当前位置:文档之家› 数字电子技术的应用及发展趋势探析

数字电子技术的应用及发展趋势探析

数字电子技术的应用及发展趋势探析
数字电子技术的应用及发展趋势探析

数字电子技术的应用及发展趋势探析

摘要:随着电子设备的普及,数字电子技术应用到

各个领域,发展前景良好。数字电子作为一种具有高科技效力的技术,它的应用与发展对我国各个行业来说都是尤为重要的。本文主要分析数字电子技术数字电子技术的应用领域,并在此基础上探析了其未来的发展趋势。

关键词:数字电子技术;应用;发展趋势数字电子技术是当前发展最快的学科之一。近年来,数字电子技术作为电子技术领域中的一项新兴科技,越来越受到关注,尤其是数字电子技术在各行各业的广泛应用,更使它拥有了广阔的发展前景。

1、数字电子技术概述

1.1数字电子技术的概念

数字电子技术属于信息电子学科,集成电路、发光二极管等都是数字电子技术具体的物质体现,它以集成芯片、电路、逻辑门电路为研究对象,伴随信息技术的发展,其电路对于信号处理显示出了明显的优势。以处理信号为例,信号处理过程中,按照一定比例在数字电路上,把模拟信号转换成数字信号,再经数字电路将数字信号进行处理,完成处理之后,根据需要反复转化成模拟信号。

1.2电子技术的分类

电子技术包括数字电子技术和模拟电子技术两大类。这两大类技术有着相辅相成的联系,其中最明显和被广泛使用的就是数字电路信号的处理,即模拟信号(“0101”信号)

与数字信号的相互转换。但这两者之间也存在着一些不同之处。首先,与模拟信号相比,数字信号波形更简单易识,没有太多的变化,只有高电平和低电平两种,出现误差的几率很小,这无疑也给信号的接收和处理方面提供了更加便捷的条件,这一点本文将在后文进行详细的论述。其次,因为数字电子技术的诸多优点,例如稳定性强、可靠性高等,很多模拟信息被电子信息所取代,其中最明显的就是在声音和图像的存储方式上,过去声音和图像是由模拟信号组成的磁带、磁盘来储存,而现在这些都变成了光盘存储,无疑更加便捷也更易保存。

1.3数字电子技术的优势

数字电子技术作为一种具有重要作用的新兴技术,在我国电子信息化的进程中发挥着巨大的推动作用。近年来,数字电子技术以其波形简单、精确度高、抗感染能力强等多重优势,在多种方面的应用中发挥了重要的作用,为我国经济社会和信息产业的发展作出了巨大的贡献。

2、数字电子技术的应用

2.1在雷达接收机中的应用

雷达接收机属于电子设备,需要具备高精准度和高抗干扰功能。通过将数字电子技术运用到雷达接收机中,可有效实现高精准度和抗干扰。目前,市场上最多的是模拟接收机,其运行速度较慢,严重影响了工作进度和效率。通过采用数字电子技术进行数字接收,可有效加大雷达工作频率的宽度,从而提高精准度和灵敏性。同时,通过数字电子的转型,可确保低噪声放大器、I/Q解调技术和抑制混合电路的研发得

以实现。

2.2在USB总线微波功率计中的应用

在USB总线微波功率计的应用中,主要是将相应的软件与数字电子技术有机结合起来,从而实现微波功率的采集和传输功能。USB总线微波功率计的组成如图1所示。其工作原理主要是通过功率探测仪器设备对微波功率信号进行收集,将微波功率信号传输到已经完成抄写程序的微信号检测电路芯片中,并对其进行去噪、求差值等处理。其中,功率探测仪器设备主要包括微信号检测电路和USB通信接口。通过应用数字电子技术,可使其体积更小巧、使用方便,提高了测量的精准度,并可与个人计算机进行数据的交换和收发工作,具有较大的应用优势。

2.3数字电子技术在网络中的应用

随着网络技术和计算机技术的快速发展,数字电子技术在网络中的应用范围不断扩大,同时,网络环境为数字电子

技术提供了较好的发展环境。数字电子技术在网络中的应用具有较大的优势,可提升抗干扰能力,且储存功能更加强大,可确保信息传输的安全。

1)对信号进行数字化处理。在网络信号中,通过使用数字电子技术,可确保信号向着数字化的方向发展。信号的数字化需要进行抽样、量化和编码的步骤。抽样是指用每隔一定时间的信号样值序列来代替原来在时间上连续的信号,也就是在时间上将模拟信号离散化。量化是用有限个幅度值近似原来连续变化的幅度值,把模拟信号的连续幅度变为有限数量的有一定间隔的离散值。编码则是按照一定的规律,把量化后的值用二进制表示,然后转换成二值或多值的数字信号流。这样得到的数字信号可以通过电缆、微波干线、卫星通道等数字线路传输。

2)处理信号。数字电子技术可以对网络进行信号处理。数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到了广泛的应用。

3)处理信号、传输信息。数字电子技术的应用使得网络信号的处理变得更加高效。信号通过一定的转化,由信号变为数字,再由数字变为信号,使得信息实现了高速传输化。数字电路在网络信号的处理上有很强大的功能,而数字电子技术则使这种功能得到了很好的发挥,通过模拟信号、数字

信号之间的转换,使通信的数字化成为了可能。数字通信的载体是数字,使得信息的传输变得异常容易,数字的通信使得信息的传输变得异常的迅速,并且内容量大,信息的高速公路化,需要一个比较完整的网络体系,这种网络体系一般由计算机、日常电子产品、数据库、通信网络构成。要想实现信息的控制和处理,需要一些高性能的计算机和一些服务硬件,通过他们的共同作用,能够使模拟信号得以数字化,从而实现信息的输出和输入,经过一定的传输后,进行信息的保存,然后将其再转为模拟信号,这个过程就已经实现了信息的控制和处理。

3、数字电子技术的作用及发展趋势

3.1数字电子技术应用产生的作用

数字电子技术的应用,不仅解决了企业生产过程中的问题,还提高了我国经济发展的水平。因此,现对数字电子技术的作用进行简单的分析,并将其概括成以下四点:1)有利于提高企业的生产效率;

2)有利于提高各种仪器的精确度;

3)有利于降低企业的生产成本;

