当前位置:文档之家› 机械加工时精基准的选择原则

机械加工时精基准的选择原则

机械加工时精基准的选择原则
机械加工时精基准的选择原则

机械加工时精基准的选择原则

在制订工艺规程时,定位基准选择的正确与否,对能否保证零件的尺寸精度和相互位置精度要求,以及对零件各表面间的加工顺序安排都有很大影响,当用夹具安装工件时,定位基准的选择还会影响到夹具结构的复杂程度。因此,定位基准的选择是一个很重要的工艺问题。

选择定位基准时,是从保证工件加工精度要求出发的,因此,定位基准的选择应先选择精基准,再选择粗基准。

精基准的选择原则

选择精基准时,主要应考虑保证加工精度和工件安装方便可靠。其选择原则如下:

(1) 基准重合原则

即选用设计基准作为定位基准,以避免定位基准与设计基准不重合而引起的基准不重合误差。

图1所示的零件,设计尺寸为a和c,设顶面B和底面A已加工好(即尺寸a已经保证),现在用调整法铣削一批零件的C面。为保证设计尺寸c,以A面定位,则定位基准A与设计基准B不重合,见图(b)。由于铣刀是相对于夹具定位面(或机床工作台面)调整的,对于一批零件来说,刀具调整好后位置不再变动。加工后尺寸c的大小除受本工序加工误差(△j)的影响外,还与上道工序的加工误差(Ta)有关。这一误差是由于所选的定位基准与设计基准不重合而产生的,这种定位误差称为基准不重合误差。它的大小等于设计(工序)基准与定位基准之间的联系尺寸a(定位尺寸)的公差Ta。

从图(c)中可看出,欲加工尺寸c的误差包括△j和Ta,为了保证尺寸c的精度,应使:

△j+Ta≤Tc

显然,采用基准不重合的定位方案,必须控制该工序的加工误差和基准不重合误差的总和不超过尺寸c公差Tc。这样既缩小了本道工序的加工允差,又对前面工序提出了较高的要求,使加工成本提高,当然是应当避免的。所以,在选择定位基准时,应当尽量使定位基准与设计基准相重合。

如图2所示,以B面定位加工C面,使得基准重合,此时尺寸a的误差对加工尺寸c无影响,本工序的加工误差只需满足:△j≤Tc即可。

(a) (b) (c)

图1 基准不重合误差示例

(a) 工序简图(b) 加工示意图(c) 加工误差

图2 基准重合安装示意图

显然,这种基准重合的情况能使本工序允许出现的误差加大,使加工更容易达到精度要求,经济性更好。但是,这样往往会使夹具结构复杂,增加操作的困难。而为了保证加工精度,有时不得不采取这种方案。

(2) 基准统一原则

应采用同一组基准定位加工零件上尽可能多的表面,这就是基准统一原则。这样做可以简化工艺规程的制订工作,减少夹具设计、制造工作量和成本,缩短生产准备周期;由于减少了基准转换,便于保证各加工表面的相互位置精度。例如加工轴类零件时,采用两中心孔定位加工各外圆表面,就符合基准统一原则。箱体零件采用一面两孔定位,齿轮的齿坯和齿形加工多采用齿轮的内孔及一端面为定位基准,均属于基准统一原则。

(3) 自为基准原则

某些要求加工余量小而均匀的精加工工序,选择加工表面本身作为定位基准,称为自为基准原则。如图3所示,磨削车床导轨面,用可调支承支承床身零件,在导轨磨床上,用百分表找正导轨面相对机床运动方向的正确位置,然后加工导轨面以保证其余量均匀,满足对导轨面的质量要求。还有浮动镗刀镗孔、珩磨孔、拉孔、无

心磨外圆等也都是自为基准的实例。

图3 自为基准实例

(4) 互为基准原则

当对工件上两个相互位置精度要求很高的表面进行加工时,需要用两个表面互相作为基准,反复进行加工,以保证位置精度要求。例如要保证精密齿轮的齿圈跳动精度,在齿面淬硬后,先以齿面定位磨内孔,再以内孔定位磨齿面,从而保证位置精度。再如车床主轴的前锥孔与主轴支承轴颈间有严格的同轴度要求,加工时就是先以轴颈外圆为定位基准加工锥孔,再以锥孔为定位基准加工外圆,如此反复多次,最终达到加工要求。这都是互为基准的典型实例。

(5) 便于装夹原则

所选精基准应保证工件安装可靠,夹具设计简单、操作方便。

定位基准选择解析

精密机械制造基础 定位基准的选择 一、定位基准的概念和类型 在加工时,用以确定零件在机床的正确位置所采用的基准,称为定位基准。它是工件上与夹具定位元件直接接触的点、线或面。如图11-14a所示零件,加工平面F和C时是通过平面A和D 放在夹具上定位的,所以,平面A和D是加工平面F和C的定位基准。又如图11-14b所示的齿轮,加工齿形时是以内孔和一个端面作为定位基准的。 根据工件上定位基准的表面状态不同,定位基准又分为精基准和粗基准。精基准是指已经经过机械加工的定位基准,而没有经过机械加工的定位基准为粗基准。 11-4基准分析图二、精基准的选择定位基准的选择应先选择精基准,再根据精基准的加工选择粗基准。选择精基准时,主要应考虑保证加

