当前位置:文档之家› 两级放大器的设计

两级放大器的设计

两级放大器的设计
两级放大器的设计

两级放大器的设计

摘要:两级放大器在实际生活中有着非常重要的作用,它可以把我们生活中需要的信号进行放大来便利人们的生活。在生活中有着非常广泛的应用。该设计是两级放大器的设计,首先是对设计方案的选择和设计,详细分析了两级放大器的所需数据,然后在multisim中选择所需的元器件来进行电路的设计。通过改变电路的电压来进行动态的分析。仿真结果表明:在电路中输入的电压在第二级放大器的输出端可以准确的看到放大了1000倍,实现了题目的要求。

关键词:两级放大器;电路仿真;设计

目录

1.设计任务与要求

2.方案设计与论证

3.单元电路的设计与仿真

3.1第一级放大器的设计

3.2第二级放大器的

3.3桥式整流电源的设计

4.总电路设计及其仿真调试过程

4.1总体电路的设计

4.2仿真结果及其分析

5.结论和心得

6.参考文献

1.设计任务与要求

(1)中频带电压的放大增益1000

(2)通频带30HZ—30KHZ

(3)输出电阻10

(4)输入电阻20K

(5)负载电阻20K

(6)最大不失真输出电压5V

(7)用桥式整流电容滤波集成稳压块电路设计所需的正负直流电源

2.方案的设计与论证

两级放大器的设计具有组装简单,调试方便,工作稳定的实验电路。设计中包括电源输入电路,一级同相放大电路,二级反相放大电路三部分。

电路原理图如下图2.1所示:

图2.1 两级放大器电路原理

由设计与要求可以知道,两级放大器设计的实验主要分为三部分,即对于电源输入信号和第一级放大电路,第二级放大电路的设计。进过分析,电源输入信号电路是桥式整流滤波集成稳压块所设计出来

的正负直流电源。第一级放大电路可以是由同相放大电路的组成,第二级放大电路是由反相放大电路所组成。

由于所需要的电压放大倍数是1000,而同相放大器的电压放大倍数在1—100之间,反相放大器的电压放大倍数在0.1—100之间,因此放大1000倍的设计就可以使用这两个放大器来实现。

因为设计初稿有很多东西都是借鉴书上或者网站上的东西,Multisim 则是第一次接触的仿真软件,因此有的某些电器元件只能够使用Multisim 中所有的。比如采用函数信号发生器来代替交流电压源。

主要的参考元器件:LM741CH、TS_POWER、桥式整流电路、电阻和电容若干

3.单元电路的设计与仿真

3.1桥式整流电源的设计

因为在电路中需要的±12的直流电源,而输入电源则是普遍的220V交流电源,因此需要桥式整流电源来把电网电压变为能够加载在负载上的±12V的电压源。

下图 3.1.1为桥式整流电路的仿真结构图

图 3.1.1 桥式整流电路的仿真结构图设计的原理如下图3.1.2所示:

图3.1.2 整流电路原理图

电源变压器:将交流电网电压变为合适的交流电压。

整流电路:将正负交替的交流电压变为单方向的脉动的直流电压。滤波电压:将脉动直流电压转换为平滑的直流电压。

稳压电路:清除电网波动和负载变化的影响,保持输出电压的稳定性。

3.2第一级同相放大器

放大器是放把输入的微小信号放大的电路,第一级同相放大器的放大倍数进过分析最终设定为放大10倍。

(1)图3.2.1为同相放大器的电路结构图:

图3.2.1 同相放大器电路结构图

其中

R1:输入电阻

R f:反馈电阻,引入负反馈

R2:平衡电阻,要求 R2=R1//R f

(2)电压放大倍数:Au=1+(Rf/R?)

以下图3.2.2为第一级同相放大器的仿真结构图

图 3.2.2 第一级同相放大电路仿真结构图此时实际电路中所需要的电阻值如下:

=KΩ=KΩ==+

==

2002220设://1111f1

111

f p p f i

o U

R R R R R R R R U U A

下图

3.2.3为示波器所示的仿真结果图

图3.2.3 第一级示波器所示的仿真结果图

分析:从放大器的输入端输入频率为1KHz 幅度Uim=5mV 的交流信号,用示波器在放大器的输出端测出输出电压的幅值Uo1m ,根据Uim 与Uo1m 算出该级电压放大倍数Au1电压增益Au1=10,以降低放大电路的信噪比。观察波形图可知,输入电压与输出电压同相位,输出电压幅值为输入电压幅值10倍,因而稳定了输出电压,增益也达到了要求。

此时第一级的幅频特性曲线如下图3.2.4所示:

图3.2.4第一级放大器的幅频特性曲线

3.3 反相放大电路

因为第一个放大器电路的放大倍数已经被规定为10倍,因此第二级反相放大电路中的放大倍数因该为100被才会符合设计要求中的1000倍。

(1)下图3.3.1为反相放大器的电路结构图:

