当前位置:文档之家› OMEC 激光粒度分析仪分析报告讲解

OMEC 激光粒度分析仪分析报告讲解

OMEC 激光粒度分析仪分析报告讲解
OMEC 激光粒度分析仪分析报告讲解

欧美克仪器粒度测试报告粒径分布表

粒度特征参数

3/6

仪器类型

核准:

检测:

D P -02

激光粒度分析仪仪器提供:珠海欧美克仪器有限公司设备号 :331120006

文件名 :123. d p 2

测量参数:123. m d p 2进样系统:Cy c l e

Malvern-Zetasizer-Nano-ZS90-纳米粒径电位分析仪操作规程

Malvern Zetasizer Nano ZS90纳米粒径电位分析仪 操作规程 1.开启电源:等待30min以稳定激光光源; 2.开启电脑,双击桌面的工作站快捷图DTS(Nano);等待仪器自检(指示灯颜色变为绿色即自检成功),进入NanoZS90系统工作站; 3.建立测量条件的存储路径(单击File→new→磁盘D→个人数据→个人文件夹); 4.测量粒度: (1)单击工作栏上的Mesurement→Manual→Meaurement,在Manual-setting 窗口单击Meaurement Type→选择Size; (2) 单击Labels , 输入测量样品名(如CSNP-040301); (3)单击Mesurement,设置测量温度(℃)、测量次数(通常选Automatic)、测量循环次数(通常选1次); (4)单击Sample,设置样品参数:单击Manual选择Material Name(如为脂质体,请选择Liposome)/单击Dispersant 选择被分散的介质(通常选Water); (5)单击Cell,选择测量池类型(如聚苯乙烯塑料池选DTS0012测量池、如石英池选PCS1115 Glass-square aperture); (6)单击Result calculation,设置粒度计算模型(通常选General Purpose/若能确认样品为单峰分布则选Monomodal); (7)设置完毕,点击确认。 5.测量样品

按仪器指示,打开样品池盖,放入测量池(带▼符号面朝向测量者),点击Start 即开始测量(单击状态栏Result图标,可对粒度结果实时监控); 6.结果分析 测量结束,选择Records View 栏下任一记录条后 (1)单击状态栏上的Intensity PSD(M), 获得光强度粒度分布图/单击Intensity statistics获得光强度粒度的统计学分布详表/分别单击Number 和Volume,获得数量和体积分布结果图。 7.Zeta电位测量 (1).单击工具栏上的Measure→Manual→Measurement,在Manual-setting窗口单击Measurement Type,选择Zeta potential; (2).单击lables,输入测量样品名(如CSNP-040301); (3).单击Measurement, 设置测量温度(℃)、测量次数(通常选Automatic)、测量循环次数(通常选一次);单击Sample,设置样品参数:F值极性溶剂选择1.5(Smoluchowsi模型)/非极性溶剂选择1.0(Huckel模型)。 (4).单击Material Name,选择样品类型(如脂质体选择Liposome)/单击Dispersant(选择分散介质(通常选择Water) (5).单击Cell,选择测量池类型(DTS1060 Folded Capillary Cell) (6).单击Result calculation,设置电位计算模型(通常选General Purpose/若样品电导率高于5Ms,则选Monomodal); (7).设置完毕,点击确认 8.测量样品 按仪器提示,打开样品池盖,放入测量池,点击Start即开始测量(单击状态栏

影响激光粒度分析仪测试效果的几点关键因素

影响激光粒度分析仪测试效果的几点关键因素 济南微纳颗粒仪器股份有限公司李文涛 影响激光粒度分析仪器测试效果的因素有很多,本文讨论以下几点三点关键因素:光路对中,仪器校准,样品分散。 一光路对中 对中是指激光束的焦点通过光电探测阵列的圆心,激光粒度仪在测试前首先要保证激光束的焦点通过光电探测阵列的圆心,并且在测试过程中不偏移,才能得到正确的结果。 目前粒度仪采用的都是两维对中系统,一般采用步进电机通过轴套来带动移动尺来提供动力,步进电机和轴套、轴套和移动尺之间都是通过顶丝连接,导致三个器件的中心不在一条直线上,且移动尺正转和反转的之间的空转间隙较大,导致对中系统不稳定,不能快速而准确地完成对中,现有对中系统都没有限位系统,如果光路本身出现问题,对中系统就会出现误判断,一直朝着一个方向运动损坏机械传动组件。 针对现有技术的不足,微纳公司提供一种设计合理、结构简单紧凑、使用方便的三维自动对中系统。 为了提高对中系统的精准度,减小空转长度,采用带丝杠的步进电机作为动力部件。 为了提高对中系统的稳定性,采用消隙的滑轨作为机械传动组件的核心部件。 为提高对中速度和防止出现误操作,采用光电传感器与限位片结合的方式来限位。 新型的三维自动对中系统与现有技术相比,具有如下优越的特点: 1、实现了三维自动对中。 2、设计合理、结构简单紧凑。方便实用,可用于各型号激光粒度分析仪。