工精度和工件安装方便可靠。其选择原则如下: 1.基准重合原则 即选用设计基准作为定位基准,以避免定位基准与设计基准不重合而引起的基准不重合误差。当设计基准与定位基准不重合时,在加工误差中将会增加一个误差值,其值大小等于设计基准和定位基准之间的尺寸误差,这就是基准不重合误差。当基准重合时,则没有基准不重合误差。 图11-5表示具有相交孔的轴承座准备镗以O-O为中心线的孔。在该工序之前,零件的M、H、K 平面已加工好,并且M-H、H-K之间的尺寸为C+T及B+T。本工序要求镗出的孔中心线O-O距K 表面BC的尺寸为A+T。为此,工件可以考虑几个定位加工方案:A图11-15b所示方案以M面为定位基准。加工时采用“调整法”加工,即镗杆中心线距机床工件台或夹具定位元件工作表面间的位置已经调好,固定不变。这时获得的尺寸A的大小将和M-K面间的可能相对位置变化有关,其最大可能位置变化为尺寸B和C的公差之和,即 Δ=T +T C BB 尺寸的误差A面为定位基准。因工序基准与定位基准不重合而引起的H所示方案以11-15c图 精密机械制造基础 仅是H-K间的位置变化,即 Δ= T BB图11-15d所示方案以设计基准K面为定位基准,此时δ= 0 基准不重合由上例可知,加工中最好直接用设计基准作为定位基准,以便消除基准不重合误差。

数控刀具选择常用的十五条原则,选错后悔!

1、加工中最重要的刀具 都意味着生产出现停顿。但并不意味着每把刀具都具有同样重要的地位。切削加工时间最长的刀具对生产周期的影响更大,任何一把刀具停止工作。因此同等前提下,应当给予这把刀具更多关注。此外,还应该注意加工关键部件及加工公差范围要求最严格的刀具。另外,对切屑控制相对差的刀具,如钻头、切槽刀、螺纹加工刀具也应重点关注。因为切屑控制不佳可引起停机。 2、与机床相匹配 因此选择正确的刀具非常重要。通常,刀具分右手刀及左手刀。右手刀具适合于逆时针旋转(CCW机床(沿主轴方向看);左手刀具适合于顺时针旋转(CW机床。如果你有几台车床,一些夹持左手刀具,其他左右手兼容,那么请选择左手刀具。而对于铣削而言,人们通常倾向于选择通用性更强的刀具。但是尽管此类刀具涵盖的加工范围更大,也令你即刻损失了刀具的刚性,增大了刀具挠曲变形,降低了切削参数,同时更容易引起加工振动。另外,机床更换刀具的机械手对刀具的尺寸及重量也有所限制。若你购买的主轴带内冷却通孔的机床,也请选择带内冷却通孔的刀具。 3、与被加工材料相匹配 因此大多数刀具基于优化碳钢加工设计。刀片牌号需依据被加工材料进行选择。刀具制造商提供一系列的刀体及相配合的刀片用于加工诸如高温合金、钛合金、铝、复合材料、塑料及纯金属等非铁材料。当你需要加工上述材料时,碳钢是机械加工中最常见的被加工材料。请选择相匹配材质的刀具。绝大多数品牌都有各种系列刀具,标明适合加工什么材料。如DaElement3PP系列就主要用来加工铝合金、86P系列专门来加工不锈钢、6P系列专门来加工高硬钢。 4、刀具规格 铣刀规格太大。大规格的车刀刚性更佳;而大规格的铣刀不仅价格更高,常见的错误是所选的车刀规格太小。且空切时间更长。总体而言,大规格的刀具价格高于小规格刀具。 5、选择可换刀片式还是重新修磨式刀具 条件允许下,遵循的原则很简单:尽量避免修磨刀具。除了少数钻头和端面铣刀外。尽量选择可换刀片式或可换刀头式刀具。这会为你节省劳动力开支,同时获得稳定的加工效果。 6、刀具材料及牌号 机床最大速度及进给率密切相关。为被加工材料组选择更通用的刀具牌号,刀具材料及牌号的选择与被加工材料性能。通常会选择涂层合金牌号。参考刀具供应商提供的牌号应用推荐图表”实际应用中,常见的错误是用替换其他刀具厂家类似的材料牌号试图解决刀具寿命问题。如果你现有的刀具不理想,那么改选接近的其他厂家牌号很可能带来类似结果。要