图3.3.1 反相放大器电路结构图

如图所示,此图为反相放大器的电路图,

R1:输入电阻

R f:反馈电阻,引入电压并联负反馈

R2:平衡电阻,要求 R2=R1//R f

(2)电压放大倍数:f o

vf i i

R V A V R =

=- V 0和V i 成比例关系,比例系数为-R f /R i ,负号表示V 0和V i 反相比例系数的数值可以是大于、等于或小于1的任何值。

下图3.3.2为第二级反相放大器的电路仿真结构图

3.3.2 第二级反相放大器电路仿真结构图

此时实际电路中的电阻值为:

KΩ=KΩ

=KΩ==-

==

10001010设://2222

221

o u f p f p f

i R R R R R R R R U U A 图3.3.3 为第二级示波器所示仿真结果图

图3.3.3 第二级示波器仿真结果图

分析:第二级放大电路图,是由LM741反相运算放大器组成,此时的输入信号为第一级放大电路的输出信号,负载阻值RL=20Kohm,C3为第二级放大电路的耦合电容,该电路将增益提高到100倍,进而将第二级放大电路的输入信号放大100倍,达到了实验规定的要求。

此时第二级的幅频特性曲线如下图3.3.4所示

图3.3.4 第二级幅频特性曲线仿真结果图

4. 总电路设计及其仿真调试过程

4.1总电路设计

根据设计任务可以知道,本电路是由桥式整流电路和第一级同相放大器和第二级反相放大器所组成的电路。按照要求在Multisim 中将上上述仿真电路连接

图4.1为总电路设计的仿真原理图

图4.1 总电路仿真原理图

特别注意:

1)在Multisim中,因为版本的问题,如果使用两个交流电源的话,可能会因此而出现仿真错误,所以因该将

一个交流电压源换成函数发生器

2)电源部分注意标号,例如:+15和+15v(v不区分大小写)不同,应为后者。

3)运算放大器中的7端因该接直流电压源的正极,4端

因该接直流电压源的负极,一般来说1端和5端是不

用的。

4.2仿真结果及其分析

由实验所示,输出端比输入端增大了1000倍,即电压增益

Av=1000。这个两级交流放大电路,提高了增益,稳定了输出电压,通频带也符合实验设计要求。

5.结论和心得

6.参考文献

《电子技术课程设计指导》彭介华高教出版社

《模拟电子技术》清华大学出版社

《电子线路设计、实验与测验》谢自美华中科技大学

CMOS二级运算放大器设计

CMOS二级运算放大器设计 (东南大学集成电路学院) 一.运算放大器概述 运算放大器是一个能将两个输入电压之差放大并输出的集成电路。运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT 或FET 的电子器件。它是许多模拟系统和混合信号系统中的重要组成部分。 它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等。 二.设计目标 1.电路结构 最基本的COMS二级密勒补偿运算跨导放大器的结构如图所示。主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 图两级运放电路图 2.电路描述 电路由两级放大器组成,M1~M4构成有源负载的差分放大器,M5提供该放大器的工作电流。M6、M7管构成共源放大电路,作为运放的输出级。M6 提供给M7 的工作电流。M8~M13组成的偏置电路,提供整个放大器的工作电流。相位补偿电路由M14和Cc构成。M14工作在线性区,可等效为一个电阻,与电容Cc一起跨接在第二级输入输出之间,构成RC密勒补偿。 3.设计指标 两级运放的相关设计指标如表1。

表1 两级运放设计指标 三.电路设计 第一级的电压增益: )||(422111o o m m r r g R G A == 第二级电压增益: )||(766222o o m m r r g R G A =-= 所以直流开环电压增益: )||)(||(76426221o o o o m m o r r r r g g A A A -== 单位增益带宽: c m O C g A GBW π2f 1 d == 偏置电流: 2 13 122121)/()/()/(2??? ? ??-=L W L W R L W KP I B n B 根据系统失调电压: 7 5 6463)/()/(21)/()/()/()/(L W L W L W L W L W L W == 转换速率: ? ?? ???-=L DS DS C DS C I I C I SR 575,min 相位补偿: 12.1)/()/()/()/(1 61311 146 6+== m m m C g g L W L W L W L W g R

三极管二级放大集负反馈电路 实验报告 课程设计

创新实验项目报告书 实验名称两级放大器及负反馈电路日期2010-12-13 姓名专业通信,电子 一、实验目的(详细指明输入输出) 1、深入研究三极管两级放大器及负反馈电路的工作原理,相关参数的测量方法。 2、设计一个基于通用三极管两级放大器及负反馈电路,要求能够实现不失真稳定的放 大,频率范围为几十Hz到几千Hz,放大能力为几十倍到几百倍,研究负反馈对放大器性能的影响及输入输出电阻测量。 3、查询有关三极管两级放大器及负反馈电路的资料,筛选方案,再按照拟订的实验方 案制作作品,包括硬件制作和测量电路设计,再调试制作好的作品并做数据记录,进行分析。 二、实验原理 多级放大与电压串联负反馈电路 电路工作原理: 当J1开路时,电路中不存在级间负反馈,整个电路是由两个单级共射放大电路组成。晶体管发射极的电阻由两部分组成。其中并联有电容器的电阻(R1,R E22)引入直流负反馈,用来稳定每个管的静态工作点;未并联电容的电阻(R E1,R E22)引入的反馈是 交、直流电流串联负反馈,使放大倍数稳定,输入、输出电阻增大。 计算公式: 第一级静态工作点:

) () )(1('111111 1111111E C CQ CEQ BQ CQ E B BEQ BQ R R R I VCC U I I R R R U VCC I ++-==+++-= ββ 式中:R B1’ =R B1+RW1 第二级静态工作点: ) (2221222 22 21222222122 2 E E C CQ CEQ E E BEQ B EQ CQ B B B B R R R I VC C U R R U U I I R R R VCC U ++-=+-= ≈+? = 开环交流参数: ()[] ) () ()1(1//2 1' 总放大倍数单级放大倍数 u u uu E be L u c o E be B i A A A R r R A R R R r R R ?=++- =≈++=βββ 式中:R B =R B1+RW1 (第一级) 或 R B =R B21//R B22 (第二级) R E =R E1 (第一级) 或 R E =R E21(第二级) R L ’=R C1//R i2 (第一级) 或 R L ’=R C2//R L (第二级) ① 连接J1 ,由R14引入交流电压串联负反馈。 判断方法: 该反馈经C 3隔直之后引出,无直流信号反馈,所以是交流反馈; 用瞬时极性法判别是负反馈; U f 取自U o 端,是电压反馈; U f 与U i 不在输入级的同一点迭加,是串联反馈。

华中科技大学-IC课程设计实验报告(比例放大器设计)

华中科技大学-IC课程设计实验报告(比例放大器设计)

华中科技大学 题目:比例放大器设计 院系: 专业班: 姓名: 学号: 指导教师: 20XX年XX 月 I

摘要 在模拟电路中对放大器进行设计时,差分放大器由于能够实现两倍放大和能够很好的抑制共模噪声的优良性能而被广为应用。本文利用放大器的“虚短”“虚断”的特性对比例放大器的结构及放大器的构成和基本参数进行了设计,其中放大器采用差分放大结构。 关键词:比例放大器差分放大器一级结构二级结构 I

Abstract When designing an amplifier, differential amplifiers,with its twice higher gain and its restrain to Common-mode disturbance,is more widely used than other kinds of amplifiers.In this report,we make use of the properties of “virtual short cicuit” a nd “virtual disconnection” and design the structure and parameters of the whole circuit as well as the structure of the amplifier. Key Words:Proportion amplifier Differential amplifiers Level 1 Level 2 II

折叠式共源共栅运算放大器设计

折叠式共源共栅运算放大器

目录 一.摘要 (2) 二.电路设计指标 (3) 三.电路结构 (3) 四.手工计算 (7) 五.仿真验证 (10) 六.结论 (12) 七.收获与感悟 (12) 八.参考文献 (13)

摘要 运算放大器在现代科技的各个领域得到了广泛的应用,针对不同的应用领域出现了不同类型的运放。本文完成了一个由pmos作输入的放大器。vdd为3.3v,负载电容为1pf,增益Av 大于80dB,带宽GBM大于100MHz的放大器。输出级采用共源级结构以提高输出摆幅及驱动能力,为达到较宽的带宽,本文详细分析推导了电路所存在的极零点,共源共栅镜像电流源产生Ibias。选择P沟道晶体管的宽度和长度,使得它们的m g 和ds r 与N沟道晶体管的情况相匹配。 关键字:运算放大器、共源共栅级、极点 Abstract Operation amplifiers are widely used in many field s nowadays。All kinds of differential operation amplifiers appear f6r special application.One basic cell of which is fully differential operation amplifiers is designed in the thesis.Power Supply 3.3v,load capacitor 1pf,Gain>80dB,GBM>100MHz。The output stage is common source amplifier for getting proper DC operation point,for the purpose of wider bandwidth,we carefully analysis the pole and zero in the circuit ,use common source common gate as current Ibias。Choose pmos w/l to make their mg and dsr which can match with nmos。 Kay words:Operation amplifiers、common source common gate、pole

两级运算放大器的仿真验证

实验一、两级运算放大器的仿真验证 一、实验目的 1、学习集成运算电路单元的设计参数的仿真、测试、验证。 2、学习采用Cadence工具实现IC电路设计的基本操作和方法,包括电路图的编辑以及仿真调试过程。 二、实验内容 本实验通过设计一个两级运算放大器电路学习Cadence工具下电路的设计和仿真方法。实验内容包括: 1.熟悉Cadence界面及基本的建立新的cell文件等基本过程; 2.完成两级运算放大器电路的设计; 3.利用Cadence的仿真环境得到波形,分析仿真结果。 该电路设计采用上华CSMC0.5umCMOS工艺设计,工作电压5V。 三、实验原理 运算放大器是一个能将两个输入电压之差放大并输出的集成电路。运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT或FET 的电子器件。它是许多模拟系统和混合信号系统中的重要组成部分。