4)有利于国家相关部门研发出具有更高性能的新型电子仪器。

3.2数字电子技术的发展趋势

随着信息化时代的到来,社会需求推动着电子技术的飞

速发展,数字电子技术更是成为社会和经济发展的主力军,市场需求推动着信息技术向更深层次的迈进。因此科技信息的不断进步加速了产业的升级换代,这就要求数字电子技术必须要顺应市场的需求。数字化是电子技术的必由之路,这已经成为当代的共识。我国的电子技术研究者经过多次探索和实验,使得数字化的历程在不断进行着一系列的重大变革。当代我们所应用的电子产品由于技术的不断革新正在以前

所未有的速度进行更新换代,而这种革新又主要表现在大规模可编程逻辑器件的广泛应用之中。特别是在当今这个时代,半导体的工艺水平经过不断开发已经达到了深亚微米,芯片的集成高度也达到千兆位,时钟频率也正在向千兆赫兹以上发展,数据传输位数甚至达到了每秒几十亿次,这些技术在之前是难以想象的,这就注定SOC(System 0h aCh5p)片上系统必将成为未来集成电路技术的发展趋势。电子设计技术在不断的更新换代,发展到了今天,又将面临另一次更大意义的突破―5PGA在EDA(电子设计自动化)基础上的广泛应用,此技术的广泛应用必将在我们的信息时代再创奇迹。

结语:综上所述,随着计算机的迅速普及,社会经济的发展越来越离不开数字电子技术,同时它也对数字电子技术的发展提出了更多更高的要求,在经济不断发展的过程中,数字电子技术会随着时代的发展而不断改进和完善。

电力电子技术课后习题全部答案解析

电力电子技术 2-1与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力? 答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。 2.电力二极管在P区和N区之间多了一层低掺杂N区,也称漂移区。低掺杂N区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N区就可以承受很高的电压而不被击穿。 2-2. 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。要使晶闸由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 2-4 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I1、I2、I3。 解:a) I d1= Im 2717 .0 )1 2 2 ( 2 Im ) ( sin Im 2 1 4 ≈ + = ?π ω π π π t I1= Im 4767 .0 2 1 4 3 2 Im ) ( ) sin (Im 2 1 4 2≈ + = ?π ? π π π wt d t b) I d2= Im 5434 .0 )1 2 2 ( 2 Im ) ( sin Im 1 4 = + = ?wt d t π π ? π I2= Im 6741 .0 2 1 4 3 2 Im 2 ) ( ) sin (Im 1 4 2≈ + = ?π ? π π π wt d t

电子封装技术发展现状及趋势

电子封装技术发展现状及趋势 摘要 电子封装技术是系统封装技术的重要内容,是系统封装技术的重要技术基础。它要求在最小影响电子芯片电气性能的同时对这些芯片提供保护、供电、冷却、并提供外部世界的电气与机械联系等。本文将从发展现状和未来发展趋势两个方面对当前电子封装技术加以阐述,使大家对封装技术的重要性及其意义有大致的了解。 引言 集成电路芯片一旦设计出来就包含了设计者所设计的一切功能,而不合适的封装会使其性能下降,除此之外,经过良好封装的集成电路芯片有许多好处,比如可对集成电路芯片加以保护、容易进行性能测试、容易传输、容易检修等。因此对各类集成电路芯片来说封装是必不可少的。现今集成电路晶圆的特征线宽进入微纳电子时代,芯片特征尺寸不断缩小,必然会促使集成电路的功能向着更高更强的方向发展,这就使得电子封装的设计和制造技术不断向前发展。近年来,封装技术已成为半导体行业关注的焦点之一,各种封装方法层出不穷,实现了更高层次的封装集成。本文正是要从封装角度来介绍当前电子技术发展现状及趋势。

正文 近年来,我国的封装产业在不断地发展。一方面,境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,拉动了封装产业规模的迅速扩大;另一方面,国内芯片制造规模的不断扩大,也极大地推动封装产业的高速成长。但虽然如此,IC的产业规模与市场规模之比始终未超过20%,依旧是主要依靠进口来满足国内需求。因此,只有掌握先进的技术,不断扩大产业规模,将国内IC产业国际化、品牌化,才能使我国的IC产业逐渐走到世界前列。 新型封装材料与技术推动封装发展,其重点直接放在削减生产供应链的成本方面,创新性封装设计和制作技术的研发倍受关注,WLP 设计与TSV技术以及多芯片和芯片堆叠领域的新技术、关键技术产业化开发呈井喷式增长态势,推动高密度封测产业以前所未有的速度向着更长远的目标发展。 大体上说,电子封装表现出以下几种发展趋势:(1)电子封装将由有封装向少封装和无封装方向发展;(2)芯片直接贴装(DAC)技术,特别是其中的倒装焊(FCB)技术将成为电子封装的主流形式;(3)三维(3D)封装技术将成为实现电子整机系统功能的有效途径;(4)无源元件将逐步走向集成化;(5)系统级封装(SOP或SIP)将成为新世纪重点发展的微电子封装技术。一种典型的SOP——单级集成模块(SLIM)正被大力研发;(6)圆片级封装(WLP)技术将高速发展;(7)微电子机械系统(MEMS)和微光机电系统(MOEMS)正方兴未艾,它们都是微电子技术的拓展与延伸,是集成电子技术与精密

数字电路及其应用(一)

数字电路及其应用(一) 编者的话当今时代,数字电路已广泛地应用于各个领域。本报将 在“电路与制作”栏里,刊登系列文章介绍数字电路的基本知识和应用实例。 在介绍基本知识时,我们将以集成数字电路为主,该电路又分TTL和CMOS 两种类型,这里又以CMOS集成数字电路为主,因它功耗低、工作电压范围宽、扇出能力强和售价低等,很适合电子爱好者选用。介绍应用时,以实 用为主,特别介绍一些家电产品和娱乐产品中的数字电路。这样可使刚入门的 电子爱好者尽快学会和使用数字电路。一、基本逻辑电路 1.数字电路 的特点 在电子设备中,通常把电路分为模拟电路和数字电路两类,前者涉及模 拟信号,即连续变化的物理量,例如在24小时内某室内温度的变化量;后者 涉及数字信号,即断续变化的物理量,如图1所示。当把图1的开关K快速通、断时,在电阻R上就产生一连串的脉冲(电压),这就是数字信号。人们把用来 传输、控制或变换数字信号的电子电路称为数字电路。数字电路工作 时通常只有两种状态:高电位(又称高电平)或低电位(又称低电平)。通常把高电 位用代码“1”表示,称为逻辑“1”;低电位用代码“0”表示,称为逻辑“0”(按正逻 辑定义的)。注意:有关产品手册中常用“H”代表“1”、“L”代表“0”。实际的数字 电路中,到底要求多高或多低的电位才能表示“1”或“0”,这要由具体的数字电 路来定。例如一些TTL数字电路的输出电压等于或小于0.2V,均可认为是逻 辑“0”,等于或者大于3V,均可认为是逻辑“1”(即电路技术指标)。CMOS数字 电路的逻辑“0”或“1”的电位值是与工作电压有关的。讨论数字电路问 题时,也常用代码“0”和“1”表示某些器件工作时的两种状态,例如开关断开代 表“0”状态、接通代表“1”状态。 2.三种基本逻辑电路