定位基准选择

在加工卷板机,空心主轴零件时,作为定位基准的中心孔,因钻出通孔而消失。为了在通孔加工之后还能使用中心孔作为定位基准,常采用带有中心孔的锥堵或锥套心轴,当主轴孔的锥’度较小时(如车床主轴锥孔,锥度为莫氏6号),可使用锥堵,如图4-3a所示;当主轴孔的锥度较大(如铣床主轴)或为圆柱孔时,则用锥套心轴,如图4-3b所示。 采用锥堵应注意以下几点:锥堵应具有较高的精度,其中心孔既是锥堵本身制造的定位基准,又是磨削主轴的精基准,因而必须保证锥堵上锥面与中心孔有较高的同轴度。另外,在使用锥堵时,应尽量减少锥堵装夹次数。这是因为工件锥孔与锥堵上锥角不可能完全一样,重新装夹势必引起安装误差,故中、小批生产时,锥堵安装后一般不中途更换。 综上所述,液压卷板机空心主轴零件定位基准的使用与转换,大致采用这样的方式:开始时以外一作粗基准铣端面钻中心孔,为粗车外圈准备好定位基准。粗车外圈又为深孔加工准备好定位基准,钻深孔时采用一夹(夹一头外圆)一托(托一头外圆)的装夹方式。之后即加工好曹后锥孔,以便安装锥堵,为半精加工和精加工外圆准备好定位基准。终磨锥孔之后,必须磨好轴颈表面,以便用支承轴殒定位来磨锥孔,从而保证锥孔的精度。 轴类零件的定位基准,卷板机尽量采用两中心孔。因为轴类零件各外圆表面、锥孔、螺纹等表面的设计基准都是轴线,采用两中心孔定位,既符合基准重合原则又符合基统一原则。 但有些情况下却只能用其它表面作定位基准:如车削与磨削锥孔时,选择外圆表面为定位基准;外圆表面粗加工时,为提高零件的装夹刚度,选择一夹一顶(一头用卡盘夹紧外圆.一头用中心孔定位夹紧)的定位方式;磨锥孔时,一般多选择主轴的装配基准(前后支承轴颈)作为定位基准。这样,可消除基准不重合所引起的宠位误差,使锥孔的径向圆跳动易于控制。

技术部系统技术选择标准管理办法_V1.0

技术部系统技术选择标准管理办法 V1.0 2018年12月12日

文件修订历史记录

目录 第一章前言 (4) 第二章相关部门职责 (4) 第三章信息系统技术标准制定与执行流程 (5) 3.1信息系统技术标准制定原则 (5) 3.2信息系统技术标准制定过程 (5) 3.3信息系统技术标准的培训 (6) 3.4信息系统技术标准的使用范围 (6) 3.5信息系统技术标准执行情况的检查与监督 (6) 3.6信息系统技术标准的完善 (7) 第四章监督与惩罚 (7) 第五章其他 (7)

第一章前言 第一条为指引信息系统技术标准制定、贯彻执行、对执行情况的总结分析、改进等环节的工作,制定本管理办法。 第二条本管理办法原则上需要依据相应标准的修改而同步修改,修改后由编制部门负责发布。 第二章相关部门职责 第三条架构管理决策部门对信息标准化工作进行统一领导,确定指导思想、目标和任务,协调解决信息标准化建设及执行过程中的重大问题。 第四条架构管理归口部门由架构管理决策部门授权,全权负责信息标准化的统一规划、建设、及综合管理。 第五条架构管理归口部门负责本管理办法的制定(修订)与发布;负责企业技术标准的制定(修订)与评审以及发布;负责技术标准的培训、宣传贯彻、日常维护;负责审查和监督各项目组及相关部门对技术标准的执行情况;负责根据项目组及相关部门的反馈,形成改进意见,对技术标准进行持续改进。 第六条架构管理参与部门的人员负责支持协助技术标准的制定、执行等相关工作、并协助对标准的执行情况的检查,监督和落实技术标准的执行工作,加强技术标准规范的事中管理,如:负责定期组织专项检查,帮助并督促项目组、团队解决存在的问题。

数控刀具及其选用

数控刀具及选用 1.1 数控机床刀具的特点 数控机床刀具的特点是标准化、系列化、规格化、模块化和通用化。 为了达到高效、多能、快换、经济的目的,对数控机床使用的刀具有如下要求: (1)具有较高的强度、较好的刚度和抗振性能; (2)高精度、高可靠性和较强的适应性; (3)能够满足高切削速度和大进给量的要求; (4)刀具耐磨性及刀具的使用寿命长,刀具材料和切削参数与被加工件材料之间要适宜; (5)刀片与刀柄要通用化、规格化、系列化、标准化,相对主轴要有较高位置精度,转位、拆装时要求重复定位精度高,安装调整方便。 1.2 金属切削刀具的主要角度 从属切削刀具的种类繁多,但它们的切削部分都可以近似地用外圆车刀的切削部分来描述。 确定刀具角度的正交平面参考系和车削刀具几何角度如图所示。 车刀的五个基本角度: (1)前角γo :是前刀面切削平面之间的夹角,表示前刀面的倾斜程度。 (2)后角αo :是主后刀面与切削平面之间的夹角,表示主后刀面倾斜的程度。 (3)主偏角κτ:是主切削刃在基面上的投影与进给方向之间的夹角; (4)副偏角κτˊ :是副切削刃在基面上的投影与进给运动方向之间的夹角; (5)刃倾角λ0:是主切削刃与基面之间的夹角。 刀具主要角度的选择原则: 前角。增大前角,切屑易流出,可使切削力减少,切削很轻快。但前角过大,刀刃强度降低。 后角。增大后角可减少刀具后刀面与工件之间的摩擦。但后角过大,刀刃强度降低。 主偏角。在切削深度和进给量不变的情况下,增大主偏角,可使切削力沿工件轴向力加大,径向力减小,有利于加工细长轴并减小振动。 图 正交平面参考系 图 车削刀具几何角度