它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 1.共模抑制比:差分放大电路抑制共模信号及放大差模信号的能力,常用 共模抑制比作为一项技术指标来衡量,其定义为放大器对差模信号的电 压放大倍数Aud与对共模信号的电压放大倍数Auc之比,称为共模抑制 比,英文全称是Common Mode Rejection Ratio,因此一般用简写CMRR 来表示,符号为Kcmr,单位是分贝db。 2.共模输入范围:是指在差分放大电路中,二个输入端所加的是大小相 等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范 围。 3.电源抑制比:是输入电源变化量(以伏为单位)与转换器输出变化量 (以伏为单位)的比值(PSRR),常用分贝表示。通常把满量程电压变化 的百分数与电源电压变化的百分数之比称为电源抑制比。 4.输出摆幅:指的是,当输出信号为电压的时候,外部量的变化引起的输 出电压变化。对于无源器件,这个变化通常是从某个负电压到某个正电 压。而对于有源器件,这个变化是相对于某个固定电压,做一定幅度的 上下偏移。(无源器件也可以看作是相对电压0做偏移)。 四、实验步骤 1、登陆到UNIX系统。 在登陆界面,输入用户名stu01和密码123456。 2、Cadence的启动。 登录进去之后,点击Terminal出现窗口,输入icfb命令,启动Cadence软件。 3、根据设计指标及电路结构,估算电路参数。 4、利用Candence原理图的输入。 (1)Composer的启动。在CIW窗口新建一个单元的Schematic视图。 (2)添加器件。在comparator schematic窗口点击Add-Instance或者直

两级放大电路的设计(参考版)

设计指标: A V >250,R i ≥10kΩ,R L =5.1kΩ, BW=50Hz~50kHz ,D<5% 。 设计条件: 输入信号(正弦信号):2mV≤V i ≤5mV ,信号源内阻:R s =50Ω,电源电压:V CC =12V ; 半导体三极管9013,参数:β=100,r bb ’=300Ω,C μ=5pF ,f T =150MHz ,3V≤V CC ≤20V , P CM =625mW ,I CM =500mA ,V (BR)CEO =40V 。 1.电路选型: 小信号放大电路选用如图1所示两级阻容耦合放大电路,偏置电路采用射极偏置方式,为了提高输入电阻及减小失真,满足失真度D<5%的要求,各级射极引入了交流串联负反馈电阻。 2.指标分配: 要求A V >250,设计计算取A V =300,其中T 1级A V1=12,A V2=25;R i ≥10kΩ要求较高,一般,T 1级需引入交流串联负反馈。 3.半导体器件的选定 指标中,对电路噪声没有特别要求,无需选低噪声管;电路为小信号放大,上限频率f H =50kHz ,要求不高,故可选一般的小功率管。现选取NPN 型管9013,取β=100。 4.各级静态工作点设定 动态范围估算:T 1级:im1imax V1252mV, 12,V V A === om1V1im1125284mV V A V ==?=。 T 2级:im2om1V284mV , 25V V A ===, om2V2im22584 2.1V V A V ==?=。

为避免饱和失真,应选:CEQ om CE(sat)C V V ≥+ ;可见 T 1级V CEQ1可选小些,T 2级V CEQ2可选大些。 CQ CQ CM CEQ CM T T I I I I I ≥+12取值考虑:设定主要根据,由于小信号电压放大电路较小; 另从减小噪声及降低直流功率损耗出发,、工作电流应选小些。 T 1级静态工作点确定: T CQ1 T CQ1T CQ1CQ1CQ1BQ1CEQ13k Ω, ',100'30026mV ' 10026 0.963mA 3000300 0.7mA 0.07mA , V 2V>0.12V V r r r I V I r V r r I I I I ββββ ≥=+= ===-?≤ =-====be1be1bb bb be1bb 取依可推得其中,,可求得选, T 2级静态工作点确定: 一般应取CQ2CQ1I I > ,CEQ2CEQ1V V > 选 :CQ2 CQ2BQ2CEQ21.2mA , 0.012mA , V 4V>3V I I I β == == 5.偏置电路设计计算(设BEQ 0.7V V =) T 1级偏置电路计算: Rb1BQ1BQ1CC 10100.0070.07mA 11 124V 33I I V V ==?===?=取 故:CC BQ1 b1b1 124 114.286k Ω0.07 V V R I --= = = 取标称值120 kΩ 22Rb1b1b110.071200.588mW