3、采用自带丝杠的步进电机和消隙滑轨结合的方式能够稳定、快速、准确地实现三维对中需求。 4、采用光电传感器与限位片结合的方式来限位,能够防止因光路问题引起的传动系统损坏。二仪器校准 此处要谈到了仪器校准不单单是对仪器采用国家标准物质进行仪器准确度的校正,仪器校准应包括以下几方面的内容: 1、仪器光学基准 只有在保证仪器光学系统工作正常的情况下,仪器的校准才有意义。光学窗口是激光粒度分析仪器重要的组成部分,因此测试前应保证光学窗口内外表面光洁,无划痕,清洁,无缺损。光学基准谱平滑依次过渡,无明显突起或凹陷。 2、外界条件对仪器的影响 外界条件主要包括环境的湿度,温度和电源电压的波动对仪器测试结果的影响。 3、仪器测量重复性 将仪器预热到规定时间,采用一种国家标准物质进行多次测试,一般测试样品6-10次,记录每次D50,计算测量平均值,标准偏差和相对标准偏差。 4、仪器测量相对误差 与仪器重复性测量不同的是,仪器相对误差的测试要采用至少三种样品以上的国家标准物质进行测试,每种样品独立测量3次并分别求其平均值,获得多个粒度测量的平均值,分别计算仪器测量平均值与粒度表标准物质标准值间的相对误差。 5、仪器分辨力 仪器分辨力的判断是采用测试两种样品混合测试的方法,两种粒度标准物质的移取量要根据其质量浓度而定,确保混合后的样品中标准物质的质量浓度比为1:2,将样品混合均匀后

激光粒度仪讲解

激光粒度仪测定粒度分布组成 一、试验目的 本实验目的是测定粒子尺寸及粒度大小分布,通过试验了解激光粒度仪的工作原理及组成,学习激光粒度仪的使用及操作;掌握分布曲线所显示的粒度大小及分布情况。颗粒及颗粒行为是无机非金属材科研究的基础。因此,颗粒的表征和颗粒的测试具有同样的重要性。粉体的粒度是颗粒在空间范围所占大小的线性 尺度。粒度越小,粒度的微细程度越大。颗粒群是指含有许多颗粒的粉体或分散体系中的分散相。若颗粒进度都相等或近似相等,称为单进度或单分散的体系或颗粒群。实际颗粒所含颗粒的粒度大都有一个分散范围,常称为多进度的、多谱的或多分散的体系或颗粒群。粒度分布是表征多分散体系中颗粒大小不均一程度的。粒度分布范围越窄,其分布的分散程度就越小,集中度也就越高。 粒度分布测量中分为频率分布和累积分布。累积分布横坐标表示各粒级的粒度;纵坐标表示在某Df以下的颗粒所占总颗粒的个数或质量百分数。通过粒度 分布曲线分析所显示的粒度大小和粒度大小分布,了解材料的研磨情况,推断出材料粒度不同其性能不同。同时可以反映出材料性能不同与材料颗粒粒径的大小 有关系。 二、试验仪器 RISE—2008型激光粒度分析仪,1000ml烧杯二只,试样若干种类 三、试验原理 根据光学衍射和散射的原理,从激光器发出的激光束经显微物镜聚集,针孔滤波和准直后,变成直径约10mm的平行光束,该光束照射到待测的颗粒上,就 发生了散射,散射光经傅立叶透镜后,照射到光电探测器上的任一点都对应于某一确定的散射角,光电探测器阵列由一系列同心环带组成,每个环带是一个独立的探测器,能将投射到上面的散射光线形地转换成电压,然后送给数据采集卡, 该卡将电信号放大,再进行AID转化后送入计算机。Rise-2008型激光粒度仪依据全量程米氏散射理论,充分考虑到被测颗粒和分散介质的折射率等光学性质, 根据激光照射在颗粒上产生的散射光能量反演出颗粒群的粒度大小和粒度分布 规律。

当前世界流行的粒度测试仪——Particle Metrix粒度分析仪

粒度分析仪在工业生产中非常重要,近些年,粒度分析仪迅速发展出现了多种粒度分析仪。目前全世界流行的粒度测试仪器应该是激光粒度分析仪了。 激光粒度分析仪仪是利用粒子的布朗运动,根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。 在挑选粒度分析仪的时候,大家一般都会考虑德国的Particle Metrix(简称PMX),Particle Metrix(简称PMX)是一家专业研发和制造表征胶体特征和生命科学研究的仪器公司。PMX公司拥有两条专业的产品线,针对不同的应用提供不同的专业仪器。在生命科学研究领域,PMX 公司的ZetaView产品采用了激光光源照射纳米颗粒悬浮液,利用全黑背景可以观察到单个纳米颗粒的布朗运动和电泳现象,能够实现单个纳米颗粒的跟踪,粒度测量,Zeta电位测量,浓度测量等。下面是德国Particle Metrix(简称PMX)的一款产品,我们来了解一下。 (纳米颗粒跟踪仪Zetaview) Zetaview的特点 - 全自动和无源稳定性 自动校准程序会持续工作,即便是样品池被取出后。防震动设计提高了视频图像的稳定性。通过扫描多个子体积并进行平均,就可以得到可靠的统计结果。有3种测量模式可供选择:粒径,zeta电位和浓度。样品池通道集成在一个插入式的盒子中,盒子可提供温度控制以及同管理单元的耦合。