粗基准选择及使用原则

粗基准选择及使用原则 选择粗基准时,主要要求保证各加工面有足够的余量,使加工面与不加工面间的位置符合图样要求,并特别注意要尽快获得精基准面。具体选择时应考虑下列原则: (1) 选择重要表面为粗基准 为保证工件上重要表面的加工余量小而均匀,则应选择该表面为粗基准。所谓重要表面一般是工件上加工精度以及表面质量要求较高的表面,如床身的导轨面,车床主轴箱的主轴孔,都是各自的重要表面。因此,加工床身和主轴箱时,应以导轨面或主轴孔为粗基准。如图所示。 床身加工粗基准选择

a) 导轨面为粗基准加工床腿底面 b) 底面为精基准加工导轨面 (2) 选择不加工表面为粗基准 为了保证加工面与不加工面间的位置要求,一般应选择不加工面为粗基准。如果工件上有多个不加工面,则应选其中与加工面位置要求较高的不加工面为粗基准,以便保证精度要求,使外形对称等。另外,如果是壳体类零件,还需要考虑壳体装配后内腔的干涉问题,粗基准尽量选用与装配零件之间空间小、易干涉的表面。 例如毛坯孔与外圆之间偏心较大,应当选择不加工的外圆为粗基准,将工件装夹在三爪自定心卡盘中,把毛坯的同轴度误差在镗孔时切除,从而保证其壁厚均匀。

粗基准的选择 1-外圆2-孔 (讲PS05的后盖工艺的2-2工序,找正铸造的油腔端面,这样才能使后续精加工的表面与铸造的油腔端面衔接好) (3) 选择加工余量最小的表面为粗基准 在没有要求保证重要表面加工余量均匀的情况下,如果零件上每个表面都要加工,则应选择其中加工余量最小的表面为粗基准,

以避免该表面在加工时因余量不足而留下部分毛坯面,造成工件废品。 (4) 选择较为平整光洁、加工面积较大的表面、无浇、冒口及飞边的 表面作为粗基准,以便工件定位可靠、夹紧方便。这样可以在加工中,把其它不好的表面以及浇、冒口及飞边加工掉。 (5) 粗基准在同一尺寸方向上只能使用一次 因为粗基准本身都是未经机械加工的毛坯面,其表面粗糙值大且尺寸精度低,若重复使用将产生较大的误差。 实际上,无论精基准还是粗基准的选择,上述原则都不可能同时满足,有时还是互相矛盾的。因此,在选择时应根据具体情况进行分析,权衡利弊,保证其主要的要求。

数控加工中刀具的选择原则和切削用量

数控加工中刀具的选择原则和切削用量 作者:佚名来源:不详发布时间:2008-3-9 0:57:41 发布人:admin 减小字体增大字体 摘要:现代刀具显著的特点是结构的创新速走加快。随着计算机应用领域的不断扩大,机械加工也开始运用数拉技术,这时刀具选择与切削用量提出了更高的要求。本文就扣何确定数控加工中的刀具选择与切削用全进行了探讨。 关键词:数控技术;机械加工;刀具选择 一、科学选择数控刀具 1、选择数控刀具的原则 刀具寿命与切削用量有密切关系。在制定切削用量时,应首先选择合理的刀具寿命,而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。 选择刀具寿命时可考虑如下几点根据刀具复杂程度、制造和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高生产效率,刀具寿命可选得低些,一般取15-30min。对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具,刀具寿命应选得高些,尤应保证刀具可靠性。车间内某一工序的生产率限制了整个车间的生产率的提高时,该工序的刀具寿命要选得低些当某工序单位时间内所分担到的全厂开支M较大时,刀具寿命也应选得低些。大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要冈牲好、精度高,而且要求尺寸稳定,耐用度高,断和排性能坛同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如高速钢、超细粒度硬质合金)并使用可转位刀片。 2、选择数控车削用刀具 数控车削车刀常用的一般分成型车刀、尖形车刀、圆弧形车刀以及三类。成型车刀也称样板车刀,其加工零件的轮廓形状完全由车刀刀刃的形伏和尺寸决定。数控车削加工中,常见的成型车刀有小半径圆弧车刀、非矩形车槽刀和螺纹刀等。在数控加工中,应尽量少用或不用成型车刀。尖形车刀是以直线形切削刃为特征的车刀。这类车刀的刀尖由直线形的主副切削刃构成,如900内外圆车刀、左右端面车刀、切槽(切断)车刀及刀尖倒棱很小的各种外圆和内孔车刀。尖形车刀几何参数(主要是几何角度)的选择方法与普通车削时基本相同,但应结合数控加工的特点(如加工路线、加工干涉等)进行全面的考虑,并应兼顾刀尖本身的强度。 二是圆弧形车刀。圆弧形车刀是以一圆度或线轮廓度误差很小的圆弧形切削刃为特征的车刀。该车刀圆弧刃每一点都是圆弧形车刀的刀尖,应此,刀位点不在圆弧上,而在该

