当前位置:文档之家› 变压器局部放电在线监测

变压器局部放电在线监测

变压器局部放电在线监测
变压器局部放电在线监测

目录

1绪论 (1)

1.1课题研究背景、目的及意义 (1)

1.2局部放电现象产生的原因 (1)

1.3局部放电在线监测主要方法 (2)

1.3.1电脉冲法 (2)

1.3.2超声检测法 (2)

1.3.3光测法 (3)

1.3.4射频检测法 (3)

1.3.5超高频检测法 (3)

2监测系统的硬件构成 (4)

2.1总体结构 (4)

2.2现场控制及预处理单元 (4)

2.3光电转换与传输模块 (5)

2.4外触发单元 (5)

3监测系统的软件 (5)

3.1高速数据采集 (6)

3.2参数设置 (6)

3.3数据查询 (6)

4局部放电在线监测关键技术 (7)

4.1现场噪声的抑制 (7)

4.1.1周期性干扰的抑制 (7)

4.1.2脉冲型干扰的抑制 (7)

4.1.3白噪声干扰的抑制 (8)

4.2局部放电模式识别 (8)

4.3变压器内部局部放电的定位 (9)

5局部放电干扰和抗干扰 (9)

5.1脉冲极性法和差动平衡法 (10)

5.2复小波分析法 (10)

6总结 (10)

7参考文献 (11)

1绪论

1.1课题研究背景、目的及意义

随着社会经济的发展,电能作为现代社会的主要能源,,与人民的生活和生产建设的关系愈加密切。近十年来,伴随着超高压和特高压输变电技术的迅速发展,电力设备容量及数量大幅增加,电力网规模逐步扩大。现代电力系统的运行在保证合格供电质量的同时,还要保证稳定可靠的发供电能力。变压器是电力系统中重要的枢纽设备,一旦发生故障,将给人们的生产和生活带来巨大的影响和损失。

数据表明,在变压器事故中,绝缘事故占大多数。已有研究结果表明,局部放电是反映变压器内部绝缘缺陷最灵敏参数之一。因此,对变压器内部局部放电的在线监测,可以及时了解绝缘劣化的程度,撑握变压器内部绝缘状态,并制定相应的检修策略避免变压器的突发事故发生,这对提高电力系统运行可靠性,降低国民经济的重大损失具有重要的实际意义。

1.2局部放电现象产生的原因

电力变压器是变电站最主要的设备,它通常采用矿物油(变压器油)作为绝缘和散热的媒介,采用绝缘纸及纸板来绝缘。在绝缘结构局部场强集中的部位、出现局部缺陷时,例如产生气泡时,就会导致局部放电。局部放电会使绝缘逐渐受到侵蚀和损伤,发生局部放电时会办伴生电流脉冲和声脉冲。

长期运行的变压器,变压器油在高温情况下逐渐分解出气体,这些存在于油纸绝缘中的气隙、气泡由于其本身击穿强度较油、纸的击穿强度低,在变压器工作电压的作用下,这些气隙首先被击穿形成放电。另外,变压器的铁芯绝缘不良也可能导致放电,在故障较严重时还会导致铁芯两点接地,甚至出现工频短路电流,因此,局部放电最能有效反映变压器内部的绝缘状况。如果在放电初期能监测到持续时间短、强度弱的局部放电,迅速采取措施消除隐患,就不会造成变压器内部的损伤[1]。

变压器的内部绝缘存在不同程度的缺陷,这些缺陷在电场和温度变化的长期作用下,会导致局部绝缘性能严重下降。变压器在运行过程中,长期处于工作电压的作用下,随着电压等级的提高,绝缘所承受的电场强度也将趋高,在这些绝缘薄弱处就很容易发生局部放电。虽然局部放电时间很短,能量也很小,但是危害性是相当大的。局部放电能够使邻近的绝缘材料受到放电质点的直接轰击进而造成局部的绝缘损坏;放电产生的热和一氧化氮等活性气体的化学作用,会使局部绝缘受到腐蚀老化,导致电导增加,最终形成电击穿和热击穿。

局部放电监测作为检测变压器绝缘的一种有效手段,无论是检测理论还是检

测技术,近年来都取得了较大的发展,并在电厂和电站中得到了实际应用。相对传统的停电局部放电检测,在线局部放电检测可以长时间连续监测变压器局部绝缘放电情况,在放电量达到危险时,及时停机做进一步的检查,因此在检修工时和经济效益等方面有很大的优势,是目前惟一的一种有效避免变压器突发性事故的监测手段[2]。在线局部放电监测反映的是变压器实际工作状态下的绝缘放电情况,比离线检测更符合设备的实际运行工况。

1.3局部放电在线监测主要方法

根据变压器局部放电过程中产生的电脉冲、电磁辐射、超声波、光等现象,相应出现了以下5种局部放电在线监测方法[3]:电脉冲检测法、超声波检测法、光测法、射频检测法和UHF超高频检测法。

1.3.1电脉冲法

电脉冲法又称脉冲电流法,通过检测阻抗、变压器套管末屏接地线、外壳接地线、铁心接地线及绕组中由于局放引起的脉冲电流,获得视在放电量。该方法是研究最早、应用最广泛的一种检测方法。IEC对此制订了相应标准,但存在以下缺点[4]。

a)由于检测阻抗和放大器对测量的灵敏度、准确度、分辨率及动态范围都

有影响,因此当试品电容量较大时,受耦合阻抗的限制,测试仪器的测

量灵敏度也受到一定限制。

b)测试频率低,一般小于1MHz,包含的信息量少。

c)现场测试中容易受外界干扰噪声的影响,抗干扰能力较差。电脉冲法其

关键技术是如何有效地识别和抑制干扰,将真正的局部放电信号提取。

近年来,人们在原有技术基础上,又引入信号分析方法,包括小波理论、神经网络、指纹分析、模糊诊断等方法[5],局部放电在线监测装置的性能有了长足的进步,如德国AVO、LEMEC及澳大利亚虹项等局放在线装置,检测最小局放量达100pC,国内装置由于数字滤波技术不是很完善,只能检测3000pC局放量。

1.3.2超声检测法

用固定在变压器油箱壁上的超声传感器接收变压器内部局放产生的超声波来检测局放的大小和位置。通常采用的超声传感器为压电传感器,选用的频率范围为70~150kHz,目的是为了避开铁心的磁噪声和变压器的机械振动噪声[6]。超声检测法主要用于定性判断是否有局放信号,结合电脉冲信号或直接利用超声信号对局放源进行物理定位。近年来,由于声电换能元件效率的提高和电子放大技术的发展, 超声检测的灵敏度有了较大的提高。

1.3.3光测法

光测法是利用局部放电产生的光辐射进行检测。在变压器油中,各种放电发出的光波长不同,光电转换后,通过检测光电流的特征可以实现局放的识别[7]。虽然在实验室中利用光测法来分析局放特征及绝缘劣化机理等方面取得了很大进展,但由于光测法设备复杂、昂贵、灵敏度低,在实际中并未直接使用。尽管如此,光纤技术作为超声技术的辅助手段应用于局放检测,将光纤伸入到变压器油中,当变压器内部发生局部放电时,超声波在油中传播,这种机械力波挤压光纤,引起光纤变形,导致光纤折射率和光纤长度发生变化,从而光波被调制,通过适当的解调器即可测量出超声波,实现放电定位。

1.3.4射频检测法

利用罗哥夫斯基线圈从电气设备的中性点处测取信号,测量的信号频率可达30MHz,提高了局放的测量频率。测试系统安装方便,检测设备不改变电力系统运行方式。对于三相变压器而言,得到的信号是三相局放量的总和,无法进行分辨,信号容易受外界干扰[8]。随着数字滤波技术的发展,该法在局放在线监测中有较广泛的应用,尤其是在发电机在线监测领域。

1.3.5超高频检测法

针对传统检测方法的不足,近几年出现了一种新的检测方法-超高频检测方法。超高频局放检测通过检测变压器内部局放产生的超高频(300~3000MHz)电信号,实现局部放电的检测和定位,达到抗干扰目的。

