127 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅 5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干

燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测

原子吸收光谱参考答案

第四章、原子吸收光谱分析法 1 选择题 1-1 原子吸收光谱是 ( A) A. 基态原子吸收特征辐射后跃迁到激发态所产生的 B. 基态原子吸收了特征辐射跃迁到激发态后又回到基态时所产生的 C. 分子的电子吸收特征辐射后跃迁到激发态所产生的 D. 分子的振动、转动能级跃迁时对光的选择吸收产生的 1-2 原子发射光谱与原子吸收光谱产生的共同点在于.( D) A. 基态原子对共振线的吸收 B. 激发态原子产生的辐射 C. 辐射能使气态原子内层电子产生跃迁 D. 辐射能使气态原子外层电子产生跃迁1-3 在原子吸收分光光度计中,目前常用的光源是 ( C) A. 火焰 B. 氙灯 C. 空心阴极灯 D. 交流电弧 1-4 空心阴极灯内充的气体是 ( D ) A. 大量的空气 B. 少量的空气 C. 大量的氖或氩等惰性气体 D. 少量的氖或氩等惰性气体 1-5 空心阴极灯的主要操作参数是 ( C ) A. 内充气体的压力 B. 阴极温度 C. 灯电流 D. 灯电压 1-6 在原子吸收光谱中,用峰值吸收代替积分吸收的条件是( B ) A 发射线半宽度比吸收线的半宽度小 B 发射线半宽度比吸收线的半宽度小,且中心频率相同 C 发射线半宽度比吸收线的半宽度大,且中心频率相同 D 发射线频率和吸收线的频率相同 1-6. 原子吸收测定时,调节燃烧器高度的目的是 ( D ) (A) 控制燃烧速度 (B) 增加燃气和助燃气预混时间 (C) 提高试样雾化效率 (D) 选择合适的吸收区域

1-7 原子吸收光谱分析过程中,被测元素的相对原子质量愈小,温度愈高,则谱线的热变宽将是 ( A ) (A) 愈严重 (B) 愈不严重 (C) 基本不变 (D) 不变 1-8在原子吸收分析中, 采用标准加入法可以消除 ( A ) (A)基体效应的影响 (B)光谱背景的影响 (C)其它谱线的干扰 (D) 电离效应 1-9为了消除火焰原子化器中待测元素的发射光谱干扰应采用下列哪种措施( B ) (A) 直流放大 (B) 交流放大 (C) 扣除背景 (D) 减小灯电流 1-10与火焰原子吸收法相比, 无火焰原子吸收法的重要优点为 ( B ) (A)谱线干扰小 (B)试样用量少 (C)背景干扰小 (D)重现性好 2 填空题 2-1 使电子从基态跃迁到第一激发态所产生的吸收线,称为共振(吸收)线。 2-2 原子吸收光谱是由气态基态原子对该原子共振线的吸收而产生的。 2-3 原子吸收分析法其独有的分析特点是:灵敏度高、选择性好、抗干扰能力强、能测定的元素多。非火焰原子吸收光谱法的主要优点是:检出限低、取样量小、物理干扰小、可用于真空紫外区。 2-4 单道单光束火焰原子吸收分光光度计主要有四大部件组成,它们依次为光源(空心阴极灯) 、原子化器、单色器和检测器(光电倍增管) 。 2-5 原子吸收光谱法中应选用能发射锐线的光源,如空心阴极灯。空心阴极灯的阳极一般是钨棒,而阴极材料则是待测元素,管内通常充有低压惰性气体,其作用是导电、溅射阴极表面金属原子、从而激发金属原子发射出特征谱线。 2-6 原子吸收分析常用的火焰原子化器是由雾化器、混合室和燃烧器组成的。原子化器的主要作用是提供热能使试样蒸发原子化,将其中待测元素转变成基态气态原子,入射光束在这里被气态基态原子吸收。 2-7 试样在火焰原子化器中原子化的历程:喷雾、雾滴破碎、脱水、去溶剂、挥发成分子、原子化。 2-8 影响原子化效率的因素(火焰中)有:(1) 火焰类型与组成;(2) 控制合适的火焰