测量范围 测量范围依赖于样品和仪器。对于金样品,颗粒跟踪技术的检测下限为10nm;相应的,如果样品的散射能力较弱,则检测下限会变得更大。假如样品稳定,不会沉淀或漂浮,zeta电位测量的粒径上限为50微米,对于粒径测量为3微米。 准确度和精度 Zeta电位:准确度5mv,精度4mv,重现性5mv; 粒度测试(对于100纳米的标准乳胶颗粒):准确度6nm,精度4nm,重现性4nm; 浓度测试(100纳米的颗粒,浓度10Mio粒子/ml):准确度0.8 Mio/ml,精度0.5Mio/ml,重现性1Mio/ml; 激光粒度仪集成了激光技术、现代光电技术、电子技术、精密机械和计算机技术,具有测量速度快、动态范围大、操作简便、重复性好等优点, 如果您的工厂需要这样的仪器,请及时与上海大昌洋行(DKSH)联系。DKSH是一家著名的国际贸易集团,总部位于瑞士的苏黎世。这家公司在上个世纪就与中国进行贸易了。如今已经有100多年的历史了。业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌洋行的产品种类特别丰富,大昌洋行科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。近些年,市场不断扩大,大昌洋行在中国设有多个销售,旨在为客户提供全方位的产品和服务。

马尔文激光粒度仪(MS2000)操作规程-干湿法

马尔文MS2000操作规程 一.开机顺序:先开仪器主机和湿法或干法进样器,再开电脑,仪器需要预热15到30分钟。 关机顺序:先关电脑软件,再关湿法或干法进样器和仪器主机。 二.湿法测量程序: a)手指轻轻按键控制面板第一个显示中间的on/off键盘,让水循环起来。 b)在桌面上双击Mastersizer2000操作软件,进入操作软件,输入操作者姓 名,然后鼠标左键点击确定。 c)在文件那里点击打开,打开已有的文件或新建一个文件,确保记录存放 在你所需要的文件名下。 d)单击“测量”菜单中的“手动”按钮,进入测量窗口。 e)然后点击“对光”,对光好后,如果背景状态正常,就不需要换水了(如 果是第一次打开软件的话,对光按键是隐藏在测量背景下面的,只要点 击“开始”键,仪器就会对光接着测量背景的)。 f)然后进入“选项”菜单,选择合适的光学参数,在“物质”那里选择好 催化剂,或者新鲜催化剂,再进入“文档”菜单,输入样品名称,然后 “确定”退出。 g)然后单击“开始”按钮,系统开始测量背景,当背景测量完成以后并提 示“加入样品”后,开始加入样品到遮光度10%,到控制的遮光度范围 内,然后单击“开始”或按“测量样品”仪器会进行测量样品。每测量 一次,结果会按记录编号和时间存在已经指定的文件里。 h)测量结束后,抬起烧杯上方盖子到两个黑线中间,附近会自动把样品池 的水排除,然后换新鲜的水并清洗两到三次(以背景正常为准)。三.干法测量步骤:干法测量可用SOP(标准操作规程)来进行测量。 1.把样品放入干法进样器的样品盘中 2.点击测量窗口中的“启用SOP” 3.选择已经设置好的SOP 4.根据仪器运行SOP提示输入样品的编号

欧美克LS-POP激光粒度分析仪作业指导书

1. 目的: 为了规范对激光粒度分析仪的操作使用,从而确保产品粒度检验结果的正确性、真实性、可靠性,特制定本文件。 2. 内容: 2.1 工作原理 利用颗粒对光的散射现象,根据散射光能的分布推算被测颗粒的粒度分布。 2.2 技术指标 测试范围:0.2~500μm 进样方式:湿法,循环进样器和静态样品池 重复性误差:<3% 测试时间:1-2分钟 独立探测单元数:32 光源种类:氦-氖激光 功率:2.0 mW 波长:0.6328 μm 2.3工作环境 2.3.1 仪器应安装在洁净、少尘、无烟、带空调的环境中。仪器的组件中含有激光管、光学镜头、针孔和测量窗口等。这些光学部件如果受到灰尘、油脂、石油产品或其他有害物质的侵蚀,将会造成光洁度下降、腐蚀、堵塞、功率下降等损害。 2.3.2 室温要稳定,没有明显的气流,没有直射阳光,否则会引起激光功率不稳,光束准直欠佳和外界杂散光的干扰,从而造成测量的重复性下降。 2.3.3 ,仪器的工作环境要求温度在5-35℃之间,空气湿度不可高于85% ,否则光学镜头表面可能会结露,致使光线不能聚焦,时间长了还会使镜头发霉。 2.3.4 地面不能有明显的震动,否则会导致光路系统偏移,引起测量结果异常。 2.3.5 电源电压220V,50/60HZ,有三头插座且接地线良好。 2.3.6严禁将零线和地线合接。 2.3.7本仪器的接地线不可与其他地线专用。 2.4 输出项目 粒度分布表、粒度分布曲线、平均粒径、中位径、比表面积等。