每一次局放的发生都伴随一个陡的电流脉冲,并向周围辐射电磁波。研究表明,变压器中局部放电脉冲上升时间基本为1~2ns,发射的电磁波中超高频分量相当丰富。这些超高频成分可以用电容传感器或超高频天线接收[9]。

UHF法和脉冲电流法不同,脉冲电流法的频率测量范围一般不超过1MHz,UHF 法的频率范围为300~3000MHz。脉冲电流法中将试品看作一个集中参数的对地电容,发生一次局放时,试品电容两端产生一个瞬时的电压变化,通过耦合电容在检测阻抗中产生一个脉冲电流。UHF法中传感器并非起电容耦合的作用,而是接收超高频信号的天线。

超高频局放检测技术近年来得到了较快发展,在一些电力设备(如GIS、电机、电缆)的检测中已得到应用[10]。由于GIS结构为使用UHF法进行局放测量提供了有利的条件,电磁波以波导的方式传播,有利于局放信号的检测,因此该方法在GIS局放在线检测中起着极为重要的作用,其灵敏度可达到1pC。UHF法在电机、电缆中也有较成功的应用,有的已形成产品。对电力变压器而言,局放在变压器内油)隔板绝缘中,由于绝缘结构复杂,电磁波在其中传播时会发生多次折射、反射及衰减,同时变压器内箱壁也会对电磁波的传播带来不利影响,增加了

局放超高频电磁波检测的难度,因此,深入研究油)隔板绝缘和箱壁对超高频电磁波传播机理的影响十分必要。

2监测系统的硬件构成

2.1总体结构

监测装置总体结构如图1所示。整个系统可分为传感器、现场处理、光电转换与传输、高速同步采集、信号处理与显示五个单元[11]。

图1 系统总体结构框图

2.2现场控制及预处理单元

现场控制及预处理单元的框图如图2所示,该部分单元的主要功能是电脉冲信号和超声波信号的采集,并由超声波传感器将超声波信号转换为电信号,再对这七路电信号进行放大处理[12]。

图2 现场控制及预处理单元原理框图

采用的超声波传感器是北京航空航天大学开发的点接触型带磁座声发射传感器,主要元件是压电晶体,与变压器表面无须施加耦合剂。电脉冲传感器由单匝穿心式罗果夫斯基线圈、积分电路、电磁屏蔽外壳等组成。电脉冲传感器与变压器之间仅有磁耦合,而无电气连接。为深入研究电力变压器的不同模式局部放电信号的频率特性,选用0.02~1MHz的宽带电脉冲传感器,其中心频率为500kHz,为减小微弱信号在传输过程中受外界干扰的影响程度,采取就地放大处理,前置放大器频带为0.02~1MHz,增益为40dB。将放大后的电信号输入到信号预处理单元的带通滤波器,用于提取各频段的信号分量及消除一些低频或高频的周期性干扰。信号经滤波之后进行放大处理,以满足模/数(A/D)采样卡输入幅值的要求。再送入电光转换与传送单元,经八芯光纤以光信号的形式传送到控制室的接收单

元。

2.3光电转换与传输模块

光电转换与传输模块包括:电光转换和传送单元、光电转换和接收单元[13]。电光转换和传送单元置于现场控制箱内,该部分单元的结构原理框图如图3所示。发送部分由总线、时序逻辑、并串转换及电光转换电路组成;接收部分由光电转换、串并转换及时序逻辑电路组成。

图3 信号传输模块原理框图

2.4外触发单元

在外触发单元中由工频电压与计算机共同产生一外触发信号施加到采样卡上以使A/D转换与外施的工频电压同步,如图4所示。

图4 外触发单元原理图

3监测系统的软件

虚拟仪器(Virtual Instrument,简称为VI)是20世纪80年代由美国国家仪器公司(NI)率先提出的概念,主要由计算机、硬件仪器和虚拟仪器软件三部分组成。虚拟仪器具有友好的图形方式软面板,其应用软件集成了用户界面、测量控制、信息采集、结果显示输出、数据分析等功能,用户只需要对软件进行操作就能改变硬件仪器的功制。虚拟仪器是现代测量技术与计算机技术共同发展的结晶,代表了当今仪器发展领域的最新趋势。为了使所设计的变压器局部放电在线监测系统具有良好的可视化效果、简便的操作方法、快捷的运行速度,本章采用LabVIEW对数据采集系统进行设计开发。

LabVIEW主要应用于数据采集、仪器控制、数据分析与显示等领域,是目前国际上应用最为广泛的控制开发和数据采集环境之一,是虚拟仪器领域最具代表

性的图形化编程平台。LabVIEW采用图形化的编程语言(G语言),人机交互界面友好直观,具有强大的仪器控制和数据可视化分析能力。用户可以创建能够脱离开发环境独立运行的可执行文件。

本系统的软件设计,主要目的是实现人机交互界面、硬件系统软件驱动、硬件系统参数设置、数据储存和信号处理程序调用这几方面的功能。

监测系统软件的主要功能包括:系统自检、初始参数设置、高速数据采集与处理、实时曲线、数据查询、历史数据、放电波形显示、数据库管理、打印各种报表等[14]。

3.1高速数据采集

局部放电信号的采样率取决于三个关键因素[15]:①所测量信号的波形类型;

②信号的最高频率分量;③用于采样点之间互联的内插值法的形式。由于局部放电是一种脉冲信号,且每次出现的局放信号在大小、时间上均不同,重复率低,对于一脉宽为2μs的局放脉冲,其频带宽度可达500kHz,需采用1MHz以上的采样率来采集这种信号;如局放脉冲宽度仅为1μs,根据采样定律,采集系统的采样率至少在2MHz以上才能真实地采集这部分信号。本文采用两块最高采样率为2MHz的A/D采集卡,各有4个采样通道,每个通道的最高采样率为500kHz,为使操作系统有足够时间响应如此快的采样速率,本文采用虚拟设备(Virtual Device,VxD)编程技术[7,8]来解决这个问题。

3.2参数设置

所有采集系统的存储长度都是有限的,存储长度长有利于得到更多的信号样本,这对局部放电测量有两层意义:记录放电持续时间长的放电信号;可在一次采集过程中记录多次放电波形。但这并不意味着加大存储长度就可提高测量精度,由于采样点间的最小时间间隔是由采样率决定的。如实时采样率为1GHz,局部放电持续时间为1ms,则采集系统在一次采集过程中只需持续采集1000个采样点,其余采集点均为多余样本。过多的多余样本将影响后续信号的处理工作。因此本文设计了参数设置功能以使运行参数(采样的长度、采样的频率)可在系统运行时改变,这样可便于工作人员对采样波形进行研究。

3.3数据查询

应用微软的开放数据库连接(Open Database Connectivity,ODBC)标准设计了数据查询功能,操作人员可查询当前时刻之前一天的放电趋势数据,前一个月、一个季度和一年的历史趋势曲线。存储的报警数据为报警发生前1.5s和报警发生后1.5s的所有采样数据,并将报警数据均存入报警数据库文件,以供查询和研究报警时放电电流的变化情况。

4局部放电在线监测关键技术

变压器局部放电在线监测技术主要解决现场噪声的抑制、局部放电模式识别及局部放电的定位。

4.1现场噪声的抑制

变压器正常运行时现场存在多种噪声干扰源,其中包括周期性干扰、白噪声干扰及脉冲干扰。局部放电信号与干扰相比较弱, 甚至相差几个数量级。因此, 在检测中如果不能有效地消除噪声干扰, 局部放电信号就无法有效地分离出来。这是目前局部放电在线监测中存在的最大难题。

4.1.1周期性干扰的抑制

周期性干扰的频谱特征与局部放电信号的频谱特征有较大差异,因此,常采用频域方法处理。主要包括IIR陷波滤波器、FFT值滤波器、固定系数滤波器和理想多通带数字滤波器等,通过频谱分析来确定各谐波成分,然后再进行滤波。