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

原子吸收光谱法思考题与练习题

1.原子吸收光谱和原子荧光光谱是如何产生的?比较两种分析方法的特点。 2.解释下列名词:⑴ 谱线轮廓;⑵ 积分吸收;⑶ 峰值吸收;⑷ 锐线光 源;⑸ 光谱通带。 3.表征谱线轮廓的物理量是哪些?引起谱线变宽的主要因素有哪些? 4.原子吸收光谱法定量分析的基本关系式是什么?原子吸收的测量为什么要用锐线光 源? 5.原子吸收光谱法最常用的锐线光源是什么?其结构、工作原理及最主要的工作条件是什 么? 6.空心阴极灯的阴极内壁应衬上什么材料?其作用是什么?灯内充有的低压惰性气体的 作用是什么? 7.试比较火焰原子化系统及石墨炉原子化器的构造、工作流程及特点,并分析石墨炉原子 化法的检测限比原子化法高的原因。 8.火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?试举例说明。 9.原子吸收分光光度计的光源为什么要进行调制?有几种调制的方式? 10.分析下列元素时,应选用何种类型的火焰?并说明其理由:⑴ 人发中的硒;⑵ 矿 石中的锆;⑶ 油漆中的铅。 11.原子吸收光谱法中的非光谱干扰有哪些?如何消除这些干扰? 12.原子吸收光谱法中的背景干扰是如何产生的?如何加以校正? 13.说明用氘灯法校正背景干扰的原理,该法尚存在什么问题? 14.在测定血清中钾时,先用水将试样稀释40倍,再加入钠盐至0.8mg/mL,试解释此操作 的理由,并说明标准溶液应如何配制? 15.产生原子荧光的跃迁有几种方式?试说明为什么原子荧光的检测限一般比原子吸收 低? 16.与测定下列物质,应选用哪一种原子光谱法,并说明理由: ⑴血清中的Zn和Cd(~Zn2mg/mL,Cd0.003ug/mL); ⑵鱼肉中的Hg(~xug/g数量级);

仪器分析实验报告原子吸收铜

华南师范大学实验报告 课程名称:仪器分析实验实验项目:原子吸收光谱法测定水 中的铜含量 原子吸收光谱法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定 量分析的方法。为了能够测定吸收值,试样需要转变成一种在适合的介质中存在的自由原子。化学火焰是产生基态气态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中。产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用的空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响方法的准确性。干扰一般分为四种:物理干扰、化学干扰、电离干扰和光谱干扰。物

理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确测定。干扰可以通过选择适当的实验条件和对试样的预处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 由于试样中基本成分往往不能准确知道,或是十分复杂,不能使用标准曲线法,但可采用另一种定量方法——标准加入法,其测定过程和原理如下。 取笑体积的试液两份,分别置于相同溶剂的两只容量瓶中。其中一只加入一定量待测元素的标准溶液,分别用水稀释至刻度,摇匀,分别测定其吸光度,则: Ax=kfx Ao=k(fo十fx) 式中,fx,为待测液的浓度;f。为加入标准溶液后溶液浓度的增量;测量的吸光度,将以上两式整理得:Ao分别为两次在实际测定中,采取作图法(图6—6)的结果更为准确。一般吸取四份等体积试液置于四只等容积的容量瓶中,从第二只容量瓶开始,分别按比例递增加人待测元素的标准溶液,然后用溶剂瓶稀释至刻度,摇匀,分别测定溶液fx,cx十fo,fx十2co,cx十3fo的吸光度为Ax,A1,Az,A:,然后以吸光度A对待侧元素标准溶液的加入量作图,得图6—6所示的直线,其纵轴上截距Ax为只含试样fx 的吸光度,延长直线与横坐标轴相交于cX,即为所需要测定的试样中该元素的浓度。

原子吸收光谱法习题及答案

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同)无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素单元素、多元素 (8)应用可用作定性分析定量分析定量分析 (9)激发方式光源有原子化装置有原子化装置 (10)色散系统棱镜或光栅光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中适中 3.已知钠蒸气的总压力(原子+离子)为1.013 l0-3Pa,火焰温度为2 500K时,电离平

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

相关主题
文本预览
相关文档 最新文档