运算放大器设计

运算放大器设计 电子竞赛初赛设计方案姓名:刘俊贤学号:班级: 2019301951 08031301 实验一:用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3) 的加法电路 一.实验要求 用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3)的加法电路。设计步骤: (1)根据已知条件,确定电路方案,计算并选取各电路元件参数; (2)在输出波形不失真的情况下,测量输入、输出波形的幅度,使之满足设计要求 二.实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。当外界接入线性或非线性元器件组成输入和负反馈电路时,可以灵活实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 在大多数情况下,将运放看成是理想的,有以下三条基本结论: (1)开环电压增益Av=∞。 (2)运算放大器的两个输入端电压近似相等,即V+ = V-,成为虚短。(3)运算放大器同相和反相两个输入端电流可视为0,成为虚断。 三.实验分析设计 题目要求设计能实现 V0=-(4Vi1+3Vi2+2Vi3) U0Ui .. 的加法电路,分析得: (1)输出与输入反相,则采用反相加法运算电路。(2)由基本反相比例放大器的增益公式Auf= =- RfR1

可进一步推出反相加法 运算公式u=-(Rfu+Rfu+Rfu),则Rf=4 Rf=3 Rf=2,所以设计 0i1i2i3 R1R2R3R1R2R3 Rf=120kΩ,R1=30kΩ,R2=40kΩ,R3=60kΩ (3)Vi1=100mV,Vi2=200mV,Vi3=300mV,三者频率都为1kHz的正弦信号,使输出波形不失真,观察并记录结果。反相加法运算电路如下图所示: 四、仿真结果 理论计算(峰值): u0=-(4*100+3*200+2*300)=1600mV 实验测得(峰值): ' u0=1.590V ' u0≈u0 所以该设计较合理。 实验二 RC文氏桥振荡器输出正弦波 一、实验要求 根据文氏电桥振荡电路原理,设计一个正弦波发生器电路。设计任务: (1) 输出正弦波的振荡频率为1KHZ; (2) 振荡频率的测量值与理论值的相对误差 二、实验原理 文氏电桥振荡电路又称RC串并联网络正弦波振荡电路,它是一种较好的正弦波产生电路,适用于频率小于1MHz,频率范围宽,波形较好的低频振荡信号。 从结构上看,正弦波振荡器是没有输入信号的,为了产生正弦波,必须在放大电路中加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。但是,这样两部分构

采用折叠式结构的两级全差分运算放大器的设计

目录 1. 设计指标 (1) 2. 运算放大器主体结构的选择 (1) 3. 共模反馈电路(CMFB)的选择 (1) 4. 运算放大器设计策略 (2) 5. 手工设计过程 (2) 5.1 运算放大器参数的确定 (2) 5.1.1 补偿电容Cc和调零电阻的确定 (2) 5.1.2 确定输入级尾电流I0的大小和M0的宽长比 (3) 5.1.3 确定M1和M2的宽长比 (3) 5.1.4确定M5、M6的宽长比 (3) 5.1.5 确定M7、M8、M9和M10宽长比 (3) 5.1.6 确定M3和M4宽长比 (3) 5.1.7 确定M11、M12、M13和M14的宽长比 (4) 5.1.8 确定偏置电压 (4) 5.2 CMFB参数的确定 (4) 6. HSPICE仿真 (5) 6.1 直流参数仿真 (5) 6.1.1共模输入电压范围(ICMR) (5) 6.1.2 输出电压范围测试 (6) 6.2 交流参数仿真 (6) 6.2.1 开环增益、增益带宽积、相位裕度、增益裕度的仿真 (6) 6.2.2 共模抑制比(CMRR)的仿真 (7) 6.2.3电源抑制比(PSRR)的仿真 (8) 6.2.4输出阻抗仿真 (9) 6.3瞬态参数仿真 (10) 6.3.1 转换速率(SR) (10) 6.3.2 输入正弦信号的仿真 (11) 7. 设计总结 (11) 附录(整体电路的网表文件) (12)

采用折叠式结构的两级全差分运算放大器的设计 1. 设计指标 5000/ 2.5 2.551010/21~22v DD SS L out dias A V V V V V V GB MHz C pF SR V s V V ICMR V P mW μ>==?== >=±=?≤的范围 2. 运算放大器主体结构的选择 图1 折叠式共源共栅两级运算放大器 运算放大器有很多种结构,按照不同的标准有不同的分类。从电路结构来看, 有套筒 式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。本设计采用的是如图1所示的折叠式共源共栅两级运算放大器,采用折叠式结构可以获得很高的共模输入电压范围,与套筒式的结构相比,可以获得更大的输出电压摆幅。 由于折叠式共源共栅放大器输出电压增益没有套筒式结构电压增益那么高,因此为了得到更高的增益,本设计采用了两级运放结构,第一级由M0-M10构成折叠式共源共栅结构,第二级由M11-M14构成共源级结构,既可以提高电压的增益,又可以获得比第一级更高的输出电压摆幅。 为了保证运放在闭环状态下能稳定的工作,本设计通过米勒补偿电容Cc 和调零电阻Rz 对运放进行补偿,提高相位裕量! 另外,本文设计的是全差分运算放大器,与单端输出的运算放大器相比较,可以获得更高的共模抑制比,避免镜像极点及输出电压摆幅。 3. 共模反馈电路(CMFB )的选择 由于采用的是高增益的全差分结构,输出共模电平对器件的特性和失配相当敏感,而且不能通过差动反馈来达到稳定,因此,必须增加共模反馈电路(CMFB )来检测两个输出端