2.5 相关名词解释 2.5.1 粒径:又称颗粒尺寸,用以表征颗粒的大小。除了球形颗粒这一特例外,粒径并不是真实的物理尺寸,而是会随测量原理变化的等效尺寸。在激光散射法技术中,粒径是指与待测颗粒有相同的化学性质并有最相近的光散射特性的球形颗粒(组合)的直径(分布)。 2.5.2 粒度分布:是指一个粉体样品中各种粒径的颗粒所占的比例。因为任何一个粉体样品都是由大小不同的颗粒组成的,所以用粒度分布才能确切地描述其粗细情况。 2.5.3 悬浮介质:测量粒度时需要把样品分散在液体或气体中。这里的液体或气体就称为悬浮介质。合适的悬浮介质应该是既能让样品在其中分散,又不让样品在其中分解或发生化学反应的。 2.5.4 光能分布:即散射光的能量分布,就是照射到粒度仪各光电探测器上的散射光的能量。背景光能代表被光路上的尘埃粒子或各光学镜面的疵点散射的光能分布;而样品颗粒的散射光能是被待测样品的颗粒散射的光能,其分布与样品颗粒的粒度相对应,但不等于粒度分布。 2.5.5 遮光比:指测量用的照明光束被测量的样品颗粒阻挡的部分与照明光的比值。颗粒在测量介质中的浓度越高,则遮光比越大。 2.5.6 平均粒径:是指样品中所有颗粒的粒径的平均值,可以根据粒度分布计算而得。 2.5.7粒度分布宽度:用以表征样品粒径的均匀程度。粒度分布宽,表示样品颗粒的粗细不均匀;反之,则表示均匀。 2.6 准备阶段 2.6.1系统开机 打开电源开关 测量单元(预热半小时后进行下面步骤) 循环进样器 打印机 显示器 计算机主机 2.6.2 测量单元预热 2.6.2.1如关机超过半小时再重新开机,必须预热半小时。 2.6.2.2打开测量单元电源,半小时后,激光率才能稳定。如果环境温度较低,等待时间还要延长。 2.6.2.3判断激光功率是否达到稳定的依据是,背景光能分布的零环高度是否稳定。正常

颗粒度的检测 筛分法 标准操作规程

编制、审核、批准 生产管理部质量管理部行政管理部财 务 部QA 室QC 室 营养粉车间仓 储 中 心

1目的 建立颗粒度检查法标准操作规程,规范该项目检查操作。 2适用范围 本标准适用于食品添加剂中颗粒度检测的定量试验。 3职责 6.1QC检验员:负责对颗粒度检测的管理。 6.2QC主管:负责监督本规程的执行。 4参考文件 GBT 21524-2008 无机化工产品中粒度的测定筛分法. 5培训范围 6内容: 6.1手筛法:用手往复振摇实验筛,一手在振幅距离处轻轻碰撞实验筛,由此产生的 震动使小于孔径的颗粒通过筛孔的筛分方法。 6.2方法原理:把预先于(105±2)℃下干燥并冷却至温室的无机化工产品样品,在 相对湿度不大于50%的环境下,使用毛筛法进行筛分到达筛分终点后,称量不同筛子剩余样品的质量,计算出以筛网孔径为的粒度分布。 6.3仪器:实验筛、天平、羊毛筛子、电烘箱、超声波清洗器。 6.4分析步骤: 6.4.1将指定尺寸的实验筛从底盘到顶部按筛孔增大的顺序组装好。 6.4.2用天平称取20g~50g试样,精确至,放置在最顶部的实验筛上,盖上顶盖。 6.4.3测定(手筛法) 用手振动试验,振幅约为,频率约为120/min,筛分时间为3min~5min,静至 3min后,称量各筛的剩余物或筛下物,判定方案如)

6.4.4筛分过程应连续进行,直至1min内通过剩余粒度级最多的试验筛的试样的质量 分数小于。把留在筛上或底盘上的试料用毛刷仔细刷净,分别称量每个粒度级 别的试验筛的筛余物质量(M1),所有筛余物的量的总和与称样量之差应不大 于%,否则,重新取样测定。 6.4.5每次测定结束后,用超神波对整套筛子进行清洗,以保证试验筛堵塞不大于%。 6.4.6定期对试验筛进行计量或校准,若发现筛孔尺寸超过有关标准的要求或筛孔变 形、筛网破损,应及时更换实验筛。 6.4.7计算结果 粒度以细度或通过率质量分数w计,数值以%表示,按如下公式计算: W=(m-m1)÷M×100 式中: m1------试验筛筛余物的质量的数值,单位为克(g); m--------试料的质量的数值,单位为克(g); 7注意事项 8相关文件 9附录 10版本历史