近年来随着滤波技术的发展,滤除周期性干扰的方法越来越多,如自适应滤波、非自适应滤波和小波分析方法等。自适应滤波技术利用周期性干扰信号与局部放电脉冲的不同相关性,在测得的信号中插入一定的延迟, 通过自适应滤波器后就可以自动消除周期性干扰。自适应滤波不用预先知道噪声干扰信息,一定程度上可以实现智能化。

4.1.2脉冲型干扰的抑制

脉冲型干扰分为周期性脉冲干扰和随机性脉冲干扰。周期性脉冲干扰和局部放电信号在频域上分布非常接近,时域的表现形式也基本相同。常用的消除周期性脉冲干扰的方法有差动平衡法和脉冲极性鉴别法。这两种方法都是利用2个测量点间的极性进行判别,如果是外来脉冲, 表现为同极性, 内部局部放电脉冲表现出反极性,由此可以判断是局部放电信号还是周期性脉冲信号。

在实际应用中,由于两路脉冲干扰的来源和途径不同,导致两路脉冲干扰在相位、幅值和波形上有很大的差别,造成电路调整困难。由于变压器绕组为电感、电阻和电容组成的分布参数,传播途径比较复杂, 导致测得的两路脉冲不符合判别规律。随机脉冲干扰与局部放电信号的特征也很相似,有些是外部放电信号,区分他们十分困难, 目前常采用逻辑判断和模式识别方式。逻辑判断主要是采用可以抑制周期型脉冲干扰的差动平衡法和脉冲极性鉴别法,但只能抑制外部耦合的干扰。模式识别是根据不同脉冲的特征,建立各自的指纹库,区分脉冲的类型, 是一种很有效的方法,可靠性较高,但建立脉冲指纹库工作量很大。利用差动平衡法抗干扰的基本原理如图5所示。

图5 系统总体结构框图

(a)外界干扰(b)内部放电(c)差动

4.1.3白噪声干扰的抑制

白噪声信号是一均值为0的平稳随机信号, 属宽带干扰信号,与局部放电信号混叠在一起,用常规的频域分析方法很难将其分离开来。近年来一些数学家通过引入基于小波的滤波方法对白噪声干扰进行滤除。小波去噪一般采用Shrinkage 技术,设定一个门限值, 把系数小于门限的值置为0, 保留大于门限的值, 再经过反变换, 得到去噪后的信号。此方法具有实现简单、运算速度快、去噪效果好、波形失真小等优点。

上述方法对某种干扰可起到很好的抑制效果,但无法单独完全滤除现场所有噪声的干扰。目前采用分层式干扰抑制方法,可有效抑制现场的各种干扰。在变压器中,由于周期性干扰最为严重,因此可以先滤除周期性干扰,然后再滤除白噪声和脉冲干扰, 将检测到的局部放电信号失真降到最小。

4.2局部放电模式识别

最初的变压器局部放电在线监测设备对局部放电类型判定采用与离线检测相同的方法,对局部放电的一些基本参数进行测量(如视在放电电荷、放电重复率、放电能量等)。

随着统计分析方法在局部放电模式识别上的应用,局部放电谱图作为一种重要的分析方法得到重视。与传统的基本参数不同,放电谱图需要观察的基本参数不是一个工频周期内的信息,而是一个比较长的时间段内基本参数的统计量。这个时间段一般要大于100个工频周期。放电谱图根据基本参数的变化大致可分成三类:随时间变化的放电谱图;随工频相位变化的放电谱图;组合参数分布放电谱图。

以时间为变量的局部放电谱图反映了单个物理量测量值随时间的变化规律,不同的绝缘缺陷对应不同的变化规律,以相位为变量的局部放电谱图反映了放电量及次数在工频周期内按相位的分布,将0b~360b的相位分成一定数目的相位窗,观察每个相位窗内的局部放电特性,从而形成一个完整的包含所有相位的局部放电谱图。组合分布参数中的幅值分布和能量分布反映了视在放电量和放电能量的

分布密度, 其密度大小不仅和放电源有关,而且和绝缘的老化程度也有关。

该方法需要通过有经验的专业人员分析,才能得出正确的结果,在现场推广有很大的难度。近年来,一些学者利用局部放电谱图,提出了以其为统计参数( 也称指纹参数),描述谱图的正、负半个周期的统计特征。引入统计参数的目的是将繁杂而且仅仅是定性的各种分布谱图用于定量分析,用定量的数值提取每个相应谱图的特征, 精确分析和判断测量到的局部放电信号。

4.3变压器内部局部放电的定位

局部放电定位技术主要有:超声定位法、电-声联合定位法、电气定位法[16]。

超声定位法将多个超声波传感器安装在变压器油箱外壳,当变压器内部发生局部放电,传感器能检测到放电时产生的超声波信号。布置在变压器油箱外壳不同位置的超声波传感器由于空间位置不同,检测到局部放电产生的超声波信号时间不同,可通过测量超声波的大小及超声波传播的时延,即可确定局部放电源的空间位置。

电—声联合定位法主要在电—声联合检测法的基础上利用超声波在变压器油和箱壁中的传播速度远低于电信号传播速度这一特点,当变压器内部发生局部放电时,速度较快的电信号先触发监测器,监测器再根据随后超声信号到达的时差大小,推测变压器内部局部放电的位置。

电气定位法是假定变压器的等值电路在某特定频率范围内是纯容性电路,而对于具体的变压器,这容性电路是可计算的,当变压器内部发生局部放电时,其首末端电压比值与放电点位置满足特定的函数关系,测量变压器绕组首末端电压,可判断出放电位置[17]。

5局部放电干扰和抗干扰

运行在变电站和发电厂环境的大型电力变压器受到的电磁干扰按时域信号的特征可分为连续的周期型干扰、脉冲型干扰和白噪三类[18]。电力系统中的高次谐波、高频保护、载波通信以及无线电通信等产生的连续干扰属于周期型干扰。脉冲型干扰包括随机脉冲型干扰和周期型脉冲干扰二种。高压线路上电晕、分接开关动作、电焊机和电动机电刷引起的电弧等产生随机脉冲性干扰;可控硅动作(直流电源整流和调相机励磁整流)以及地网中的脉冲干扰属于周期脉冲型干扰。而绕组热噪声、地网噪声、配电线路以及变压器、继电保护信号线路中由于耦合进入的各种随机噪声属于白噪。这些电磁干扰信号与局部放电信号的特征相似,有时甚至比局部放电信号强很多,影响了局部放电监测的准确性,所以要从背景干扰中获得准确的局部放电信号, 必须采取有效的措施抑制干扰,这也是变压器局部放电在线监测技术的关键。

5.1脉冲极性法和差动平衡法

这两种方法的基本思路相同。脉冲极性法原理利用脉冲鉴别电路, 使出现的局部放电高频脉冲电流在不同的检测阻抗上产生相反的极性,而外来的干扰信号则在其上产生相同的极性。然后依靠电子门控开关对取得的信号进行极性鉴别:两信号同向时为外部干扰,极性鉴别电路不输出;两信号相反时为内部局部放电,极性鉴别电路输出局部放电信号。差动平衡法的原理是外部电晕放电、电弧放电在变压器油箱接地线和中性点接地线上产生的脉冲电流方向相同,而内部局部放电在变压器油箱接地线和中性点接地线上产生的脉冲电流方向相反[19]。放电信号被传感器经前置放大器调幅后送到差动发大器,同向的放电信号相互抵消,而反向的内部局部放电信号却得到了放大,从而抑制了干扰。

5.2复小波分析法

小波分析技术又分为实小波分析技术和复小波分析技术[20]。实小波技术在分析过程中只产生实系数,分析实小波分量的幅值角度信息。由于局部放电信号与周期性干扰和白噪干扰实小波分解的幅频特性不同,与脉冲型干扰分解的幅频特性相似,故实小波只适合去除周期性干扰和白噪干扰,无法去除脉冲型干扰。而复小波在小波分析中能产生虚部系数,可提取原信号的相位,能提供变换系数的幅值与相位的综合信息来抑制干扰,比实小波能更好地消除局部放电在线监测中的电磁干扰。由于干扰信号还可能通过空间耦合、地线、电源等途径进入测量系统, 可以通过增强屏蔽、电源滤波、单独接地等方法将这类干扰抑制到足够小的水平, 同时采用高性能传感器,将传感信号与一次侧有效隔离,这也能起到抑制干扰信号的作用。

6总结

近几年来变压器局部放电的在线监测取得了很大的进展,已有多台在线监测仪在现场应用,并取得了较好的效果。本文的在线监测系统,表现出较强的抗干扰特性,提供的数据比较客观地反映变压器的运行状态,并为现场工作人员诊断设备状态时提供了较好的辅助作用,能为电力变压器的状态检修提供比较可信的依据。

7参考文献

[1]鲍利军.电力变压器局部放电在线监测技术介绍[J].南方电网技术,2008,06:81-83.