电力电子技术作业解答

电力电子技术 作业解答 教材:《电力电子技术》,尹常永田卫华主编

第一章 电力电子器件 1-1晶闸管导通的条件是什么?导通后流过晶闸管的电流由哪些因素决定? 答:晶闸管的导通条件是:(1)要有适当的正向阳极电压;(2)还有有适当的正向门极电压。 导通后流过晶闸管的电流由阳极所接电源和负载决定。 1-2维持晶闸管导通的条件是什么?怎样使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是:流过晶闸管的电流大于维持电流。 利用外加电压和外电路的作用使流过晶闸管的电流降到维持电流以下,可使导通的晶闸管关断。 1-5某元件测得V U DRM 840=,V U RRM 980=,试确定此元件的额定电压是多少,属于哪个电压等级? 答:根据将DRM U 和RRM U 中的较小值按百位取整后作为该晶闸管的额定值,确定此元件的额定电压为800V ,属于8级。 1-11双向晶闸管有哪几种触发方式?常用的是哪几种? 答:双向晶闸管有Ⅰ+、Ⅰ-、Ⅲ+和Ⅲ-四种触发方式。 常用的是:(Ⅰ+、Ⅲ-)或(Ⅰ-、Ⅲ-)。 1-13 GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能? 答:因为 GTO 与普通晶闸管在设计和工艺方面有以下几点不同:(1)GTO 在设计时2α较大,这样晶体管 V2控制灵敏,易于 GTO 关断;(2)GTO 导通时的21αα+更接近于 1,普通晶闸管15.121≥+αα,而 GTO 则为05.121≈+αα,GTO 的饱和程度不深,接近于临界饱和,这样为门极控制关断提供了有利条件;(3) 多元集成结构使每个GTO 元阴极面积很小,门极和阴极间的距离大为缩短,使得P2极区所谓的横向电阻很小,从而使从门极抽出较大的电流成为可能。 第二章 电力电子器件的辅助电路 2-5说明电力电子器件缓冲电路的作用是什么?比较晶闸管与其它全控型器件缓冲电路的区别,说明原因。 答:缓冲电路的主要作用是: ⑴ 减少开关过程应力,即抑制d u /d t ,d i /d t ;

浅谈机械电子技术的未来发展趋势

浅谈机械电子技术的未来发展趋势 摘要:机械电子技术融合了机械、电子以及计算机等多方面的专业技术和知识,通过协调配合形成了机电一体化。在实际的工作中,利用计算机把集成控制、数 据检测分析以及数据处理等功能集中到轻便的机械配件中,这样一来解改善了传 统机械操作复杂笨重的缺点。另外应用电子技术还可以实现一部分自动化,使机 械能够在程序的控制下自动完成一些任务,这样可以高效率地完成批量生产,提 升生产配件的标准化,节省大量的人力与时间,促进了企业经济效益的提升,有 利于企业在市场中取得竞争优势。 关键词:机械电子技术;基本现状;发展趋势 1机械电子技术 机械电子技术也称之为机电一体化,是指在机械生产活动过程中运用的电机 技术,实现电子技术和机械生产的有效结合,对于提高生产效率和质量具有重要 意义。我国对于机械电子技术研究起步比较晚,只能够应用在狭小范围之内,但 是随着技术水平提升,机械电子技术获得了创新,覆盖范围在不断扩大,而且纳 入了多种学科,综合型的技术体系慢慢形成。在机械控制、操作以及动力系统等 方面获得大大提高,更加具体、全面分配电子技术功能,有利于促进机械设备结 构优化,提高资源利用率,创造出巨大经济效益。 2机械电子技术特征 相比较于传统机械,机械电子技术在设计产品的时候,会体现出灵活性的特点,而且操作起来非常快捷方便。同时要具有一定的创新性,可以满足多元化需求,不断拓展市场领域,获得更好的发展机遇。在自动化系统控制下,机械电子 技术只需要只需要按照规定就可以完成生产活动,过程中不会受到人为主观因素 影响,大大提高了产品质量。由此可见,机械电子技术功能是非常强大的,代表 着先进生产水平,可以适应发展的需求。 3机械电子技术的应用 3.1质量检测 科技发展有效提高了信息的流动性,并且也产生了大量高性能材料,此材料 逐渐代替传统工业材料,所以投入及重视程度在不断提高。设备机械化要满足现 代工业生产需求,传统根据人工检测技术已经无法满足科技高精度需求,所以目 前所发展的高精度设备就是机械电子技术的重要展现。 3.2农业方面 在信息化时代不断发展的过程中,农业发展进程要求有效实现现代化的进程,从而支撑国民经济的发展。农业现代化发展能够有效解决低效率、低品质及低产 量等问题,和其具有密切关系的农业机械具有重要的作用。利用现代化机械电子 信息技术融入,能够使农业机械效率得到提高,促进现代化农业的持续发展。 3.3电子产品 在机械生产过程中,为了使设备重量及体积得到降低,使部分零件通过电子 部件进行代替,以此使设备灵活性得到提高。电子产品制造中的机械微电子技术 相关全新的纳米技术能够精准掌握部件内部结构,并且还能够实现合理科学改造。 3.4工业制造 将微电子技术应用到产品制造中,使行业市场竞争力得到进一步的提高,从 而有效实现企业经济效益持续发展。比如,将微电子技术应用到汽车制造行业中,能够使防盗系统及监控系统性能得到进一步提高。在汽车电子引擎系统中使用微