马尔文激光粒度仪简介

laParticle size analysis-Laser diffraction methods (ISO-13320-1) Introduction Laser diffraction methods are nowadays widely used for particle sizing in many different applications. The success of the technique is based on the tact that it can be applied to various kinds of particulate systems, is fast and can be automated and that a variety of commercial instruments is available. Nevertheless, the proper use of the instrument and the interpretation of the results require the necessary caution. Therefore, there is a need for establishing an international standard for particle size analysis by laser diffraction methods. Its purpose is to provide a methodology for adequate quality control in particle size analysis. Historically, the laser diffraction technique started by taking only scattering at small angles into consideration and, thus, has been known by the following names: -fraunhofer diffraction; -(near-) forward light scattering; -low-angle laser light scattering (LALLS). However, the technique has been broadened to include light scattering in a wider angular range and application of the Mie theory in addition to approximating theories such as Fraunhofer and anomalous diffraction. The laser diffraction technique is based on the phenomenon that particles scatter light in all directions with an intensity pattern that is dependent on particle size. All present instruments assume a spherical shape for the particle. Figure 1 illustrates the characteristics of single particle scattering patterns: alternation of high and low intensities, with patterns that extend for smaller particles to wider angles than for larger particles[2-7,10,15 in the bibliography]. Within certain limits the scattering pattern of an ensemble of particles is identical to the sum of the individual scattering patterns of all particles present. By using an optical model to compute scattering for unit volumes of particles in selected size classes and a mathematical deconvolution procedure, a volumetric particle size distribution is calculated, the scattering pattern of which fits best with the measured pattern (see also annex A).

激光粒度仪实验报告

实验一LS230/VSM+激光粒度仪测定果汁饮料粒度 1实验目的 了解激光粒度仪的基本操作; 了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利用光电探测器进行信号的光电转换,并通过信号放大、A/D 变换、数据采集送到计算机中,通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 实验样品:果汁饮料。 实验仪器:LS230/VSM+激光粒度仪。 4实验步骤 按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵,仪器预热10分钟。

进入LS230的操作程序,建立连接,再进行相应的参数设置: 启动Run-run cycle(运行信息) (1)选择measure offset(测量补偿),Alignment(光路校正),measure background(测量空白),loading(加样浓度),Start 1 run(开始测量(2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于μm以下的颗粒,选择Include PIDS,并将分析时间改 为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高,反之亦然。 在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制好浓度,Obscuration应稳定在8-12%:假如选择了PIDS,则要把PIDS稳定在40-50%,待软件出现ok提示后,点击Done(完成)。 分析结束后,排液,并加水清洗样品台,准备下一次分析。 作平行试验,保存好结果,根据要求打印报告。 退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 实验结果 由实验结果显示: 平均粒径:μm

粉尘粒度分析仪操作规程

粉尘粒度分析仪操作规程 1.连接好电源线,打开电源开关,仪器显示状态1(state1)。 2.按进行键GO,使仪器进入状态2(state2)后,按ENT键,仪器提示输 入参数:粉尘真密度ρ P 、液体真密度ρ 1 、粘结系数V和沉降池高度H。 3.参数的确定: 粉尘真密度ρ P 可以采用真密度测试装置测定。 液体真密度ρ 1 、粘度系数V根据实验时温度查附录表1、表2。 沉降池高度以沉降池上的刻度线为准,从低到高一次是1、2、3、4,当液面高度与刻度线重合时的刻度线高度值就是沉降池高度H。 参数输入正确后,仪器提示显示OK。 4.用吸管往沉降池中移入适量的分散剂,液面高度高于1即可。把沉降盒向右旋转45度,降沉降池放入沉降盒内,然后再将沉降盒旋回原位,并确认已将沉降池顶紧,旋转圆盘上的光路对标准志线与仪器上的标准志线重合后,即可进行下一步工作。 5.按进行键GO,仪器进入状态4(state4)后,按ENT键测出背景值。 若分散剂用乙酸丁酯,为准确起见,测背景是应在乙酸丁酯溶液放入一张空白滤膜,然后降沉降池放入沉降盒;若分散剂用无水乙醇,则无需在分散剂放空白滤膜。该值应在2500~3800之间,如果超出范围,可通过调节光强调节旋钮使该值处于该范围。该步骤应在仪器测试前调节好。 6.测试完毕后,取出沉降池,将溶液倒出,然后将制备好的粉尘溶液倒入沉降池并放入仪器内,再按ENT键,测最大光密度值,仪器显示该值以100±10左右为宜,大于100时应稀释粉尘溶液,小于90时应加粉尘,直到调节到合适为止。每次测定之前都应反复转动圆盘,使粉尘容易均匀,之后才能测量。 7.按进行键GO,仪器进入状态5(state5)后,按ENT键开始测量,此时仪器随时间自动显示时间t和光密度值。 8.当达到所需粒径的测量时间时,按BRE键终止测量,仪器自动计算,并显示粒度分布值。 9.结果显示 按GO键,仪器进入状态1(state1);按RED键,输入此数值后按ENT键确

激光粒度分析结果在形貌分析中的应用讲解

实验技术与方法 激光粒度分析结果在形貌分析中的应用 胡汉祥1,2,丘克强1 (1.中南大学化学化工学院,长沙410083; 2.湖南建材高等专科学校化学化工系,衡阳421008) 摘要:激光粒度分析仪通常只用于颗粒大小与分布的测定。通过比较粉体颗粒的激光粒度分 析与扫描电镜分析的结果,发现,激光粒度分析仪所测定的粒度分布函数同时包含了一些形貌分析信息。利用这些信息可为试样进一步作SEM测定创造了条件。关键词:粒度分布;形貌;分析方法 中图分类号:TB302.1文献标识码:A文章编 号:100124012(2006)THEIMAGINGINFORMAEGRAPH OFPARTICLTION 2,,QIUKe2qiang1 (1.SchoolofEngineering,CentralSouthUniversity,Changsha410083,China; 2.DepartmentofEngineering,HunanBuildingMaterialsCollege,Hengyang421008,China) Abstract:TheLaserParticlesSizersareoftenemployedtodeterminetheaverageparticlediamet erandthe particlesizedistribution.TherelationsbetweentheparticlesdistributiongraphandSEMimage softhepowdersweredescribedinthispaper.Authorproposedthatthedoublemodesofthepartic lesdistributionmayimplythetwo2dimensionalconstructionoftheparticle.ItisusefulforSEM ditermination. Keywords:Particlesizedistribution;Pattern;Analysismethod 1引言 常用于粒度测定的方法有X射线衍射法、BET测定法、激光粒度分布仪测定法及透射电镜与扫描电镜测定法。能直观提供形貌分析信息只有透射电镜与扫描电镜