定位粗基准选择解析

定位粗基准的选择 以未加工过的表面进行定位的基准称为粗定位基准,简称粗基准。当毛坯加工完成后,零件进入机械加工过程的第一道工序,其定位基准必然时毛坯表面,即粗基准。选择粗基准时应遵循以下基本原则: 一、选择重要表面为粗基准 图1 如图所示,在床身加工中,导轨面时最重要的工作表面,要求加工时切去薄而均匀的一层金属,使其保留铸造时在导轨面所形成的均匀而细密的金相组织,以便增加导轨的耐磨性。因此,在第一道工序中,应选择导轨面作为车床床身的粗基准加工床脚。在第二道工序中,再以已加工的床脚底平面作为精基准加工导轨面,这样导轨面的加工余量可以小而均匀,加工后表层金相组织均匀,力学性能基本相同,在使用过程中表面的磨损就会比较均匀。 二、选择加工余量小的表面为粗基准 图2

如图阶梯轴毛坯,毛坯大小头的同轴度误差为3mm,小头的加工余量为5mm.而大头的加工余量为8mm,以加工余量最小的小头作粗基准加工大头,则加工余量足够。如果反过来采用大头作粗基准加工小头,则小头的加工余量不足,继续加工会导致工件报废。 三、选择不需加工并且与加工表面有相互位置精度要求的表面为粗基准。 图3 如图所示,如果采用不加工的A面作粗基准加工内孔,则加工后内孔与不加工表面A面的同轴度好;如果采用内孔B面做粗基准加工内孔,则加工后内孔与不加工表面A面的同轴度不好。 四、选择比较光洁、平整、面积足够大、装夹稳定的表面作粗基准,不允许有锻造飞边和铸造浇道、冒口或其他缺陷,以确保定位准确,加紧可靠。 五、粗基准在同一尺寸方向上只允许在第一道工序中使用一次,不得重复使用,以避免产生较大的定位误差。 图4 如图所示,工件以表面B为粗基准加工表面A之后,如果仍以表面B为粗基准加工表面C,由于不能保证工件轴心线在前后两次装夹中位置的一致性,就必然导致加工出来的表面A 与C之间产生较大的同轴度误差。 六、在处理上述由粗基准向精基准过渡的问题时,在下列情况下可以例外:

浅述防护林树种选择原则和造林技术

浅述防护林树种选择原则和造林技术 【摘要】防护林具有防风固沙、涵养水源、保持水土、调节气候、净化空气、防止污染、降低噪音、美化环境等生态效益。本文作者从山区县实际出发,对营造防护林的树种选择原则、营造林技术进行了粗略的探讨,以供同行参考。 【关键词】防护林;树种选择;造林技术;紫金县 防护林具有防风固沙、涵养水源、保持水土、调节气候、净化空气、防止污染、降低噪音、美化环境等生态效益。通过林业生态建设,有计划地营造带、片、网相结合的防护林体系,对促进植被恢复和发展,不断增强森林生态功能和生态系统的稳定性及物种多样性,达到减弱动力源和物质源的双重效果,实现生态效益、经济效益与社会效益的协调统一。近年来,紫金县在依托国家、省重点林业工程建设资金的支持下,不断加大营造防护林工程建设力度,并取得了一定成效。但是,从目前防护林工程所表现出来的情况来看,营造质量离高标准、高质量还有一定差距,在防护林规划设计、苗木选育、施工技术、养护管理等环节的工作经验十分有限,还处在摸索阶段发展过程。为进一步提高防护林工程造林质量,作者根据本县山区的实际情况,现就有关营造防护林工程的树种选择原则和造林技术方面提出了一些建议,以供参考。 1.防护林树种选择原则 1.1科学规划,依据防护目的确定树种,并与原林种相结合的原则。科学规划要基于环境保护理念出发进行分析和总结,合理利用林地资源,利用当前的科学技术手段建立起完备的生态防护系统,是恢复当前生态平衡的有效手段。因此,防护林树种应具有生长快、防护性能好、抗逆性强、树体高大、树冠适宜、深根性、生长稳定等优良性状。在规划设计时,应综合考虑全县实际情况,整体规划,因害设防。在针对不同防护目的选定树种种类时,应和当地林种类型、优势树种、适生树种相结合,充分发挥林种的功能。如在干旱、半干旱地区可分别优先选用耐干旱的灌木树种、亚乔木树种;严重风蚀、干旱地区,要注意选择根系发达、耐风蚀的树种。 1.2严格标准,遵循适地适树、因地制宜的原则。根据本地区自然条件的多样性、立地类型复杂性的特点,严格按照有关重点防护林建设的技术规程和标准,必须遵循自然规律和经济规律,在结合当前社会发展过程中的各种科学技术,进行综合性、示范性和时效性的分析,确立因地制宜、因害设防、分类指导相结合的技术路线,做好防护林营造规划设计,将建设任务落到实处。而适地适树原则是林业工作者经过长期的工作总结出来的经验,也是造林成功的首要前提。由于各树种的生态适应幅度差异不同,在选择防护林树种时,必须明确各树种的生态特性和生态适应幅度,依据当地立地条件和灾害特点选择主要造林树种和伴生树种。因此,树种选择的主要原则为提高人工林的抗逆性能和综合效益,维护和提高林地生产力,因地制宜地营造防护林。