电力电子技术习题与解答

《电力电子技术》习题及解答 思考题与习题 什么是整流它与逆变有何区别 答:整流就是把交流电能转换成直流电能,而将直流转换为交流电能称为逆变,它是对应于整流的逆向过程。 单相半波可控整流电路中,如果: (1)晶闸管门极不加触发脉冲; (2)晶闸管内部短路; (3)晶闸管内部断开; 试分析上述三种情况负载两端电压u d和晶闸管两端电压u T的波形。 答:(1)负载两端电压为0,晶闸管上电压波形与U2相同; (2)负载两端电压为U2,晶闸管上的电压为0; (3)负载两端电压为0,晶闸管上的电压为U2。

某单相全控桥式整流电路给电阻性负载和大电感负载供电,在流过负载电流平均值相同的情况下,哪一种负载的晶闸管额定电流应选择大一些 答:带大电感负载的晶闸管额定电流应选择小一些。由于具有电感,当其电流增大时,在电感上会产生感应电动势,抑制电流增加。电阻性负载时整流输出电流的峰值大些,在流过负载电流平均值相同的情况下,为防此时管子烧坏,应选择额定电流大一些的管子。 某电阻性负载的单相半控桥式整流电路,若其中一只晶闸管的阳、阴极之间被烧断,试画出整流二极管、晶闸管两端和负载电阻两端的电压波形。 解:设α=0,T 2被烧坏,如下图: 相控整流电路带电阻性负载时,负载电阻上的U d 与I d 的乘积是否等于负载有功功率,为什么带大电感负载时,负载电阻R d 上的U d 与I d 的乘积是否等于负载有功功率,为什么 答:相控整流电路带电阻性负载时,负载电阻上的平均功率d d d I U P =不等于负载有功功率UI P =。因为负载上的电压、电流是非正弦波,除了直流U d 与I d 外还有谐波分量Λ ,,21U U 和Λ,,21I I ,负载上有功功率为Λ+++=22212P P P P d >d d d I U P =。

未来20年汽车电子技术发展趋势

收稿日期:2009-08-02 作者简介:高成(1937-),男,陕西人,教授级高工,主要从事汽车电子发展方向的评估和规划. 未来20年汽车电子技术发展趋势 高 成1,邱 浩2 (1. 深圳市航盛电子股份有限公司,广东 深圳; 2. 深圳职业技术学院 汽车与交通学院,广东 深圳 518055) 摘 要:安全性、节能、减排和舒适娱乐性是汽车电子未来发展的主要方向,全球各大汽车电子研发团队争相加大对这4个方面的研发力度.本文介绍了全球最具影响力的来自欧洲、美洲和亚洲的6个专业汽车电子研发公司的最新研究进展,主要集中在汽车安全、动力性、环保、车载通讯、信息娱乐、半导体技术和微控制器的开发上.分析结果表明,未来20年内汽车电子工业发展的重点将转移到第三世界国家,汽车性能的提高更多地依赖于电子技术的提升,电动汽车将不可阻挡地占据重要地位. 关键词:汽车电子;安全;环保;半导体 中图分类号:TK9;TN3 文献标识码:A 文章编号:1672-0318(2010)01-0033-07 在过去10年里,汽车工业发生了2个显著变化,一是增长的基点正在从经欧美市场向以亚洲国家为主的发展中地区市场转移[1].数据显示,2007-2012年亚洲和欧洲将会主导全球汽车产量的89%;二是在市场成熟的欧美国家,汽车的性能的提高更多地依赖于电子技术.有研究表明,1989年至2010年,电子设备在整车制造成本所占比例,由16%增至40%以上.目前每部新车的IC 成本约在310美元左右,估计到2015年将增长到400美元左右.无论是市场重心向发展中国家转移,还是技术重心向电子技术倾斜,都将势必影响到汽车电子发展的方向[2].而且,其技术本身也将面临着来自性能、安全以及环保法规多方面的苛刻要求.今后10年,电子技术在汽车工业中扮演着多大的作用,它又应该如何承担起汽车电子化的重任?本文就全球一些专业的汽车主体厂商和零配件厂商进行专业分析,展望未来20年汽车电子方向的发展趋势. 1 德尔福:绿色、安全和通讯是 汽车电子的未来 德尔福通过对推动全世界新技术、产品和市 场发展的全球趋势全面的调查和研究,发现汽车电子行业的未来就是绿色性环保性、安全性和连通通讯. (1)环保型.全球汽车行业最主要的发展趋势就是倾向于发展高效燃料、低碳排放量的发动机[3].目前有许多选择方案,其一就是先进的柴油发动机和电子控制系统,在公路驾驶时,其燃料经济性比汽油发动机提高30%~40%;其二就是电动动力系统或混合动力汽车(HEV ).混合动力汽车技术应用有许多结构,但都涉及一个小型电池组、一个电子控制器及一个可以使汽车发动机在停车时自动关闭并在发动机自动重起前对汽车进行再次电动加速的电动机.混合动力汽车系统可以提高汽车的燃油经济性达30%~40%,并降低碳排放达60%.纯电动汽车的研发工作仍在继续,而且范围已拓展至电动汽车或插入式混合动力汽车.这些汽车采用更大的电池组,可以在纯电动驱动的情况下,行驶更长的距离.最后,供应商和汽车制造商正在开发气缸压力传感和均质充量压燃燃烧(HCCI )等系统,以在经济性和汽油发动机排放方面取得更大的进展.所有这些动力系统的创新技术都将在未来的5~15年里为全世界的汽车增加大量电子内容. (2)安全性.汽车电子发展的第二大趋势是安 2010年第1期 Journal of Shenzhen Polytechnic No.1, 2010 深圳职业技术学院学报