[2]李书硕,金鑫,戴舒.变压器局部放电在线监测综述[J].东北电力技术,2009,08:37-40.

[3]杨启平,薛五德,蓝之达.变压器局部放电在线监测技术的研究[J].变压器,2008,10:35-38.

[4]刘海萍,李正明.变压器局部放电在线监测技术分析[J].中国农村水利水电,2007,03:69-71.

[5]王东升,丁立健,于龙滨.变压器局部放电在线监测技术[J].东北电力技术,2007,04:34-37.

[6]李剑,宁佳欣,金卓睿,王有元,李溟.变压器局部放电在线监测超高频Hilbert分形天线研究[J].电力自动化设备,2007,06:31-35.

[7]邱晓丹,周启龙,王世成,黄洪阳,李万里.变压器局部放电在线监测技术的研究[J].自动化应用,2010,03:52-54.

[8]文德斌,吴广宁,周利军,刘君,杜培东,刘益岑.变压器局部放电在线监测技术现状及前景[J].电气化铁道,2010,05:17-20.

[9]甘景福,韩克勤,周燕飞.超高频变压器局部放电在线监测系统在智能变电站的应用[J].电力科学与工程,2012,02:41-45.

[10]刘佳陇.变压器局部放电在线监测技术[J].中国新技术新产品,2012,14:13-14.

[11]王胜辉.变压器局部放电在线监测高速数据采集系统的研究[D].华北电力大学(河北),2004.

[12]赵来军.变压器局部放电在线监测中干扰的识别与抑制方法的研究[D].华中科技大学,2005.

[13]张艳阳.变压器局部放电在线监测中的噪声抑制方法研究[D].湖南大学,2006.

[14]孟庆新.电力变压器局部放电在线监测系统及基于小波的消噪方法的研究[D].辽宁科技大学,2007.

[15]毕为民.变压器局部放电监测中以小波包去噪和统计量识别放电模式的研究[D].重庆大学,2003.

[16]张涛.基于特高频的干式变压器局部放电在线监测[D].华北电力大学,2013.

[17]杨洲.变压器局部放电在线监测系统的设计[D].哈尔滨理工大学,2011.

[18]敬强.变压器局部放电在线监测中的噪声抑制研究[D].西安理工大学,2009.

[19]黄盛洁,梅刚,陈春生,马治亮,姚文冰,汤美云.变压器局部放电在线监测技术研究[J].高电压技术,1996,04:39-42.

[20]王圣,傅明利,王乃庆.运行变压器局部放电在线监测技术[J].高电压技术,1991,04:25-29.

变压器铁芯接地电流在线监测装置技术规范

Q/CSG 中国南方电网有限责任公司企业标准 中国南方电网有限责任公司发布

Q/ CSG XXXXX.X-2013 目次 前言...................................................................................................................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (1) 5 试验项目及要求 (2) 6 检验规则 (3) 7 标志、包装、运输、储存 (4) I

Q/ CSG XXXXX.X-2013 II 前言 为规范输变电设备在线监测系统的规划、设计、建设和运行管理,统一技术标准,促进在线监测 技术的应用,提高电网的运行可靠性,特制定本标准。 本标准由中国南方电网有限责任公司生产技术部提出、归口并解释。 本标准起草单位:广东电网公司电力科学研究院。 本标准主要起草人: 本标准由中国南方电网有限责任公司标准化委员会批准。 本标准自XXXX年XX月XX日起实施。 执行中的问题和意见,请及时反馈给南方电网公司生产技术部。

Q/ CSG XXXXX.X-2013 变压器铁芯接地电流在线监测装置技术规范 1范围 本标准规定了变压器铁芯接地电流在线监测装置的范围、术语、使用条件、技术要求、试验、备品备件、标志、包装、运输、贮存要求等,可作为产品的研制、生产、检验和现场测试的依据。 本标准适用于110kV及以上电压等级的变压器铁芯接地电流在线监测装置的生产、检测、使用和维修。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 191 包装储运图示标志 GB/T 2423 电工电子产品环境试验 GB/T 16927.1 高电压试验技术第一部分:一般试验要求 GB/T 16927.2 高电压试验技术第二部分:测量系统 GB/T 17626.1 电磁兼容试验和测量技术抗扰度试验总论 DL 393-2010 输变电设备状态检修试验规程 Q/CSG XXXX 变电设备在线监测系统通用技术规范 3术语和定义 下列术语和定义适用于本标准。 3.1变压器铁芯接地电流在线监测装置 安装在高压设备附近,用于变压器铁芯接地电流特征量连续实时监测的装置。一般由传感器、数据采集和处理模块、通讯控制模块等组成。 4技术要求 4.1通用技术要求 变压器铁芯接地电流在线监测装置的基本功能、绝缘性能、电磁兼容性能、环境性能、机械性能要求、外壳防护性能、连续通电性能、可靠性及外观和结构等通用技术要求应满足《变电设备在线监测装置通用技术规范》。 4.2接入安全性要求 1

主变压器在线监测装置配置分析.

分析主变压器的油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损等五种在线监测,得出配置主变压器在线监测是安全,可靠、经济的结论。 1.前言 大型电力变压器的安全稳定运行日益受到各界的关注,尤其越来越多的大容量变压器进网运行,一旦造成变压器故障,将影响正常生产和人民的正常生活,而且大型变压器的停运和修复将带来很大的经济损失,在这种情况下实时监测变压器的绝缘数据,使变压器长期在受控状态下运行,避免造成变压器损坏,对变压器安全可靠运行具有一定现实意义。 主变压器在线监测主要包括:油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损监测。 2.变压器油色谱在线监测 变压器油中溶解气体分析是诊断充油电气设备最有效的方法之一,能够及早发现潜在性故障。由于试验室分析的取样周期较长,且脱气误差较大及耗时较多等问题,因此不能做到实时监测、及时发现潜伏性故障,很难满足安全生产和状态检修的要求。油色谱在线监测采用与实验室相同的气相色谱法。能够对变压器油中溶解故障气体进行实时持续色谱分析,可以监测预报变压器油中七种故障气体,包括氢气(H2),二氧化碳(CO2),一氧化碳(CO),甲烷(CH4),乙烯(C2H4),乙烷(C2H6)和乙炔(C2H2)。 该系统目前已广泛应用于变压器的在线故障诊断中,并且建立起模式识别系统可实现故障的自动识别,是当前在变压器局部放电检测领域非常有效的方法。 3.变压器光纤测温在线监测 变压器寿命的终结能力最主要因素是变压器运行时的绕组温度。传统的绕组温度指示仪(WTI)是利用"热像"原理间接测量绕组温度的仪表,安装在变压器油箱顶部感测顶层油温,WTI指示的温度是基于整个