反比例放大电路

反比例放大电路 一、 实验目的: 1、 了解常用电子仪器:示波器、函数信号发生器、直流稳压 电源等的主要特性指标、性能及正确的使用方法。 2、 学会自己设计正向反向比例放大电路 3、 掌握示波器的基本调整方法和工作模式。 4、 了解Multism 软件的使用,学会绘制简单的电路图。 5、 了解运算放大器的工作原理 二、 实验环境 仪器:双踪示波器、函数信号发生器、数字万用表、电路实验 箱; 电子元件:电环电阻、集成运算放大器ua741; 软件:Multisim 软件; 三、 实验原理 集成运算放大器ua741构造图如下: 1、5脚:失调调零端 2:反向输入端(V-) 3:同相输入端(V+) 4:负电源端(-Vee ) 6:输出(OUT ) 7:正电源端(+Vcc ) 8:空 4 3 2 1 5 6 7 - + 8

注意事项:在连接时8号端口不连,输入输出端(2、3端)需先接电阻再进行输入输出(并且接入的电阻阻值应该相等),正负电源接反就会爆炸!!! 设计电路图如下: 对照本图,运算放大器放大倍数为-Rf/R1(反比例)。 通常将运放视为理想运放,即将运放的各项技术指标理想化,理想运放在线性应用时的两个重要特性:

虚短:因为理想运放的电压放大倍数很大,而运放工作在线性区,是一个线性放大电路,输出电压不超出线性范围(即有限值),所以,运算放大器同相输入端与反相输入端的电位十分接近相等。在运放供电电压为±15V时,输出的最大值一般在10~13V。所以运放两输入端的电压差,在1mV以下,近似两输入端短路。这一特性称为虚短,显然这不是真正的短路,只是分析电路时在允许误差范围之内的合理近似。 虚断:由于运放的输入电阻一般都在几百千欧以上,流入运放同相输入端和反相输入端中的电流十分微小,比外电路中的电流小几个数量级,流入运放的电流往往可以忽略,这相当运放的输入端开路,这一特性称为虚断。显然,运放的输入端不能真正开路。 运用“虚短”、“虚断”这两个概念,在分析运放线性应用电路时,可以简化应用电路的分析过程。运算放大器构成的运算电路均要求输入与输出之间满足一定的函数关系,因此均可应用这两条结论。如果运放不在线性区工作,也就没有“虚短”、“虚断”的特性。如果测量运放两输入端的电位,达到几毫伏以上,往往该运放不在线性区工作,或者已经损坏。

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

模电设计多级放大器

前言 (2) 第一章放大器的概述 (2) 1.1多级放大器的功能 (2) 1.2.2设计任务及目标 (2) 1.2.3主要参考元器件 (3) 第二章电路设计原理与单元模块 (3) 2.1设计原理 (3) 2.2设计方案 (4) 2.3单元模块 (6) 第三章安装与调试 (6) 3.1电路的安装 (6) 3.2电路的调试 (7) 第四章实验体会 (7) 结论 (7) 致谢 (7) 参考文献 (8) 附录 (8)

前言 电子技术电路课程设计是从理论到实践的一个重要步骤,通过这个步骤使我们的动手能力有了质的提高,也使我们对电路设计理念的认识有了质的飞跃。本课程设计是对放大器对电压放大的基本应用,我们设计的二级低频阻容耦合放大器严格按照实验要求设计,能够充分满足的电压放大倍数、频带宽、输入输出电阻等实验要求的性能参数,这次课程设计让我们了解了类似产品的内部原理结构。设计时我和搭档设计了二级三极管放大电路、可变放大倍数的二级运算放大器电路等多种方案,由于考虑到器材的限制,我们最终采用了最为简洁的两级运算放大器电路,实现了用最少的元器件实现要求功能。 第一章放大器的概述 1.1多级放大器的功能 随着科技的进步,电子通讯产品越来越多的进入人们视野,小到耳机手机收音机,大到大型雷达都要利用到信号放大器,可以说信号放大器是现代通讯设备的核心器件之一,而多级放大器又是一级放大器的推广,可以克服单级放大器放大倍数不够等诸多问题。耦合形式多级放大电路的连接,产生了单元电路间的级联问题,即耦合问题。放大电路的级间耦合必须要保证信号的传输,且保证各级的静态工作点正确。 直接耦合——耦合电路采用直接连接或电阻连接,不采用电抗性元件。 直接耦合电路可传输低频甚至直流信号,因而缓慢变化的漂移信号也可以通过直接耦合放大电路。 电抗性元件耦合——级间采用电容或变压器耦合。 电抗性元件耦合,只能传输交流信号,漂移信号和低频信号不能通过。根据输入信号的性质,就可决定级间耦合电路的形式。 零点漂移是三极管的工作点随时间而逐渐偏离原有静态值的现象。产生零点漂移的主要原因是温度的影响,所以有时也用温度漂移或时间漂移来表示。工作点参 数的变化往往由相应的指标来衡量。一般将在一定时间内,或一定温度变化范围内的输出级工作点的变化值除以放大倍数,即将输出级的漂移值归算到输入级来表示的。 本设计主要完成:实验要求电压放大倍数大于100倍,实际参数200倍,频带要求为:30Hz~30KHz,实际参数20Hz~150KHz,要求输入电阻大于20千欧,实际为23千欧,要求输出电阻均低于10欧,实际为8欧。 1.2设计任务及要求1.2.1基本要求(1)电压放大倍数大于100倍;(2)电路的频带为:30Hz~30KHz;(3)输出电阻大于20千欧; (4)输出电阻小于10欧; 1.2.2设计任务及目标 (1)综合运用相关课程所学到的理论知识去独立完成课题设计;