[数字电子技术及应用(第2版)习题答案第4单元习题答案

自我检测题 一、填空题 4-1 555定时器根据内部器件类型可分为双极型和单极型,它们均有单或双定时器电路。双极型型号为 555 和 556 ,电源电压使用范围为5~16V ;单极型型号为7555和7556 ,电源电压适用范围为3~18V 。 4-2 555定时器最基本的应用有 单稳态触发器 、 施密特触发器和多谐振荡器三种电路。 4-3 555定时器构成的施密特触发器在5脚未加控制电压时,正向阈值电压+T U 为 CC V 32V ;负向阈值电压-T U 为 CC V 31 V ;回差电压T U ?为 CC V 3 1 V 。 4-4晶片的两个基板在电场的作用下,产生一定频率的 机械变形 。而受到一定方向的外力时,会在相应的两个表面上产生 相反 的电荷,产生电场,这个物理现象称为 压电效应 。 4-5石英晶体有两个谐振频率,分别为 串联谐振频率 和 并联谐振频率 。 二、选择题、判断题 4-6 用555定时器组成单稳态触发电路时,当控制电压输入端无外加电压时,则其输出脉宽t w = A 。 A 、1.1RC B 、0.7 R C C 、1.2 RC 4-7 用555定时器组成的单稳态触发器电路是利用输入信号的下降沿触发使电路输出单脉冲信号。( ) 4-8为了获得输出振荡频率稳定度高的多谐振荡器一般选用 B 组成的振荡器 A 、555定时器 B 、反相器和石英晶体 C 、集成单稳态触发器 练习题 4-1 555定时器由哪几个部分组成? 答:略。 4-2施密特触发器、单稳态触发器、多谐振荡器各有几个暂稳态,几个稳定状态? 答:略。 4-3由555定时器构成的施密特触发器在5脚加直流控制电压U CO 时,回差电压为多少? 答:CO U 2 1 4-4由555定时器构成的多谐振荡器如图4-12所示,已知,R 1=R 2=5.1kΩ,C =0.01μF ,V CC =+12V ,则电路的振荡频率是多少? 答:9.337KHZ 4-5由555定时器构成的施密特触发器输入波形如图题4-5所示,试对应画出输出波形。

《电力电子技术》习题解答

《电力电子技术》习题解答 第2章 思考题与习题 2.1晶闸管的导通条件是什么? 导通后流过晶闸管的电流和负载上的电压由什么决定? 答:晶闸管的导通条件是:晶闸管阳极和阳极间施加正向电压,并在门极和阳极间施加正向触发电压和电流(或脉冲)。 导通后流过晶闸管的电流由负载阻抗决定,负载上电压由输入阳极电压U A 决定。 2.2晶闸管的关断条件是什么? 如何实现? 晶闸管处于阻断状态时其两端的电压大小由什么决定? 答:晶闸管的关断条件是:要使晶闸管由正向导通状态转变为阻断状态,可采用阳极电压反向使阳极电流I A 减小,I A 下降到维持电流I H 以下时,晶闸管内部建立的正反馈无法进行。进而实现晶闸管的关断,其两端电压大小由电源电压U A 决定。 2.3温度升高时,晶闸管的触发电流、正反向漏电流、维持电流以及正向转折电压和反向击穿电压如何变化? 答:温度升高时,晶闸管的触发电流随温度升高而减小,正反向漏电流随温度升高而增大,维持电流I H 会减小,正向转折电压和反向击穿电压随温度升高而减小。 2.4晶闸管的非正常导通方式有哪几种? 答:非正常导通方式有:(1) I g =0,阳极电压升高至相当高的数值;(1) 阳极电压上升率du/dt 过高;(3) 结温过高。 2.5请简述晶闸管的关断时间定义。 答:晶闸管从正向阳极电流下降为零到它恢复正向阻断能力所需的这段时间称为关断时间。即gr rr q t t t +=。 2.6试说明晶闸管有哪些派生器件? 答:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管等。 2.7请简述光控晶闸管的有关特征。 答:光控晶闸管是在普通晶闸管的门极区集成了一个光电二极管,在光的照射下,光电二极管电流增加,此电流便可作为门极电触发电流使晶闸管开通。主要用于高压大功率场合。 2.8型号为KP100-3,维持电流I H =4mA 的晶闸管,使用在图题2.8所示电路中是否合理,为什

数字电路的应用

数字电路的应用 用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。现代的数字电路由半导体工艺制成的若干数字集成器件构造而成。逻辑门是数字逻辑电路的基本单元。存储器是用来存储二进制数据的数字电路。从整体上看,数字电路可以分为组合逻辑电路和时序逻辑电路两大类。 数字电路是以二值数字逻辑为基础的,其工作信号是离散的数字信号。电路中的电子晶体管工作于开关状态,时而导通,时而截止。数字电路的发展与模拟电路一样经历了由电子管、半导体分立器件到集成电路等几个时代。但其发展比模拟电路发展的更快。从60年代开始,数字集成器件以双极型工艺制成了小规模逻辑器件。随后发展到中规模逻辑器件;70年代末,微处理器的出现,使数字集成电路的性能产生质的飞跃。 数字集成器件所用的材料以硅材料为主,在高速电路中,也使用化合物半导体材料,例如砷化镓等。逻辑门是数字电路中一种重要的逻辑单元电路。TTL 逻辑门电路问世较早,其工艺经过不断改进,至今仍为主要的基本逻辑器件之一。随着CMOS工艺的发展,TTL的主导地位受到了动摇,有被CMOS器件所取代的趋势。近几年来,可编程逻辑器件PLD特别是现场可编程门阵列FPGA的飞速进步,使数字电子技术开创了新局面,不仅规模大,而且将硬件与软件相结合,使器件的功能更加完善,使用更灵活。数字电路或数字集成电路是由许多的逻辑门组成的复杂电路。与模拟电路相比,它主要进行数字信号的处理(即信号以0与1 两个状态表示),因此抗干扰能力较强。数字集成电路有各种门电路、触发器以及由它们构成的各种组合逻辑电路和时序逻辑电路。一个数字系统一般由控制部件和运算部件组成,在时脉的驱动下,控制部件控制运算部件完成所要执行的动作。通过模拟数字转换器、数字模拟转换器,数字电路可以和模拟电路互相连接。 分类 按功能来分: 1、组合逻辑电路 简称组合电路,它由最基本的逻辑门电路组合而成。特点是:输出值只与当时的输入值有关,即输出惟一地由当时的输入值决定。电路没有记忆功能,输出状态随着输入状态的变化而变化,类似于电阻性电路,如加法器、译码器、编码器、数据选择器等都属于此类。 2、时序逻辑电路 简称时序电路,它是由最基本的逻辑门电路加上反馈逻辑回路(输出到输入)或器件组合而成的电路,与组合电路最本质的区别在于时序电路具有记忆功能。时

电力电子技术作业解答复习用

第一章作业 1. 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:u AK>0且u GK>0。 2. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 3. 图1-43 中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I1、I2、I3。 解:(a) (b) (c)