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

智能变压器状态在线监测技术方案

智能变压器状态监测系统技术方案 一、智能变压器状态监测系统 智能变压器作为智能变电站的核心组成部分,其建设获得了越来越多的关注。根据现行的标准,智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能,实现与相邻变电站互动的变电站。智能变压器在线监测系统是保证变压器正常工作并预估设备的损耗以建立合理的检修计划,智能变压器在线监测系统是实现智能变电站的基础设备之一。 变压器是电力系统中重要的也是昂贵的关键设备,它承担着电压变换,电能分配和转移的重任,变压器的正常运行是电力系统安全、可靠地经济运行和供用电的重要保证,因此,必须最大限度地防止和减少变压嚣故障或事故的发生。但由于变压器在长期运行中,故障和事故是不可能完全避免的。引发变压器故障和事故的原因繁多,如外部的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中留下的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化等等,已成为故障发生的主要因素。同时,客观上存在的部分工作人员素质不高、技术水平不够或违章作业等,也会造成变压器损坏而造成事故或导致事故的扩大,从而危及电力系统的安全运行。 正因为变压器故障的不可完全避免,对故障的正确诊断和及早预测,就具有更迫切的实用性和重要性。但是,变压器的故障诊断是个非常复杂的问题,许多因素如变压器容量、电压等级、绝缘性能、工作环境、运行历史甚至不同厂家的产品等等均会对诊断结果产生影响。 智能变压器状态监测系统构架如图1-1所示:

变压器油中溶解气体在线监测概要

变压器油中溶解气体在线监测方法研究

摘要 (3) 1. 导言 (4) 2. 国内外发展现状及发展趋势 (6) 3. 变压器油中溶解气体在线监测方法的基本原理 (9) 3.1.变压器常见故障类型 (9) 3.2.变压器内部故障类型与油中溶解特征气体含量的关系 (10) 4. 基于油中特征气体组分的故障诊断方法 (14) 4.1.特征气体法 (14) 4.2.三比值法 (15) 4.3.与三比值法配合使用的其它方法 (17)

摘要 电力变压器是电力系统中最主要的设备,同时也是电力系统中发生事故最多的设备之一,对其运行状况实时监测,保证其安全可靠运行,具有十分重要的意义。变压器油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映设备异常的特征量。如何以变压器油中溶解气体在线监测为手段,实现对运行变压器潜伏性故障的诊断和预测,是本文的出发点。 本文的目标是研究基于油中溶解气体分析(DGA)的电力变压器状态监测与故障分析方法,通过气体色谱分析方法实现对变压器油中溶解的七种特征气体(氢气H2、甲烷CH4、乙炔C2H2、乙烯C2H4、乙烷C2H6、一氧化碳CO、二氧化碳CO2)组分含量在线实时监测,从而达到对电力变压器工作状态的诊断分析。

1.导言 现代社会对能源的巨大需求促进了电力工业的飞速发展。一方面是单台电力的容量越来越大;另一方面是电力网向着超高压的方向发展,并正组织成庞大的区域性甚至跨区域的大电网。然而,随着电力设备容量的增大和电力网规模的扩大,电力设备故障给人们的生产和现代生活所带来的影响也就越来越大。这就要求供电部门在不断提高供电质量的同时,要切实采取措施来保证电力设备的正常运行,以此来提高供电的可靠性。长期以来形成的定期检修已不能满足供电企业生产目标。激烈的市场竞争迫使电力企业面临着多种棘手的问题,例如如何提高设备运行可靠性、如何有效控制检修成本、合理延长设备使用寿命等。因此,状态检修已成为必然。而状态检修的实现,必须建立在对主要电气设备有效地进行在线监测的基础上,通过实时监测高压设备的实际运行情况,提高电气设备的诊断水平,做到有针对性的检修维护,才能达到早期预报故障、避免恶性事故发生的目的。由此可见,以变压器状态监测为手段,随时对其潜伏性故障进行诊断和预测以及跟踪发展趋势是十分必要的。 对于大型电力变压器,目前几乎大多是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成气泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体量随故障的严重程度而异。由此可见,油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备电气异常的特征量。 溶解气体分析(Dissolved Gas Analysis简称DGA)是诊断变压器内部故障的最主要技术手段之一。根据GB/T7252-2001《变压器油中溶解气体分析和判断导则》,可以通过分析油中7种分析组分H2、C2H2、C2H4、C2H6、CH4、CO和CO2的含量来判断并分析故障。通过从油样中分离出这些溶解气体,并利用色谱技术对其进行定量分析。变压器油中溶解的各种气体成分的相对数量和形成速度主要取决于故障点能量的释放形式及故障的严重程度,所以根据色谱分析结果可以进

变压器局部放电的原因分析

变压器局部放电的原因分析 其一,由于变压器中的绝缘体、金属体等常会带有一些尖角、毛刺,致使电荷在电场强度的作用下,会集中于尖角或毛刺的位置上,从而导致变压器局部放电;其二,变压器绝缘体中一般情况下都存在空气间隙,变压器油中也有微量气泡,通常气泡的介电系数要比绝缘体低很多,从而导致了绝缘体中气泡所承受的电场强度要远远高于和其相邻的绝缘材料,很容易达到被击穿的程度,使气泡先发生放电;其三,如果导电体相互之间电气连接不良也容易产生放电情况,该种情况在金属悬浮电位中最为严重。 局部放电的危害及主要放电形式 2.1 局部放电的危害 局部放电对绝缘设备的破坏要经过长期、缓慢的发展过程才能显现。通常情况下局部放电是不会造成绝缘体穿透性击穿的,但是却有可能使机电介质的局部发生损坏。如果局部放电存在的时间过长,在特定的情况下会导致绝缘装置的电气强度下降,对于高压电气设备来讲是一种隐患。 2.2 局部放电的表现形式 局部放电的表现形式可分为三类:第一类是火花放电,属于脉冲型放电,主要包括似流注火花放电和汤逊型火花放电;第二类是辉光放电,属于非脉冲型放电;第三类为亚辉光放电,具有离散脉冲,但幅度比较微小,属于前两类的过渡形式。 3 变压器局部放电检测方法 变压器局部放电的检测方法主要是以局部放电时所产生的各种现象为依据,产生局部放电的过程中经常会出现电脉冲、超声波、电磁辐射、气体生成物、光和热能等,根据上述的这些现象也相应的出现了多种检测方法,下面介绍几种目前比较常见的局部放电检测方法。 3.1 脉冲电流检测法 这种方法是目前国内使用较为广泛的变压器局部放电检测方法,其主要是通过电流传感器检测变压器各接地线以及绕组中产生局部放电时引起的脉冲电流,并以此获得视在放电量。电流传感器一般由罗氏线圈制成。主要优点是检测灵敏度较高、抗电磁干扰能力强、脉冲分辨率高等;缺点是测试频率较低、信息量少。 3.2 化学检测法 化学检测法又被称为气相色谱法。变压器出现局部放电时,会导致绝缘材料被分解破坏,在这一过程中会出现新的生成物,通过对这些生成物的成分和浓度进行检测,能够有效的判断出局部放电的状态。这种方法的优点是抗电磁干扰较强,基本上能够达到不受电磁干扰的程度,也比较经济便捷,还具有自动识别功能;但该检测方法也存在一些缺点:由于生成物的产生过程时间较长,故此延长了检测周期,只能发现早期故障,无法检测突发故障,并且该

变压器局部放电试验方案

变压器局部放电试验方案批准:日期: 技术审核:日期: 安监审核:日期: 项目部审核:日期: 编写:日期: 2017年4月

1概述 变压器注油后已静置48小时以上并释放残余气体,且电气交接试验、油试验项目都已完成,并确认达到合格标准。 2试验地点 三明110kV双江变电站 3试验性质:交接试验 4试验依据 DL/T417-2006《电力设备局部放电现场测量导则》 GB1094.3-2003《电力变压器第三部分:绝缘水平绝缘试验和外绝缘空气间隙》GB50150-2006《电气装置安装工程电气设备交接试验标准》 DL/T596-1996《电力设备预防性试验规程》 Q/FJG 10029.1-2004《电力设备交接和预防性试验规程》 合同及技术协议 5试验仪器仪表 6、人员组织 6.1、项目经理: 6.2、技术负责: 6.3、现场试验负责人及数据记录:黄诗钟 6.4二次负责人: 6.5、试验设备接线及实际加压操作负责人: 6.6、专责安全员: 6.7、工器具管理员: 6.8、试验技术人员共4人,辅助工若干人 6.9、外部协助人员:现场安装人员,监理,厂家及业主代表等人员