如何判断和选择激光粒度分析仪

如何判断和选择激光粒度分析仪 阅读次数:535 文章日期:2003-5-12 22:03:13 以往的粒度分析方法通常采用筛分或沉降法。常用的沉降法存在着检测速度慢(尤其对小粒子)、重复性差、对非球型粒子误差大、不适用于混合物料(即粒子比重必须一致才能较准确)、动态范围窄等缺点。随着激光衍射法的发明,粒度测量完全克服了沉降法所带来的弊端,大大减轻了劳动强度及加快了样品检测速度(从半小时缩短到了1分钟)。 激光衍射法测量粒度大小基于以下事实:即小粒子对激光的散射角大,大粒子对激光的散射角小。通过散射角的大小测量即可换算出粒子大小。其依据的光学理论为米氏理论和弗朗霍夫理论。其中弗朗霍夫理论为大颗粒米氏理论的近似,即忽略了米氏理论的虚数子集,并且假定颗粒不透明;并忽略光散射系数和吸收系数,即设定所有分散剂和分散质的光学参数均为1,因此数学处理上要简单得多,对有色物质和小粒子误差也大得多。同样,近似的米氏理论对乳化液也不适用。 另外,根据瑞利散射定律,散射光的光强与颗粒直径的六次方成正比,与散射光的光源波长的四次方成反比。这意味着颗粒直径减少10倍,散射光强减弱100万倍!而光源波长越短,散射光强度越高。 再者,由于小粒子散射角大,而主检测器面积有限,一般只能接受到最多45度角的散射光(即大于0.5微米的粒子)。那么,如何检测小粒子,如何克服小粒子光散射能量低,超出主检测器范围的问题,就成为评价激光粒度分析技术的关键。 所以,判断激光粒度分析仪的优劣,主要看其以下几个方面: 1 粒度测量范围粒度范围宽,适合的应用广。不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射(〈0.5μm〉如何检测。 最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。

激光粒度分布仪操作规程

1、目的:建立BT-2003激光粒度分布仪的操作规程,使检验人员正确BT-2003激光粒度分布仪。 2、适用范围:适用于粒径的测定。 3、责任人:化验员。 4、正文: 4.1基本操作: 4.1.1开机顺序:激光粒度分布仪→自动循环分散系统→启动粒度分析软件。4.1.2关机顺序:关闭粒度分析软件→自动循环分散系统→激光粒度分布仪。4.1.3常规操作时的操作步骤。 4.1.3.1测试准备:(1)填写“文件-数据库处置”信息。(2)点击“下一步”进入“测试参数”:选择合适的物质(如碳酸钙)、介质(水)等。在选择合适的分析模式。(3)下一步进入点“常规测试”进入测试窗口。(4)单击“进水”图标把循环池加满水,然后交替的循环泵和超声波消除气泡(至少3次),再开启超声、循环。 4.1.3.2开始测试:(1)背景:启动“测量-常规测试”测量系统背景。背景高度应在0.5-5之间(1-4最佳),横坐标长度小于20格,20格以后没有信号。点击“确认”后背景将被保存下来。(2)浓度:观察遮光率,这个值一般应在10%-15%之间。(3)分散:超声分散3分钟左右。(4)测试:点击“连续”按钮开始测试并显示结果。(5)保存和打印:点击保存或打印按钮,将结果保存到数据库里,测试结束。 4.1.3.3清洗:点击“自动清洗”图标清洗循环分散系统,然后准备进行下次测试。 4.1.4自动测试时的操作步骤: 4.1.4.1SOP设置:打开“文件-数据库处置”填好内容后点击下一 步进入测试参数后点击“自动流程”设置里面的各项参数后点“确认”保存下来,点击“自动测试”进入自动测试窗口后即可以进行自动测试。 4.1.4.2自动测试:点击“自动测试”按钮,待提示请加入样品时加入适量的样品(遮光率为10%-15%),就等待结果即可。 4.2准确性标定方法: 4.2.1标定周期:通常半年标定一次,仪器经过维修后要标定