数控基准选择原则

1:分析零件的工艺性2:选择毛胚3:选择定位基准4:拟定工艺路线5:确定各工序的设备、刀具、量具和夹具等6:确定各工序的切削用量7:填写工艺卡片 有色金属的精加工不宜采用磨削因为有色金属易使砂轮堵塞,因为常采用高速精细车削或金刚镗等切削加工方法。 形状复杂、尺寸较大的零件,其上的孔一般不宜采用拉削或磨削;直径大于∮60mm的孔 工件的四种定位形式 1:安全定位与不安全定位 工件的六个自由度完全被限制的定位称为安全定位 按加工要求允许有一个或几个自由度不被限制的定位称为不完全定位。 2:欠定位与过定位 按工序的加工要求,工件应该限制的自由度而未予限制的定位,称为欠定位。 在确定工件定位方案时,欠定位时绝对不允许。 工件的同一自由度被二个或二个以上的支撑点重复限制的定位,称为过定位。 在通常情况下,应尽量避免出现过定位。 3:工件的基准 工件的基准:在零件的设计和制造中,要确定一些指定点、线或面的位置,必须以一些指定点、线或面作为依据,这些作为依据的点、线或面,称为基准。 按照作用的不同,常把基准分为设计基准和工艺基准两类。 设计基准:即设计零件的基准。 工艺基准:在制造零件是所使用的基准,它又分为工序基准、定位基准、测量基准、装配基准。 1、工序基准:在工艺文件上用以标定加工表面位置的基准。 2、定位基准:在机械加工中,用来使工件在机床或夹具中占有正确位置的点、线或面。它是工艺基准中最主要的基准。定位基准是否合理,对保证工件加工后的尺寸精度和形位精度、安排加工顺序、提高生产率以及降低生产成本起着决定性的作用,它是制定工艺过程的主要任务之一。定位基准分为粗基准和精基准两种。 3、测量基准:用以测量已加工表面尺寸及位置基准。 4、装配基准:用来确定零件或部件在机器中的位置基准。 4:定位基准的选择 选择定位基准是为了保证工件的位置精度,因此,选择定位基准总是凑个有位置精度要求的表面开始进行选择的。 粗基准:毛胚表面的定位基准。 1、选取不加工的表面作粗基准:这样可使加工表面具有教正确的相对位置,并有可能在一次安装中把大部分加工表面加工出来。 2、选取要求加工余量均匀的表作为粗基准:这样可以保证作为粗基准的表面加工时余量均匀。 3、对于所有表面都要加工的表面,选取余量和公差最小的表面做粗基准,以避免余量不足而造成废品。 4、选取光洁、平整、面积大的表面作粗基准; 5、粗基准不应重复使用。一般情况下,粗基准只允许使用一次。 5:精基准的选择原则 对于形位公差精度要求较高的零件,应采用已加工过的表面作为定位基准。这种定位基准叫精基准。 精基准的选择原则:

机加工刀具的选择

刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专

用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种; ②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; ⑵互换性好,便于快速换刀; ⑶寿命高,切削性能稳定、可靠; ⑷刀具的尺寸便于调整,以减少换刀调整时间; ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除; ⑹系列化,标准化,以利于编程和刀具管理。