某科技大学_IC课程设计实验报告(比例放大器设计)

华中科技大学 题目:比例放大器设计 院系: 专业班: 姓名: 学号: 指导教师: 20XX年XX 月

摘要 在模拟电路中对放大器进行设计时,差分放大器由于能够实现两倍放大和能够很好的抑制共模噪声的优良性能而被广为应用。本文利用放大器的“虚短”“虚断”的特性对比例放大器的结构及放大器的构成和基本参数进行了设计,其中放大器采用差分放大结构。 关键词:比例放大器差分放大器一级结构二级结构

Abstract When designing an amplifier, differential amplifiers,with its twice higher gain and its restrain to Common-mode disturbance,is more widely used than other kinds of amplifiers.In this report,we make use of the properties of “virtual short cicuit” and “virtual disconnection” a nd design the structure and parameters of the whole circuit as well as the structure of the amplifier. Key Words:Proportion amplifier Differential amplifiers Level 1 Level 2

目录 摘要 ................................................................................................ I ABSTRACT ....................................................................................... ⅠI 1 题目要求 (1) 2 设计过程 (2) 2.1 基本结构及分析 (2) 2.1.1 外围电路分析 (2) 2.1.2 运算放大器选择 (3) 2.2 工艺参数提取 (3) 2.3 理论推导与计算 (5) 2.4 仿真 (6) 2.5 二级密勒补偿运算放大器 (10) 2.6 仿真结果 (13) 2.7 综合仿真 (17) 3 结果分析与结论 (22) 4 心得体会 (23)

二级运算放大器知识讲解

二级运算放大器

哈尔滨理工大学 软件学院 模拟IC课程设计报告 课程模拟IC设计 题目二级运算放大器 专业集成电路设计与集成 班级集成10-2班 学生唐贝贝 学号1014020227 指导老师陆学斌 2013年6月14日 目录 1.课程设计目的………………………………………………… 2.课程设计题目描述和要求……………………………………

3.课程设计具体内容…………………………………………… 3.1 设计过程分析…………………………………………… 3.2使用软件………………………………………………… 3.3 原理图…………………………………………………… 3.4 仿真网表………………………………………………… 3.5波形分析………………………………………………… 4.心得体会……………………………………………………… 一、课程设计目的 1.熟悉并掌握Hspice与cosmosScope软件的使用。 2.熟练应用Hspice仿真网表并修改分析网表,学会用comosScope查看 分析波形。 3.锻炼学生独立完成二级运算放大器的能力。 4. 在扎实的基础上强化实践能力,把模拟IC理论实践化。 二、课程设计题目描述和要求 设计指标: 静态功耗:小于5mw 开环增益:大于70dB 单位增益带宽大于5MHz 相位裕量:大于60度 转换速率(SR)大于20V/us 共模抑制比:大于60dB 电源抑制比:大于70dB

输入失调:小于1mV 负载电容:2-4pF 要求: 1、手工计算出每个晶体管的宽长比。通过仿真验证设计是否正确,保证每个晶体管的正常工作状态。 2、使用Hspice工具得到电路相关参数仿真结果,包括:幅频和相频特性(低频增益,相位裕度,单位增益带宽)、CMRR、PSRR、共模输入输出范围、SR 等。 3、每个学生应该独立完成电路设计,设计指标比较开放,如果出现雷同按不及格处理。 4、完成课程设计报告的同时需要提交仿真文件,包括所有仿真电路的网表,仿真结果。 5、相关问题参考教材第六章,仿真问题请查看HSPICE手册。 三、课程设计具体内容 3.1理论计算: 3.2原理图