第二章作业 1. 单相半波可控整流电路对电感负载供电,L=20mH,U2=100V,求当α=0?和60? 时的负载电流I d,并画出u d与i d波形。 解:α=0?时,在电源电压u2的正半周期晶闸管导通时,负载电感L储能,在晶闸管开始导通时刻,负载电流为零。在电源电压u2的负半周期,负载电感L释放能量,晶闸管继续导通。因此,在电源电压u2的一个周期里,以下方程均成立: 考虑到初始条件:当ωt=0 时i d=0 可解方程得: u d与i d的波形如下图: 当α=60°时,在u2正半周期60?~180?期间晶闸管导通使电感L储能,电感L储藏的能量在u2负半周期180?~300?期间释放,因此在u2一个周期中60?~300?期间以下微分方程成立:

考虑初始条件:当ωt=60 时i d=0 可解方程得: 其平均值为 此时u d与i d的波形如下图: 2.图2-9为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁 ;②当负载是电阻或电化问题吗?试说明:①晶闸管承受的最大反向电压为 2 感时,其输出电压和电流的波形与单相全控桥时相同。 答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。 以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。 ①以晶闸管VT2为例。当VT1导通时,晶闸管VT2通过VT1与2个变压器二次绕 。 组并联,所以VT2承受的最大电压为 2 ②当单相全波整流电路与单相全控桥式整流电路的触发角a 相同时,对于电阻

电力电子技术的发展方向

电力电子技术的发展与创新 1 概述 电力电子学(Power Electronics)这一名称是在上世纪60年代出现的。1974年,美国的W. Newell用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、电子学和控制理论三个学科交叉而形成的。这一观点被全世界普遍接受。 电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。力电子器件中大量应用了微电子学的技术。电力电子电路吸收了电子学的理这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。 从几十年的发展来看,半导体器件确实起了推动电子技术发展的作用。晶闸管等电力半导体器件扮演了电力电子发展中的主要角色。进入70年代,晶闸管开始形成由低电压小电流到高电压大电流的系列产品。普通晶闸管不能自关断的半控型器件,被称为第一代电力电子器件。随着电力电子技术理论研究和制造工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,是电力电子技术的又一次飞跃,先后研制出GTR、GTO、功率MOS FET等自关断全控型第二代电力电子器件。这些年来的经验表明:当某种关键的半导体器件诞生后,往往会引起电子技术的一个飞跃。可以看到,以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容易高频率、响应快、低损耗方向发展,这又是一个飞跃。而进入90年代,电力电子器件正朝着复杂化、标准模块化、智能化、功率集成的方向发展,以此为基础形成了电力电子技术的理论研究,器件开发研制,应用的高新技术领域,在国际上竞争颇激烈。 目前,电力电子技术的应用已从机械、石化、纺织、冶金、电力、铁路、航空、航海等领域,进一步扩展到汽车、现代通信、家用电器、医疗设备、灯光照明等领域。进入21世纪,随着新的理论、新的器件、新的技术的不断涌现,特别是与微电子(计算机与信息)技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 2 电力电子器件发展回顾

[数字电子技术及应用(第2版)习题答案第1单元习题答案

自我检测题: 一、填空题 1-1 (1001010)2 =( 112 )8 =( 4A )16 =( 74 )10 1-2 (37.375)10 =( 100101.011 )2 =( 45.3 )8 =( 25.6 )16 1-3 (CE)16=( 11001110 )2 =( 316 )8 =( 206 )10 =( 001000000110 )8421BCD 1-4在逻辑代数运算的基本公式中,利用分配律可得A (B +C )= AB+AC ,A +BC = (A+B)(A+C) ,利用反演律可得ABC = C B A ++ ,C B A ++ = C B A 。 1-5在数字电路中,半导体三极管多数主要工作在 截止 区和 饱和 区。 1-6 COMS 逻辑门是 单 极型门电路,而TTL 逻辑门是 双 极型门电路。 1-7 COMS 集成逻辑器件在 功耗 、 抗干扰 方面优于TTL 电路,同时还具有结构相对简单,便于大规模集成、制造费用较低等特点。 1-8 CT74 、 CT74H 、 CT74S 、 CT74LS 四个系列的 TTL 集成电路,其中功耗最小的为 CT74LS ;速度最快的为 CT74S ;综合性能指标最好的为 CT74LS 。 二、选择题 1-9指出下列各式中哪个是四变量A、B、C、D的最小项( C )。 A 、ABC B 、A+B+C+D C 、ABCD D 、AC 1-10逻辑项D BC A 的逻辑相邻项为( A )。 A 、ABCD — B 、ABCD C 、AB — CD D 、ABC — D 1-11当利用三输入的逻辑或门实现两变量的逻辑或关系时,应将或门的第三个引脚( B )。 A 、接高电平 B 、接低电平 C 、悬空 1-12当输入变量A 、B 全为1时,输出为0,则输入与输出的逻辑关系有可能为( A )。 A 、异或 B 、同或 C 、与 D 、或 1-13TTL 门电路输入端悬空时应视为( A )电平,若用万用表测量其电压,读数约为( D )。 A 、高 B 、低 C 、3.5V D 、1.4V E 、0V 三、判断题 1-14用4位二进制数码来表示每一位十进制数码,对应的二—十进制编码即为8421BCD 码。( × ) 1-15因为逻辑式A+(A+B)=B+(A+B)是成立的,所以在等式两边同时减去(A+B)得:A=B 也是成立的。(× ) 1-16对于54/74LS 系列与非门,输出端能直接并联。(× ) 1-17三态输出门有高电平、低电平和高阻三种状态。( ) 1-18在解决“线与”问题时,OC 门是指在COMS 电路中采用输出为集电极开路的三极管结构,而OD 门指在TTL 电路中采用漏极开路结构。(× )