英国马尔文激光粒度仪

英国马尔文激光粒度仪 仪器简介: Mastersizer 2000 粒度仪是马尔文仪器公司的最新激光衍射系统,技术先进,操作既简单又直观。采用模块化设计,配备一系列测量干湿样品的自动样品分散装置。采用内置的 SOP 系统进行控制,提供简便的开发和传输方法Mastersizer 系列激光粒度仪经过不断的发展,能够满足工业和学术界用户粒度测量的需要。Mastersizer 创造性地使用激光衍射技术,已成为世界上实验室粒度分析的首选产品。它可以精确、无损伤地测量从亚微米到几毫米的范围广泛的颗粒粒度,湿法和干法分散均可使用。 主要特点: 1,准确性和重复性 精度:根据马尔文质量审核标准, Dv50具有± 1% 的精度。仪器到仪器的重复性:根据马尔文质量审核标准, Dv50的重复性优于 1% RSD。 2,重复性保证 由软件驱动的 SOP 消除了用户间的差异,并且可以全面共享。所有测量参数自动嵌入结果文件,并可以通过电子邮件使收件人审阅。测量可以通过遵循同样的 SOP而重复出来。 3,广泛的测量范围 测量物质从0.02μm 到2000μm。 4,广泛的样品类型 适用于乳化液、悬浮液和干粉的测量。 5,简单易用 全自动,使用简单。消除了不同用户间的的可变性。减少对新用户的培训要求,并充分发挥熟练人员的潜力。 6,灵活性 多种样品分散装置。通过自动配置,快速地切换样品分散装置。"即插即用"盒式系统允许同时连接两个样品分散装置。 7,规范符合性 完整的 QSpec 验证文档,并符合 21 CFR 第 11 部分的规定要求。 8,界面友好的软件 由软件驱动的标准操作规程 (SOP) 消除了用户间的差异。

12-激光粒度仪标准操作规程

图1、BT-9300Z激光粒度分析系统 样品信息:单击“测量—文档”项即进入如图2所示的文档窗口,填入实际信息。文档是用来记录样品名称、介质名称、测试人员、检测单位、样品来源、测试日期和测试时间等测试相关的原始信息,这些信息将随测试结果一同保存到数据库中, 制定时间颁发部门 审核时间版

图2、“文档”窗口 图3、测试参数 光学参数:使用Mie散射理论进行数据处理。 折射率:激光粒度分析中的基本理论——米氏散射理论需要折射率参数。

操作 图4、常规测试窗口 状态(背景状态良好)。如果背景数值和状态正常,在“背景操作区”中单击“确认”就完成背景测试;如果背景值和状态不正常,单击“背景校准”系统将进入背景校准窗口,进行调整背景;“默认”是用上一次的背景值,此功能常用于测试过程中关闭测试窗口又重新进入不能重新测试背景时;“启动”是在按确认后需要重新测试背景时使用。图5是背景数据不正常时的几种情形及原因: 将样品混合均匀,用小勺在样品袋中的不同部位不同深度各取少量多次加

遮光率调整:①遮光率太高时:应在充分循环均匀的条件下排放掉一部分悬浮液,然后加水稀释,直到遮光率合适为止。克服遮光率过高的有效方法就是“少量多次”加样。②遮光率太低时:再向循环池中加适量的样品,直到遮光率合适并从最后一次加样算起图5、几种不正常的背景状况及原因 光路偏移-需要校准 样品池或透镜脏 介质不纯净或透镜脏 图6、常规测试界面说明 遮光率指示 散射光强坐标 探测器坐标

图7、测试窗口图8、“实时”窗口单次:在图7中单击“单次”按钮,将得到一次的测试结果。 就按它! 图9、单次测试 ?连续:在图7中单击“连续”按钮,将得到多次测试结果。 就按它! 图10、连续测试 ?图形设置:在图7中单击“图形设置”按钮,将可以设置测试区中光能信号图形显 示方式:柱型图、曲线、对比信号的比例和颜色,如图11。“对比信号”是指当前信号对比上一次测试的测量信号,启用后测试区同时显示两组信号。

在线粒度分析仪

DF-PSM超声波在线粒度分析仪在选矿厂的应用 丹东东方测控技术有限公司,辽宁丹东 摘要 国际选矿厂引进在线粒度分析系统,对磨矿产品的浓细度进行在线检测,通过磨矿自动控制,不同程度的提高了磨矿产品质量,都获得了较好的经济效益及社会效益。DF-PSM 在线超声波粒度仪起步较晚,但是选择方向明确,是针对中国选矿工艺行情研发的产品,更好、更快的适应了中国各大选矿厂工艺,并作出了重大的贡献。 关键词:粒度仪;磨矿;粒度;浓度;回收率 0、前言 选矿过程中,磨矿产品质量的好坏直接影响选别作业的经济技术指标,甚至影响最终产品的质量。对于每一种矿石,磨矿产品都要求有一个经济合理的浓细度范围。磨矿产品粒度过粗,单体解离程度不足或难以上浮,造成资源浪费;磨矿产品粒度过细,会产生“过磨”现象,不但影响浮选效果,而且会增加生产成本。所以磨矿过程控制一直是选矿工作者研究的课题之一。 以往选矿厂一直是采用浓度壶法进行浓细度检测,虽然能够得到准确结果,但检测的及时性和检测频率受到一定的局限,对连续生产过程控制的指导性不强。为使磨矿过程控制有效及时,磨矿分级作业达到最佳效果,磨矿自动控制上升到一个新的水平,必须引进矿浆浓细度在线检测设备,对矿浆浓细度进行实时检测。 矿浆粒度在线分析仪在国外矿山应用较早,应用成熟的设备也较多,但国内应用起步较晚。近年来,随着选矿自动控制技术的日益成熟,矿浆粒度在线分析仪的应用在国内选矿厂也引起了重视,该技术在国内许多选矿厂的磨矿自动化控制过程中,得到了广泛的应用,特别是新建大中型选矿厂,几乎全部引进了矿浆粒度在线分析仪。 1、东方测控DF-PSM 在线超声波粒度分析仪特点 DF-PSM超声波粒度仪作为在线检测仪器系统,不仅能够产生一个代表粒度分布的单点粒度信号输出;而且也可以利用DF-PSM 超声波粒度仪对磨矿粒度分布的敏感性来控制输送给下一工序的矿浆粒度累积分布范围,这样的话工厂能够获得高于原始设备成本几倍的利润。目前DF-PSM具有能提供多种粒级输出的能力,能够提供丰富的磨矿粒度分布方面的信息。DF-PSM 粒度仪所具有的对磨矿/回收工厂工艺运行情况洞察和发现问题的潜力会为工厂带来巨大的经济效益。作为一台测量设备,不仅通常要满足若干类型的磨矿回路需要,而且要发挥仪器最大潜能,这就需要对仪器进行正确的应用。正确理解某些统计规律的过程控制原理以及这些原理在磨矿回路控制上的应用对于改进工厂总体效率是特别有帮助的。在线粒度测量的精度和可靠性可以确保磨矿回路运行在最接近于期望的设定点上。磨矿回路运行于最大给矿量的情况下,DF-PSM 可用来控制磨矿回路运行