1定位基准的选择

定位基准的选择 在制定零件加工的工艺规程时,正确地选择工件的定位基准有着十分重要的意义。定位基准选择的好坏,不仅影响零件加工的位置精度,而且对零件各表面的加工顺序也有很大的影响。本节先建立一些有关基准和定位的概念,然后再着重讨论定位基准选择的原则。 (一)基准的概念 零件都是由若干表面组成,各表面之间有一定的尺寸和相互位置要求。模具零件表面间的相对位置要求包括两方面:表面间的距离尺寸精度和相对位置精度(如同轴度、平行度、垂直度和圆跳动等)要求。研究零件表面间的相对位置关系离不开基准,不明确基准就无法确定零件表面的位置。基准就其一般意义来讲,就是零件上用以确定其他点、线、面的位置所依据的点、线、面。基准按其作用不同,可分为设计基准和工艺基准两大类。 1、设计基准 在零件图上用以确定其他点、线、面的基准,称为设计基准。例如图9-1所示的零件,其轴心线O-O是各外圆表面和内孔的设计基准;端面A是端面B,C的设计基准;内孔表面D体现的轴心线O-O是φ40h外圆表面径向圆跳动和端面B端面圆跳动的设计基准。 2、工艺基准 零件在加工和装配过程中所使用的基准,称为工艺基准。工艺基准按用途不同,又分为定位基准、测量基准和装配基准。 (1)定位基准加工时使工件在机床或夹具中占据正确位置所用的基准,称为定位基准。例如图9-1所示零件,零件套在心轴上磨削φ40h外圆表面时,内孔即为定位基准。 (2)测量基准零件检验时,用以测量已加工表面尺寸及位置的基准,称为测量基准。如图9-1所示,当以内孔为基准(套在检验心轴上)检验φ40h外圆的径向圆跳动和端面B的端面圆跳动时,内孔即为测量基准。 (3)装配基准装配时用以确定零件在部件或产品中位置的基准,称为装配基准。例如, 图9-1所示零件φ40h及端面B即为装配基准。 (二)工件的安装方式 为了在工件的某一部位上加工出符合规定技术要求的表面,在机械加工前,必须使工件在机床上相对于工具占据某一正确的位置。通常把这个过程称为工件的“定位”。工件定位后,由于在加工中受到切削力、重力等的作用,还应采用一定的机构将工件“夹紧”,使其确定的位置保持不变。工件从“定位”到“夹紧”的整个过程,统称为“安装”。 工件安装的好坏是模具加工中的重要问题,它不仅直接影响加工精度、工件安装的快慢、稳定性,还影响生产率的高低。为了保证加工表面与其设计基准间的相对位置精度,工件安装时应使加工表面的设计基准相对机床占据一正确的位置。如图9-1所示,为了保证加工表面φ40h径向圆跳动的要求,工件安装时必须使其设计基准(内孔轴心线O-O)与机床主轴的轴心线重合。 在各种不同的机床上加工零件时,有各种不同的安装方法。安装方法可以归纳为直接找正法、划线找正法和采用夹具安装法等3种。

六点定位原则及定位基准的选择

六点定位原则及定位基准的选择 一、六点定位原则 一个尚未定位的工件,其位置是不确定的。如图3-29 所示,将未定位的的工件(长方体)放在空间直角坐标系中,长方体可以沿X 、Y 、Z 轴移动有不同的位置,也可以绕X 、Y 、X 轴转动有不同的位置,分别用、、和、、表示。 用以描述工件位置不确定性的、、、、、合称为工件的六个自由度。其中、、称为工件沿X 、Y 、Z 轴的移动自由度,、、称为工件绕X 、Y 、Z 轴的转动自由度。 工件要正确定位首先要限制工件的自由度。设空间有一固定点,长方体的底面与该点保持接触,那么长方体沿Z 轴的移动自由度即被限制了。如果按图3-30 所设置六个固定点,长方体的三个面分别与这些点保持接触,长方体的六个自由度均被限制。其中XOY 平面上的呈三角形分布的三点限制了、、三个自由度;YOZ 平面内的水平放置的两个点,限制了、二个自由度;XOZ 平面内的一点,限制了一个自由度。限制三个或三个以上自由度的称为主要定位基准。

这种用适当分布的六个支承点限制工件六个自由度的原则称为 六点定位原则。 支承点的分布必须适当,否则六个支承点限制不了工件的六个自由度。例图3-30 中XOY 平面内的三点不应在一直线上,同理,YOZ 平面内的两点不应垂直布置。六点定位原则是工件定位的基本法则,用于实际生产时起支承作用的是有一定形状的几何体,这些用于限制工件自由度的几何体即为定位元件。表3-10 为常用定位元件能限制的工件自由度。

二、由工件加工要求确定工件应限制的自由度数 工件定位时,影响加工精度要求的自由度必须限制;不影响加工精度要求的自由度可以限制也可以不限制,视具体情况而定。 按照工件加工要求确定工件必须限制的自由度是工件定位中应解决的首要问题。 例如图3-31 所示为加工压板导向槽的示例。由于要求槽深方 向的尺寸 A 2 ,故要求限制Z 方向的移动自由度;由于要求槽底

数控机床刀具及编程的选用要适当

数控机床刀具及编程的选用要适当 数控刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是DNC系统微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 目前,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。 因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点,能够正确选择刀具及切削用量。 数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式联接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具、减震式刀具等。根据制造刀具所用的材料可分为;:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具、陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等; ③镗削刀具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点:①刚性好(尤其是粗加工刀具)、精度高、抗振及热变形小;②互换性好,便于快速换刀;③寿命高,切削性能稳定、可靠;④刀具的尺寸便于调整,以减少换刀调整时间;⑤刀具应能可靠地断屑或卷屑,以利于切屑的排除;⑥系列化、标准化,以利于编程和刀具管理。 数控加工刀具的选择 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便、刚性好、耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。 选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。 在进行自由曲面(模具)加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般采用顶端密距,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。

馈线自动化模式选型与配置技术原则(征求意见稿)