7试验过程 7.1试验接线图(根据现场实际情况采用不同的试验原理图) 7.2试验加压时序 图2中,当施加试验电压时,接通电压并增加至 U3,,持续5min ,读取放电量值;无异常则增加电压至U2,持续5min ,读取放电量值;无异常再增加电压至U1,进行耐压试验,耐压时间为(120×50/?)s ;然后,立即将电压从U1降低至U2,保持30min (330kV 以上变压器为60min ),进行局部放电观测,在此过程中,每5min 记录一次放电量值;30min 满,则降电压至U 3,持续5min 记录放电量值;降电压,当 图1变压器局部放电试验原理图 图2 局部放电试验加压时序图

TCDS变压器在线监测完整系统技术规范

TCDS变压器综合监测与专家诊断系统 技术规范 一.系统概述 TCDS变压器综合监测与专家诊断系统是一套针对110kV及以上电压等级的变压器在线监测与诊断的完整解决方案,适用于110kV及以上电压等级的电力变压器、套管等高压电器设备的运行状态监测与诊断。该系统采用分布式结构、就地测量、数字传输。只需在被监测设备上安装智能化的本地监测单元,即可实施就地测量,并通过现场RS485通信把监测数据传送到中央监控器(CU,主机),中央监控器再通过RS485总线与局域网相连。用户(PC机)利用局域网可随时获取监测数据和诊断结果。在软件架构方面,采用模型-视图-控制器模式(MVC)设计,成功开发出了一套针对油浸式变压器运行状态的自动智能诊断与人工干预诊断(专家诊断)相互验证的诊断系统。系统实现数据显示、故障预警、故障诊断功能。监测缺陷发展趋势,揭示故障本质,提供措施建议。 该系统对于存在异常征兆的变压器做到早发现、早分析、早诊断、早处理,避免事故发生,从而提高电力设备的运行可靠性与安全性。 二.系统组成及原理 1.系统组成 本系统由下列监测单元组成: 1)变压器铁芯接地电流监测装置;

2)变压器套管介损tanδ、电容电流及电容量监测装置; 3)变压器综合监测单元(含变压器负荷、分接开关、风机、油泵); 4)变压器局部放电在线监测装置; 5)变压器油色谱在线监测装置; 6)环境监测装置; 7)智能柜柜体(含工控机、空调)。 2. 系统测量单元接线系统图 套管母线PT套管母线PT套管母线PT 三.系统基本使用条件 3.1.使用环境 1)工作环境温度:-30℃~+65℃; 存环境温度-40℃~+80℃ 相对湿度:日平均最大相对湿度为95%; 2)大气压力:80kPa~110kPa(相对于海拔高度为2km及以下); 3)太阳辐射强度为0.1w∕cm2。

配电变压器的在线监测技术

配电变压器的在线监测技术 方案,提出了基于全球移动通信系统GSM (Global System for Mobile communication)短信技术的配电变压器在线监测系统的设计方案。 关键词:配电变压器;在线监测;GSM;DSP 配电变压器在线监测系统是一个信息集中管理系统,信息采集点是配电变压器,采集对象为配电变压器各项运行数据。系统主要组成为现场终端、通信信道和主站中心平台。以下将对配电变压器监测终端、信道传输及功能进行系统的阐述,并对本系统的功能做一个详细的归纳。其中信道传输作为重点研究对象。 一、配电变压器监测终端 监测终端部分的硬件系统由数据采集和信号处理两部分组成。 1.1数据采集部分 数据采集部分由信号转换与调理电路、采样同步控制电路、A/D转换电路组成。采集模式为220V三相交流电压,5A三相交流电流共六路通道同步采集,A/D采样并行输出。采用同步锁相系统控制采样频率,使采样频率和信号基波频率同步变化,可消除频率泄漏。 首先系统通过电流互感器和电压互感器采集配电变压器运行中实时电流信号和电压信号,然后经过放大,低通滤波等信号调理模块送人A/D转换器,把模拟量转换为数字信号送入数字信号处理器(DSP)。如图1所示: 图一 A/D转换器电路以及型号选择: A/D转换器选用ADS7864。ADS7864具有6个输入通道,每个通道都带有一个采样保持

器,内部与两个独立的逐次比较转换器,可以同时进行2个通道的转换。输出具有FIF0,为二进制补码。 1.2数据的处理部分 本设计的DSP芯片选用VC5409作为监测终端数据处理部分的核心。该芯片属于美国TI 公司生产的54XX系列DSP中的一款,这一系列的芯片具有相同的内核结构,只是配置了不同的片内存储器和片上外围设备。 数据信号处理器(DSP)的优点 DSP控制器具有用于高速信号处理和数字控制功能所必要的结构特点,同时还具有单片电机控制应用所需的外设功能.DSP内核具有高性能的运算能力,使得其芯片可以对复杂的控制算法进行实时运算。 二、信道传输 2.1传输方式的选择 我国的通信系统主要有以下几种通信方式:电力载波通信、光纤通信、微波通信、电话拨号、普通电台无线通信等。其各自的特点见下表: 图2 配电网通信方式性能比较 所以根据以上的分析,以及我国通信系统的现状,利用全球移动通信系统GSM公众无线通信网的SMS服务传输远程数据具有一次投入少、运营成本低、可靠性高、免维护的特点,可以作为有配电网在线监测系统的主要通信方式。 系统网络如图3所示,主要由终端检测设备、终端设备通信模块、GSM通信网络、通信管理器、管理工作站组成。 2.2数据的发送 众所周知现有的GSM网络技术十分的稳定,现在的GSM系统能提供多种不同类型的业务,

电力变压器局部放电试验目的及基本方法

一变压器局部放电分类及试验目的 电力变压器是电力系统中很重要的设备,通过局部放电测量判断变压器的绝缘状况是相当有效的,并且已作为衡量电力变压器质量的重要检测手段之一。 高压电力变压器主要采用油一纸屏障绝缘,这种绝缘由电工纸层和绝缘油交错组成。由于大型变压器结构复杂、绝缘很不均匀。当设计不当,造成局部场强过高、工艺不良或外界原因等因素造成内部缺陷时,在变压器内必然会产生局部放电,并逐渐发展,后造成变压器损坏。电力变压器内部局部放电主要以下面几种情况出现: (1)绕组中部油一纸屏障绝缘中油通道击穿; (2)绕组端部油通道击穿; (3)紧靠着绝缘导线和电工纸(引线绝缘、搭接绝缘,相间绝缘)的油间隙击穿; (4)线圈间(匝间、饼闻)纵绝缘油通道击穿; (5)绝缘纸板围屏等的树枝放电; (6)其他固体绝缘的爬电; (7)绝缘中渗入的其他金属异物放电等。 因此,对已出厂的变压器,有以下几种情况须进行局部放电试验: (1)新变压器投运前进行局部放电试验,检查变压器出厂后在运输、安装过程中有无绝缘损伤。 (2)对大修或改造后的变压器进行局放试验,以判断修理后的绝缘状况。 (3)对运行中怀疑有绝缘故障的变压器作进一步的定性诊断,例如油中气体色谱分析有放电性故障,以及涉及到绝缘其他异常情况。

二测量回路接线及基本方法 1、外接耦合电容接线方式 对于高压端子引出套管没有尾端抽压端或末屏的变压器可按图1所示回路连接。 图1:变压器局部放电测试仪外接耦合电容测量方式110kV以上的电力变压器一般均为半绝缘结构,且试验电压较高,进行局部放电测量时,高压端子的耦合电容都用套管代替,测量时将套管尾端的末屏接地打开,然后串入检测阻抗后接地。测量接线回路见图2或图3。 图2:变压器局部放电测试中性点接地方式接线

变压器综合在线监测系统宣传册-中文版

变压器综合在线监测系统 (变压器油中溶解气体(可选微水)、变压器套管、氧化锌避雷器、SCADA工作站和 WEB服务器)