数字电子技术的应用

龙源期刊网 https://www.doczj.com/doc/7f5557873.html, 数字电子技术的应用 作者:尹润翔 来源:《电子技术与软件工程》2017年第10期 数字电路中逻辑门电路是最基本的电路逻辑元件。所谓“门”就是一种开关,它能按照某些条件去控制电子信号的通过或不通过。门电路的信号输入和信号输出之间存在一定的逻辑关系(因果关系),所以门电路又称为逻辑门电路。门电路的基本逻辑关系为“与”、“或”、“非”三种。通过这三种关系,可以实现多种多样的功能。而对于传统的机械手表来说,它的功能单一。所以可以通过数字电子技术是它的功能更加丰富,更符合人们生活的需要。例如,除了传统机械手表的功能;显示时间之外,还可以增加显示日期,秒表计时,定时闹钟等功能。 【关键词】高电平低电平输入端输出端 1 数字电子技术 在2016年夏天,我去表哥家玩,在他的书桌上放着一本有关数字电子技术的书,出于好奇心,于是我就翻看了几页,然后我就喜欢上了数字电子技术这门课。以下是我对数字电子技术的认识。核心内容就是把一系列连续的信息数字化,或者说是不连续化。在电子技术中,信号可以根据是否连续分为两大类:一类信号是连续的模拟信号,这类信号的特征是,无论从时间上还是从信号的大小上都是连续变化的,用于传递、加工和处理模拟信号的技术叫做模拟技术,处理模拟信号的电路称为模拟电路。常用的有整流电路、放大电路等,而且研究的是输入和输出信号间的大小及相位关系;另一类信号是不连续的数字信号,数字信号的特征是,无论从时间上或是大小上都是离散的,或者说都是不连续的,传递、加工和处理数码信号的叫做数字技术。处理数字信号的电路称为数字电路,它注重研究的是输入、输出信号之间的逻辑关系而非大小和相位的关系。“门”电路是数字电路中最基本的逻辑元件。所谓“门”就是一种开关,它能按照特点的的条件去控制电路信号的通过或不通过。门电路的输入和输出之间存在一定的逻辑关系(因果关系),所以“门”电路又称为逻辑门电路。基本逻辑关系为“与”、“或”、“非”三种。数字技术有以下特点: (1)在数字技术中采用二进制,因此凡元件具有的两个稳定状态都可用来表示二进制,(例如“高电平”和“低电平”),所以其基本单元电路简单,电路中各元件对精度要求不严格,允许基本参数有较大的偏差,只要能区分两种截然不同的状态即可。这一特点,降低了数字电路对元件的要求,降低了数字电路的成本,对实现数字电路集成化是十分有利的。 (2)抗干扰能力强、精度高。采用二进制的数字技术传递加工和处理的是二值信息,不易受外界的干扰,抗干扰能力强。另外它可用增加二进制数的数位提高精度。 (3)数字信号便于长期存贮,使大量可贵的信息资源得以保存。

电力电子技术习题及答案

电力电子技术习题集 习题一 1. 试说明什么是电导调制效应及其作用。 2. 晶闸管正常导通的条件是什么,导通后流过的电流由什么决定?晶闸管由导通变为关断 的条件是什么,如何实现? 3. 有时晶闸管触发导通后,触发脉冲结束后它又关断了,是何原因? 4. 图1-30中的阴影部分表示流过晶闸管的电流波形,其最大值均为I m ,试计算各波形的电 流平均值、有效值。如不考虑安全裕量,额定电流100A 的晶闸管,流过上述电流波形时,允许流过的电流平均值I d 各位多少? (f) 图1-30 习题1-4附图 5. 在图1-31所示电路中,若使用一次脉冲触发,试问为保证晶闸管充分导通,触发脉冲宽 度至少要多宽?图中,E =50V ;L =0.5H ;R =0.5?; I L =50mA (擎住电流)。 图1-31习题1-5附图 图1-32习题1-9附图 6. 为什么晶闸管不能用门极负脉冲信号关断阳极电流,而GTO 却可以? 7. GTO 与GTR 同为电流控制器件,前者的触发信号与后者的驱动信号有哪些异同? 8. 试比较GTR 、GTO 、MOSFET 、IGBT 之间的差异和各自的优缺点及主要应用领域。 9. 请将VDMOS (或IGBT )管栅极电流波形画于图1-32中,并说明电流峰值和栅极电阻 有何关系以及栅极电阻的作用。 10. 全控型器件的缓冲吸收电路的主要作用是什么?试分析RCD 缓冲电路中各元件的作用。 11. 限制功率MOSFET 应用的主要原因是什么?实际使用时如何提高MOSFET 的功率容 量? 习题二

1.具有续流二极管的单相半波可控整流电路,带阻感性负载,电阻为5?,电感为0.2H,电源电压的有效值为220V,直流平均电流为10A,试计算晶闸管和续流二极管的电流有效值,并指出晶闸管的电压定额(考虑电压2-3倍裕度)。 2.单相桥式全控整流电路接电阻性负载,要求输出电压在0~100V连续可调,输出电压平均值为30 V时,负载电流平均值达到20A。系统采用220V的交流电压通过降压变压器供电,且晶闸管的最小控制角αmin=30°,(设降压变压器为理想变压器)。试求: (1)变压器二次侧电流有效值I2; (2)考虑安全裕量,选择晶闸管电压、电流定额; (3)作出α=60°时,u d、i d和变压器二次侧i2的波形。 3.试作出图2-8所示的单相桥式半控整流电路带大电感负载,在α=30°时的u d、i d、i VT1、 i VD4的波形。并计算此时输出电压和电流的平均值。 4.单相桥式全控整流电路,U2=100V,负载中R=2 ?,L值极大,反电动势E=60V,当α=30°时,试求: (1)作出u d、i d和i2的波形; (2)求整流输出电压平均值U d、电流I d,以及变压器二次侧电流有效值I2。 5. 某一大电感负载采用单相半控桥式整流接有续流二极管的电路,负载电阻R=4Ω,电源电 压U2=220V,α=π/3,求: (1) 输出直流平均电压和输出直流平均电流; (2) 流过晶闸管(整流二极管)的电流有效值; (3) 流过续流二极管的电流有效值。 6.三相半波可控整流电路的共阴极接法和共阳极接法,a、b两相的自然换相点是同一点吗? 如果不是,它们在相位上差多少度?试作出共阳极接法的三相半波可控的整流电路在α=30°时的u d、i VT1、u VT1的波形。 7. 三相半波可控整流电路带大电感性负载,α=π/3,R=2Ω,U2=220V,试计算负载电流I d, 并按裕量系数2确定晶闸管的额定电流和电压。 8.三相桥式全控整流电路,U2=100V,带阻感性负载,R=5 ?,L值极大,当α=60°,试求: (1)作出u d、i d和i VT1的波形; (2)计算整流输出电压平均值U d、电流I d,以及流过晶闸管电流的平均值I dVT和有效值 I VT; (3)求电源侧的功率因数; (4)估算晶闸管的电压电流定额。 9.三相桥式不控整流电路带阻感性负载,R=5 ?,L=∞,U2=220V,X B=0.3 ?,求U d、I d、 I VD、I2和γ的值,并作出u d、i VD1和i2的波形。 10.请说明整流电路工作在有源逆变时所必须具备的条件。 11.什么是逆变失败?如何防止逆变失败? 12. 三相全控桥变流器,已知L足够大、R=1.2Ω、U2=200V、E M= -300V,电动机负载处于 发电制动状态,制动过程中的负载电流66A,此变流器能否实现有源逆变?求此时的逆变角β。 13.三相全控桥变流器,带反电动势阻感负载,R=1 ?,L=∞,U2=220V,L B=1mH,当 E M=-400V,β=60°时求U d、I d和γ的值,此时送回电网的有功功率是多少?