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

音频功率放大器的设计毕业论文

音频功率放大器的设计毕业论文

单刀音频功率放大器的设计 摘要 本次课程设计题目为音频功率放大器,简称音频功放,音频功率放大器主要用于推动扬声器发声,凡发声的电子产品中都要用到音频功放。 设计中主要采用OP07进行音频放大器的设计,OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。设计中的音频功率放大器主要由直流稳压电源、前置放大电路、二级放大电路和功率放大电路组成。前置放大电路采用了反相比例运算放大器,二级放大电路用一个低通滤波器和一个高通滤波器组成一个带通滤波器,功率放大电路采用了OCL电路。直流电源采用桥式电路进行整流,输出则采用了三端集成稳压器。 对前置放大电路和二级放大电路进行了输入、输出分析和频率响应分析。对功率放大电路进行了输入和输出功率分析。对直流电源进行了输出电压验证。最后对总电路进行了输入、输出

分析、频率响应分析、噪声分析。 关键词: OP07 音频功率放大器

目录 摘要................................................................ I Abstract.......................... 错误!未定义书签。第一章音频放大器的概述.. (1) 1.1音频放大电路的回顾 (1) 1.2音频功率放大器的介绍 (2) 1.2.1 A类(甲类)功率放大器 (3) 1.2.2 B类(乙类)功率放大器 (3) 1.2.3 AB类(甲乙类)功率放大器 (4) 1.2.4 C类(丙类)功率放大器 (4) 1.2.5 D类(丁类)功率放大器 (5) 1.3放大器的技术指标 (5) 第二章音频功率放大器的设计 (11) 2.1设计方案分析 (11) 2.2前置放大电路设计 (11) 2.3二级放大电路设计 (15) 2.2.1 低通滤波器设计 (15) 2.2.2 高通滤波器设计 (17) 2.2.3 二级放大电路电路设计 (20) 2.4功率放大器设计 (21) 2.5 直流稳压电源设计 (23)

两级运算放大器

两级运算放大器实验报告 一、实验名称:两级运算放大器 二、实验目的: 1.熟悉掌握Orcad captureCIS的使用方法以及常见的仿真方法和参数设置。 2.利用Orcad captureCIS设计两级运算放大器,并完成要求功能。 3.掌握运算放大器中的增益、带宽、输出摆幅、压摆率、速率、噪声等各个参数之间的折中调试。 三、实验步骤: (一)参数要求: 1.电源电压VCC= 2.7V. 2.CL=10pF. 3.增益Ad>80dB. 4.增益带宽积GW>5M. 5.共模电压输入范围ICMR=1~2V. 6.共模抑制比CMRR>70dB. 7.输出电压摆幅>2V. 8.diss<1mW. 9.SR>10V/us (二)实验步骤及数据: (1)由参数要求,共模电压输入范围为1~2V,电源电压为2.7V,Pdiss<1mW,由这些参数以及相位余度要为60度,由相应的公式估算出来,电路如图所示: 如电路所示,为一个差分输入级与共源放大器组成,采用了密勒补偿,按照计算步骤确定各个元件参数之后,下边进行仿真验证与调试。 (2)交流仿真验证增益带宽是否满足,仿真结果如图所示:

如图结果,增益Av=82dB,增益带宽积GW=6.6M,相位裕度有42度,满足要求,并且还有一定的余量。 (3)交流仿真验证共模电压输入范围ICMR与共模抑制比CMRR是否满足要求,仿真电路如图所示: 1、在仿真验证CMRR之前,先做了一个增益随共模输入电压的变化曲线,大致了解共模电压输入范围,结果如图所示: 如图所示,增益在大于80dB时,共模电压输入范围为0.96V~2.66V,能达到要求,且还有余量。 2、现在仿真验证一下CMRR随共模电压的变化曲线,需要更改仿真电路图,更改的电路图如图所示:

三极管两级放大器设计

三极管两级放大器设计-CAL-FENGHAI.-(YICAI)-Company One1

方案分析: 两级放大的参数选取能在不失真的情况下尽可能的放大小信号,所以,两级放大的参数极为重要。 电路分析: 图4-1 三极管两级放大器 静态工作点:由公式653165211))(1(R R R U R R R U V I BE BE cc b ++-+++-=β;1111)1(,b e b c I I I I ββ+==;)(651411R R I R I V U e c cc ce +--= ;可求出Q1的静态工作点,即Ube1等于7V ,由于Q1和Q2间是电容耦合,所以两个晶体管的静态工作点不相互影响,由公式1110821110722))(1(R R R U R R R U V I be be cc b ++-+++-=β2222)1(,b e b c I I I I ββ+==;)(11102922R R I R I V U e c cc ce +--=可算出Q2的静态工作点Ube2为6V 。图中的电容C2,C4,C6均为滤波电容,画出微变等效电路,电容相当于短路, 图4-2 微变等效电路 所以电容C9和C10的作用就提高放大倍数, 1029514)//(R r R R R r R U U A be L be i o +?+== ββ, 如果电路接入RL ,则放大倍数会减小。

Multisim仿真: 仿真图: 图4-3 两级放大nultisim仿真 图4-4 5mV 1kHz 函数发生器图4-5 交流电流表 图4-6 Ic1电流值图4-7 Uce1电压值

相关主题
文本预览
相关文档 最新文档