变压器油中溶解气体(可选微水)在线监测系统 一、功能 ?定期监测氢气、一氧化碳、甲烷、乙烷、乙烯、乙炔及总烃、总可燃气体 含量(可选微水含量),并实时分析、诊断变压器的工作状态及故障类型 ?系统具备自校准系统,采用标准样气,定期进行校准,保证监测的准确性 和可追溯性 ?完善的三比值法、电协研法和大卫三角形法等对变压器运行状况进行综合 判断 ?远程变压器油状态多专家协助分析机制 二、特色 ?自动定期标定技术,保证设备检测精度的一致性和可靠性 ?引入先进稳定的气体传感器,C2H2的最小分辨率为0.1μL/L,为变压器油 色谱分析工作提供了有力保障 ?油路循环系统采用世界顶级美国SWAGELOK配件,保证了整个系统的可靠性三、参数

变压器套管在线监测系统 一、功能: ?定时监测并分析高压套管的介质损耗和等效电容量和趋势 ?定时监测环境温度、湿度及变化趋势,并对监测结果的环境误差进行修正?越限和区域报警功能 二、特色: ?传感器安装不改变原有电力设备的接线模式,监测系统和一次系统只有磁 耦合,无电连接。不会给一次系统带来任何干扰和影响 ?独特的系统自校准功能,测量周期内主动校准硬件电路的老化和温度的变 化带来的误差 ?多路PT信号采集,适应于各类复杂电网络结构。PT取样与CT取样采用同 样的取样模式,抵消了前端取样带来的误差 ?传感器磁芯使用新型磁性材料,电流传输比和相移的变化均小于万分之 五,而且长时间运行稳定性好,性能优异 三、参数:

变压器油色谱在线监测系统原理及应用效果

变压器油色谱在线监测系统原理及应用效果 【摘要】变压器故障诊断要综合各种检测手段和方法,在变压器故障和诊断中单靠电气试验方法往往很难发现某些特殊局部部位的故障和发热隐患,色谱分析已成为检测变压器等充油设备故障的重要手段,这种方法能弥补电气试验方法的不足之处。本文论述了变压器故障诊断及色谱分析诊断的原理,阐述了MGA2000—6系统的工作原理和技术特点及应用情况。 【关键词】在线监测变压器绝缘油色谱分析 1引言 在现代电气设备的运行和维护中,变压器是电力系统的主要设备之一,因结构复杂,影响安全运行的因素较多。变压器在线监测系统通过油色谱分析、微水分析、温度的热效应等综合信息来分析判断变压器的绝缘状况,较好地解决了这些问题。 与预防性试验相比,在线监测系统采用更高灵敏度的传感器采集运行中设备的劣化信息,信息量的处理和识别依靠有丰富软件支持的计算机网络,不仅可以把某些预试项目在线化,还可以引进一些新的能更真实反应设备运行状态的特征量,从而实现对设备运行状态的综合诊断,促进电力设备由定期试验向状态检修过渡。 2变压器故障诊断 变压器故障诊断要综合各种检测手段和方法,对检测结果进行综合分析和评判,根据DL/T596—2005《电力设备预防性试验规程》规定的试验项目,各种介质损耗因数的测量作为作为设备状态诊断和检测项目的关键具有重要意义。 目前,电力系统中采用了大量的充油电气设备,采用电气试验的方法对电气设备的绝缘情况进行检测是一个有效的方法。由于有一些设备的早期潜伏或局部故障,如变压器铁心多点接地,变压器内部线圈轻微匝间短路和比较轻微的放电等故障,受试验条件所限,采用电气试验的方法常常检测不出来,但是,如果采用色谱分析方法,对这些设备的绝缘油中溶解的气体进行检测分析,就可以检测出设备故障的所在。

变压器局部放电在线监测装置检验规范-(终稿)

变压器局部放电在线监测装置检验规范 1 范围 本规范规定了变压器局部放电在线监测装置的专项检测项目、检验条件、检验内容及要求和检验结果处理。 本规范适用于变压器局部放电在线监测装置的型式试验、出厂试验、交接试验和运行中试验。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 16927 高电压试验技术 GB 7354-2003 局部放电测量 DL/T 356-2010 局部放电测量仪校准规范 3 检验项目 变压器局部放电在线监测装置专项试验项目包括一致性测试、通用技术条件试验、传感器频响特性检验、系统灵敏度检验、系统有效性检验和抗干扰性能试验。 4 检验条件 除环境影响试验和抗谐波干扰试验之外,其它试验项目应在如下试验环境中进行: a)环境温度:+15?C~+35?C; b)相对湿度:45%~75%; c)大气压力:80kPa~110kPa; d)电源电压:单相220×(1±10%)V; e)电源频率:50Hz±0.1Hz; f)电源波形:正弦波,波形失真度不大于5%; g)标准信号源:标准波形脉冲上升沿(10%~90%上升时间)约为1ns,半波时间为50ns, 幅值稳定度±5%,脉冲重复频率为50-200Hz可调。 对于高压检验试验,还应该满足以下试验条件: 1

a)试品的温度与环境温度应无显著差异; b)试验场所不得有显著的交流或直流外来磁场影响; c)试验场地必须具有单独工作接地和保护接地,设置保护栅栏; d)试品与接地体或邻近物体的距离,应大于试品高压部分与接地部分的最小空气距离 的1.5倍; e)构建吉赫兹横电磁波测量小室(GTEM测量小室)。 5 检验内容及要求 5.1一致性测试 5.1.1通信模型检测 a)检验模型配置文件与IEC 61850标准的变电站配置语言SCL的符合性; b)检验逻辑设备、逻辑节点、数据、数据属性的命名规则及描述与《变压器局部放电 在线监测装置技术规范》中附录A在线监测装置数据通信要求的符合性; c)检验数据集、报告控制块、日志控制块、定值组控制块等的命名规则、描述、定义 位置及数量与《变压器局部放电在线监测装置技术规范》中附录A在线监测装置数据通信要求的符合性。 5.1.2数据传送功能检测 a)通过报告服务,装置应实现遥信、遥测数据的告警、召唤、周期上传; b)通过日志服务,装置应响应综合处理单元查询遥信、遥测数据; c)通过文件服务,装置应实现谱图文件的上传; d)所有遥信、遥测数据应具备品质、时标等信息; e)装置内部的通信网络连接出现中断,应正确报出通信中断。 5.1.3谱图文件格式检测 装置生成的谱图文件应符合《变压器局部放电在线监测装置技术规范》的谱图文件格式要求。 5.1.4时间同步检测 a)装置应采用SNTP协议实现网络对时; b)用于事件时标的时钟同步准确度应为±1ms。 5.1.5通信自恢复能力检测 装置具备通信恢复能力,当物理故障消除后,网络通信应能自动恢复正常,信息传送正

变压器在线监测与故障诊断技术研究

变压器在线监测与故障诊断技术研究 摘要:分析了油色谱分析的原理,然后介绍色谱分析判断变压器故障方法,最后使用油色谱技术监测与诊断变压器。 关键词:状态检修;在线监测;故障诊断;油色谱分析; 中图分类号:TM41 文献标识码:A 文章编号:1009-3044(2015)05-0237-02 Studies on On-line Monitoring System and Fault Diagnosis of the Transformer GUO Wen-liang, Hu Yi (State Grid Beijing Maintenance Company,Beijing 100000, China) Abstract:the principle of chromatographic analysis is analyzed, Then, the transformer fault diagnosis method is introduced, Finally, the use of chromatographic analysis to monitor and diagnose transformer Case is introduced. Key words:condition-based maintenance;on-line monitoring; fault diagnosis;Chromatographic analysis;