粒度分析仪简介及使用

实验7、粒度分析仪简介及使用 纯牛奶粒度分布的测定(激光粒度法) 一、实验目的: 1.掌握粒度分析仪的测定原理及操作方法。 2.测定纳米粒子的粒度尺径及分布和Zeta电位性质。 二、实验原理: 2.1 激光粒度仪介绍 激光粒度分析仪仪是利用粒子的布朗运动,根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。对粒度均匀的粉体,比如磨料微粉,要慎重选用。 激光粒度仪集成了激光技术、现代光电技术、电子技术、精密机械和计算机技术,具有测量速度快、动态范围大、操作简便、重复性好等优点,现已成为全世界最流行的粒度测试仪器。 激光粒度仪作为一种新型的粒度测试仪器,已经在其它粉体加工与应用领域得到广泛的应用。它的特点是测试速度快、重复性好、准确性好、操作简便。对提高产品质量、降低能源消耗有着重要的意义。 2.2激光粒度仪的原理 激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。如图1所示。 图1,激光束在无阻碍状态下的传播示意图 米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的,如图2所示。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。

激光粒度仪主要品牌分析(报告精选)

北京先略投资咨询有限公司

激光粒度仪主要品牌分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.doczj.com/doc/7f2977453.html, 1

目录 (最新版报告请登陆我司官方网站联系) (1) 公司网址: https://www.doczj.com/doc/7f2977453.html, (1) 激光粒度仪主要品牌分析 (3) 第一节激光粒度仪品牌构成 (3) 第二节主要品牌区域市场占有率分析 (4) 第三节品牌满意度分析 (4) 2

激光粒度仪主要品牌分析 第一节激光粒度仪品牌构成 品牌知名度以及市场占有率是评价品牌竞争实力的重要指标。产业结构低,缺乏品牌是导致企业缺乏讨价还价能力的深层次原因。我国激光粒度仪行业的产品结构还不太合理,高科技含量、高附加值的产品不多,企业在市场竞争中拼资源、拼价格的现象比较严重。面对资源的制约和其他同类产品的激烈竞争,必须加强技术创新和产品创新,提升产品品牌才行。 从消费者正在使用产品的分布情况可以看出不同品牌的市场占有情况。因激光粒度仪产业进入门槛较高,生产企业较为集中,因此目前我国共有各种类型的颗粒测试仪器生产厂家二十余家,在国产粒度仪生产厂家中,丹东市百特仪器有限公司、珠海欧美克仪器有限公司、济南微纳颗粒仪器股份有限公司、成都精新粉体测试设备有限公司等几个厂商已经形成一定的生产规模,是国内颗粒测试仪器的主要生产商及出口商。 与此同时,国产品牌的激光粒度仪性能逐渐提高,新产品不断推出,如济南微纳颗粒仪器股份有限公司的Winner2005、Winner2008系列智能激光粒度仪测试范围下限0.05微米,2009年研制成功的Winner800系列光子相关纳米激光粒度仪测试范围下限更是达到了1纳米(0.001微米)。与进口颗粒测试仪器相比,国产仪器在价格、成本与售后服务上具有明显优势。首先,在产品价格上,进口颗粒测试仪器的平均价格约4万美元/台,价格是国内同类型仪器的数倍。其次,在售后服务上,国产颗粒测试仪器具有天然优势,能做到收费低廉、反应迅速、零配件及时供应;而进口仪器则受人员、授权、地理、语言等方面限制,面临时间长、费用高等问题。与进口激光粒度仪相比,正是由于国产粒度仪的技术水平不断创新发展使国产仪器在价格和成本控制上具有明显优势。 3

相关主题
文本预览
相关文档 最新文档