电子技术发展历程

电子技术发展历程 术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。 一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。由于,电子计算机发展经历的四个阶段恰好能够充分说明电子技术发展的四个阶段的特性,所以下面就从电子计算机发展的四个时代来说明电子技术发展的四个阶段的特点。 世界上第一台电子计算机于1946年在美国研制成功,取名ENIAC (Electronic Numerical Integrator and Calculator)。这台计算机使用了18800个电子管,占地170平方米,重达30吨,耗电140千瓦,价格40多万美元,是一个昂贵耗电的"庞然大物"。由于它采用了电子线路来执行算术运算、逻辑运算和存储信息,从而就大大提高了运算速度。ENIAC每秒可进行5000次加法和减法运算,把计算一条弹道的时间短为30秒。它最初被专门用于弹道运算,后来经过多次改进而成为能进行各种科学计算的通用电子计算机。从1946年2月交付使用,到1955年10月最后切断电源,ENIAC服役长达9年。尽管ENIAC还有许多弱点,但是在人类计算工具发展史上,它仍然是一座不朽的里程碑。它的成功,开辟了提高运算速度的极其广阔的可能性。它的问世,表明电子计算机时代的到来。从此,电子计算机在解放人类智力的道路上,突飞猛进的发展。电子计算机在人类社会所起的作用,与第一次工业革命中蒸汽机相比,是有过之而无不及的。ENIAC问世以来的短短的四十多年中,电子计算机的发展异常迅速。迄今为止,它的发展大致已经了下列四代: 第一代(1946~1957年)是电子计算机,它的基本电子元件是电子管,内存储器采用水银延迟线,外存储器主要采用磁鼓、纸带、卡片、磁带等。由于当时电子技术的限制,运算速度只是每秒几千次~几万次基本运算,内存容量仅几千个字。程序语言处于最低阶段,主要使用二进制表示的机器语言编程,后阶段采用汇编语言进行程序设计。因此,第一代计算机体积大,耗电多,速度低,造价高,使用不便;主要局限于一些军事和科研部门进行科学计算。第二代(1958~1970年)是晶体管计算机。1948年,美国贝尔实验室发明了晶体管,10年后晶体管取代了计算机中的电子管,诞生了晶体管计算机。晶体管计算机的基本电子元件是晶体管,内存储器大量使用磁性材料制成的磁芯存储器。与第一代电子管计算机相比,晶体管计算机体积小,耗电少,成本低,逻辑功能强,使用方便,可靠性高。 第三代(1963~1970年)是集成电路计算机。随着半导体技术的发展,1958年夏,美国德克萨斯公司制成了第一个半导体集成电路。集成电路是在几平方毫米的基片,集中了几十个或上百个电子元件组成的逻辑电路。第三代集成电路计算机的基本电子元件是小规模集成电路和中规模集成电路,磁芯存储器进一步发展,并开始采用性能更好的半导体存储器,运算速度提高到每秒几十万次基本运算。由于采用了集成电路,第三代计算机各方面性能都有了极大提高:体积缩小,价格降低,功能增强,可靠性大大提高。 第四代(1971年~日前)是大规模集成电路计算机。随着集成了上千甚至上万个电子元件的大规模集成电路和超大规模集成电路的出现,电子计算机发展进入了第四代。第四代计算机的基本元件是大规模集成电路,甚至超大规模集成电路,集成度很高的半导体存储器替代了磁芯存储器,运算速度可达每秒几百万次甚至上亿次基本运算。 (一)电子管(1883年到1904年电子管问世)

数字电子技术的应用及发展趋势探析

数字电子技术的应用及发展趋势探析 摘要:随着电子设备的普及,数字电子技术应用到 各个领域,发展前景良好。数字电子作为一种具有高科技效力的技术,它的应用与发展对我国各个行业来说都是尤为重要的。本文主要分析数字电子技术数字电子技术的应用领域,并在此基础上探析了其未来的发展趋势。 关键词:数字电子技术;应用;发展趋势数字电子技术是当前发展最快的学科之一。近年来,数字电子技术作为电子技术领域中的一项新兴科技,越来越受到关注,尤其是数字电子技术在各行各业的广泛应用,更使它拥有了广阔的发展前景。 1、数字电子技术概述 1.1数字电子技术的概念 数字电子技术属于信息电子学科,集成电路、发光二极管等都是数字电子技术具体的物质体现,它以集成芯片、电路、逻辑门电路为研究对象,伴随信息技术的发展,其电路对于信号处理显示出了明显的优势。以处理信号为例,信号处理过程中,按照一定比例在数字电路上,把模拟信号转换成数字信号,再经数字电路将数字信号进行处理,完成处理之后,根据需要反复转化成模拟信号。

1.2电子技术的分类 电子技术包括数字电子技术和模拟电子技术两大类。这两大类技术有着相辅相成的联系,其中最明显和被广泛使用的就是数字电路信号的处理,即模拟信号(“0101”信号) 与数字信号的相互转换。但这两者之间也存在着一些不同之处。首先,与模拟信号相比,数字信号波形更简单易识,没有太多的变化,只有高电平和低电平两种,出现误差的几率很小,这无疑也给信号的接收和处理方面提供了更加便捷的条件,这一点本文将在后文进行详细的论述。其次,因为数字电子技术的诸多优点,例如稳定性强、可靠性高等,很多模拟信息被电子信息所取代,其中最明显的就是在声音和图像的存储方式上,过去声音和图像是由模拟信号组成的磁带、磁盘来储存,而现在这些都变成了光盘存储,无疑更加便捷也更易保存。 1.3数字电子技术的优势 数字电子技术作为一种具有重要作用的新兴技术,在我国电子信息化的进程中发挥着巨大的推动作用。近年来,数字电子技术以其波形简单、精确度高、抗感染能力强等多重优势,在多种方面的应用中发挥了重要的作用,为我国经济社会和信息产业的发展作出了巨大的贡献。 2、数字电子技术的应用 2.1在雷达接收机中的应用

相关主题
文本预览
相关文档 最新文档