运行中的变压器,发生外部故障时,我们可以观察到,但其内部发生故障、病变,就很难监控,但变压器内部的油,是可以采集到的。绝缘油老化、变质会分解出一氧化碳CO、二氧化碳CO2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、氢气H2等,通过对变压器的绝缘油进行定期取样、分析,并与历年的分析数据进行对比,在变压器正常供电的情况下,判别变压器的运行状况,有助于及早发现和消除存在的安全隐患,确保变压器的安全运行。 1油色谱分析基本原理 在新绝缘油的溶解气体中,除了含有氮气(约70%)和氧气(约30%)以及二氧化碳(0.3%左右)气体外,并不含有C1 C2之类的低分子烃,在经过油的处理之后,由于一些油的加热处理设备存在死角,可能出现微量的乙烯甚至极微量的乙炔。正常运行状况下,由于变压器绝缘油油和绝缘材料的缓慢分解和氧化,会产生少量的二氧化碳(CO2)、一氧化碳(CO)和微量的低分子烃气体。当变压器的内部出现放电和过热故障时,变压器绝缘油和内部固体绝缘材料中放电效应和受热性效应作用,油中的二氧化碳(CO2)、一氧化碳(CO)、氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)等烃类气体产生速度和数量就会显著地增加。而在故障的初期,这些气体的增加并不足以引起瓦斯继电器的动作,此时,通过分析油中溶解气体含量及其增长速度,

变压器绝缘在线监测

前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV 电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。 因我局目前在观水变电站采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的变压器油中六种溶解气体在线监测诊断装置。所以我们以下主要介绍我局这一套油中气体在线监测装置的使用情况。 在线监测诊断装置在实际中的应用 我局目前在观水变电站一号主变上采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的DZJ-Ⅲ型电气设备绝缘在线监测装置。已于2000年3月15日进入试运行状态。 监测的原理及方法: 电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一,因此,国内外不仅要定期作以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。变压器在发生突发性事故之前,绝缘的劣化及潜伏性故障在运行电压下将产生光、电、声、热、化学变化等一系列效应及信息。对于大型电力变压器,目前几乎是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备异常的特征量。 从预防性维修制形成以来,电力运行部门通过对运行中的变压器定期分析其溶解于油中的气体组分、含量及产气速率,总结出了能够及早发现变压器内部存在潜伏性故障、判断其是否会危及安全运行的方法即油色谱分析法。油色谱分析法是将变压器油取回实验室中用色谱仪进行分析,不仅不受现场复杂电磁场的干扰,而且可以发现油设备中一些用介损和局部放电法所不能发现的局部性过热等缺陷。但常规的油色谱分析法存在一系列不足之处:不仅脱气中可能存在较大的人为误差,而且检测曲线的人工修正法也会加大误差,从取油样到实验室分析,作业程序复杂,花费的时间和费用较高,在技术经济上不能适应电力系统发展的需要;检测周期长,不能及时发现潜伏性故障和有效的跟踪发展趋势;因受其设备费用和技术力量的

变压器局部放电在线监测技术

变压器局部放电在线监测技术 目录 目录 (1) 前言 (2) 1在线监测方法 (2) 1.1超声监测法 (2) 1.2光测法 (3) 1.3电脉冲法 (3) 1.4射频监测法 (3) 1.5超高频监测法 (3) 2在线监测监控技术 (4) 2.1.1现场噪声的抑制 (4) 2.1.1.1 周期性干扰的抑制 (4) 2.1.1.1.2 脉冲型干扰的抑制 (5) 2.1.1.1.3白噪声干扰的抑制 (5) 2.1.2局部放电模式识别 (5) 2.1.3局部放电定位技术 (6) 3结束语 (7) 结论 (7) 致谢 (7) 参考文献 (7)

前言 近年来 , 随着电力系统的快速发展 , 变压器的容量和电压等级不断提高 , 运行中的安全问题也越来越受到重视。在变压器所发生的故障中 , 绝缘问题占很大的比重 , 因此需要一种有效的手段对变压器的绝缘状况进行监测 , 确保运行中变压器的安全。 局部放电监测作为检测变压器绝缘的一种有效手段 , 无论是检测理论还是检测技术 , 近年来都取得了较大的发展 , 并在电厂和电站中得到了实际应用。 相对传统的停电局部放电检测 , 在线局部放电检测可以长时间连续监测变压器局部绝缘放电情况 , 在放电量达到危险时 , 及时停机做进一步的检查 , 因此在检修工时和经济效益等方面有很大的优势 , 是目前惟一的一种有效避免变压器突发性事故的监测手段。在线局部放电监测反映的是变压器实际工作状态下的绝缘放点情况,比离线检测更符合设备的实际运行工况。 1在线监测主要方法 根据变压器局放过程中产生的电脉冲、电磁辐射、超声波、光等现象,相应出现了电脉冲检测法超声波检测法、光测法及射频检测法和UHF超高频检测法。、 1.1超声监测法 用固体在变压器油箱壁上的超声传感器接收变压器内部局放产生的超声波来检测局放的大小和位置。通常采用的超声传感器为电压传感器,选用的频率范围为70-150kHz,目的是为了避开铁心的磁噪声和变压器的机械振动噪声。超声检测法主要用于定性判断是否有局放信号,结合电脉冲信号或直接利用超声信号对局放源进行物理定位。近年来,由于声电换能元件效率的提高和电子放大技术的发展,超声检测的灵敏度有了较大的提高。 1.2光测法 光测法是利用局部放电产生的光辐射进行检测。在变压器油中,各种放电发出的光波不同,光电转换后,通过检测光电流的特征可以实现局放的识别。虽然是实验室中利用光测法来分析局放特征及绝缘劣化机理等方面取得了很大进展。但由于光测法设备复杂、昂贵、灵敏度低在实际中并未直接使用。尽管如此,光纤技术作为超声技术的辅助手段应用于局放检测,将光纤伸入变压器油中,当变压器内部放生局放时,超声波在油中传播,这种机械力波挤压光纤,引起光纤变形,导致光纤折射率和光纤长度发生变化,从而光波被调制,通过适当的解调器即可测量出超声波,实现放电定位。

电力变压器绝缘在线监测研究状况

电力变压器绝缘在线监测研究状况 【摘要】在现代电力设备的运行和维护中,电力变压器是不仅属于电力系统中最重要的和最昂贵的设备之列,而且是故障多发设备。这就要求研制出可靠的智能的变压器在线检测装置。目前,变压器油中溶解气体分析是诊断变压器故障的重要方法之一,而离线的变压器油中溶解气体分析(DGA),由于操作复杂、试验周期长、人为影响的误差大,所以无法做到实时地了解变压器的内部绝缘状况。而在线监测可以克服传统方法的不足,实现真正的在线检测、分析和诊断一体化。由于变压器发生故障时,其油中含有气体的成分及含量与变压器的故障类型和严重程度密切相关,因此在线监测变压器油中气体变化及其发展趋势,是在线发现变压器故障的最常用方法。 【关键词】电力变压器;在线监测;油中气体分析 1 绪论 1.1变压器绝缘在线诊断技术的目的和意义 目前全国跨区联网日益紧密,局部故障有可能引发大范围的电网事故,变压器、断路器等电气主设备的故障将会严重影响到电力系统的安全运行。对变压器故障的在线监测,可以及时地掌握变压器设备内部绝缘的真实状况,尽早地发现变压器内部存在的故障隐患,将故障消灭于萌芽状态。 1.2国内外变压器在线监测技术研究状况 1.2.1 变压器在线监测技术的发展阶段 变压器在线监测技术的发展,大体经历了以下三个阶段: (1)带电测量阶段。这一阶段起始于二十世纪70 年代左右,当时人们仅仅是为了不停电而对设备的某些绝缘参数如变压器泄露电流、介损等进行直接测量,所采用的仪器多为机械式和模拟式的设备。 (2)80 年代至90 年代初,出现了各种专用的测试仪器,使在线监测技术开始从传统的模拟式设备转变为微机式的数字测量仪器,自动化程度有所提高。 (3)从90 年代开始,随着传感器技术、电子计算机技术、数字信号处理以及光纤技术的发展,在线监测、分析和诊断一体化的在线监测技术也得到了迅速地提高。 2 油浸式变压器在线监测方法 2.1 电力变压器的故障类型

变压器局部放电试验基础与原理

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在-定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空气)的绝缘强度却比绝缘材料低。这样,当外施电压达到某一数值时,绝缘内部

相关主题
文本预览
相关文档 最新文档