馈线自动化模式选型与配置技术原则 (征求意见稿) 2017年12月

目录 1概述 (1) 1.1范围 (1) 1.2规范性引用文件 (1) 1.2.1设计依据性文件 (1) 1.2.2主要涉及标准、规程规范 (2) 2馈线自动化模式概述与应用选型 (3) 2.1集中型馈线自动化概述 (3) 2.2就地型馈线自动化概述 (3) 2.2.1重合器式馈线自动化 (3) 2.2.2分布式馈线自动化 (4) 2.3模式对比与应用选型 (5) 2.3.1模式对比 (5) 2.3.2应用选型 (8) 3集中型馈线自动化应用模式 (9) 3.1适用范围 (9) 3.2布点原则 (9) 3.3动作逻辑 (10) 3.3.1技术原理 (10) 3.3.2动作逻辑原理 (11) 3.3.3短路故障处理 (12) 3.3.4接地故障处理 (13)

3.4性能指标 (13) 3.5配套要求 (14) 3.5.1配套开关选用 (14) 3.5.2配套终端选用 (14) 3.5.3配套通信选用 (15) 3.5.4保护配置选用 (15) 3.6现场实施 (17) 3.6.1参数配置 (17) 3.6.2安装要求 (18) 3.6.3注意事项 (18) 3.7运行维护 (18) 3.7.1操作指导 (19) 3.7.2检修指导 (19) 3.7.3运维分析指导................ 错误!未定义书签。 3.8典型应用场景 (19) 4重合器式馈线自动化应用模式 (22) 4.1电压时间型 (22) 4.1.1适用范围 (22) 4.1.2布点原则 (22) 4.1.3动作逻辑 (22) 4.1.4性能指标 (24) 4.1.5配套要求 (24)

基准的概念

基准的概念 . 基准就是确定生产对象上的某些点、线、面的位置所依据的那些点、线、面。 基准的分类 . 基准分为设计基准和工艺基准两大类。 . 1.设计基准 . 设计基准是设计工作图上所采用的基准. . 2.工艺基准 . 工艺基准是加工过程中所采用的基准。又分为有工序基准、定 位基准和测量基准等。 . 1)工序基准 . 工序图上用来确定本工序所加工表面加工后的尺寸、形状和 位置的基准。 . 2)定位基准 . 定位基准是在加工中用作定位的基准。 . 3)测量基准是测量时所采用的基准。 . 此外还有装配过程中用于确定零、部件间相互位置的装配基准。

. 要求掌握基准的分类,定义,同等重要的是在训练中提高选择基准的 能力。 定位基准的选择 . 正确选择定位基准是制订机械加工工艺规程和进行夹具设计的关键。定 位基准分为精基准和粗基准。在起始工序中,只能选用未经加上过的毛坯表面作为定位基准,这种基准称为粗基准。用加工过的表面所作的定位基准称为精基准。 . 在设计工艺规程的过程中,当根据零件工作图先选择精基准、后选粗 基准。结合整个工艺过程要进行统一考虑,先行工序要为后续工序创造条件。 1.选择精基准 选择精基准应掌握五个原则: . (l)基准重合原则 . 以设计基准为定位基准,避免基准不重合误差, . 调整法加工零件时,如果基准不重合将出现基准不重合误差。 . 所谓调整法,是在预先调整好刀具与机床的相对位置,并在一批零件的加工过程中保持这种相对位置的加工方法。与之相对应的是试切法加工, . 即试切一测量一调整一再试切,循环反复直到零件达到尺寸要求为止。试切法适用于单件小批生产下的逐个零件加工。因此请同学思考,用试切法加工时,如果基准不重合,会引起基准不重合误差吗?为什么?

数控加工中刀具的选择与切削用量的确定

数控加工中刀具的选择与切削用量的确定 摘要:现代刀具显著的特点是结构的创新速走加快。随着计算机应用领域的不断扩大,机械加工也开始运用数拉技术,这时刀具选择与切削用量提出了更高的要求。本文就扣何确定数控加工中的刀具选择与切削用全进行了探讨。 关键词:数控技术;机械加工;刀具选择 一、科学选择数控刀具 1、选择数控刀具的原则 刀具寿命与切削用量有密切关系。在制定切削用量时,应首先选择合理的刀具寿命,而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。 选择刀具寿命时可考虑如下几点根据刀具复杂程度、制造和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高生产效率,刀具寿命可选得低些。对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具,刀具寿命应选得高些,尤应保证刀具可靠性。车间内某一工序的生产率限制了整个车间的生产率

的提高时,该工序的刀具寿命要选得低些当某工序单位时间内所分担到的全厂开支较大时,刀具寿命也应选得低些。大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要刚性好、精度高,而且要求尺寸稳定,耐用度高,断屑和排屑性能好的同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如硬质合金、陶瓷等)并使用可转位刀片。 2、选择数控车削用刀具 数控车削车刀常用的一般分成型车刀、仿形车刀、圆弧形车刀三类。成型车刀也称样板车刀,其加工零件的轮廓形状完全由车刀刀刃的形伏和尺寸决定。数控车削加工中,常见的成型车刀有小半径圆弧车刀、非矩形车槽刀和螺纹刀等。在数控加工中,应尽量少用或不用成型车刀。仿形形车刀是以直线形切削刃为特征的车刀。这类车刀的刀尖由直线形的主副切削刃构成,如90°内外圆车刀、左右端面车刀、切槽(切断)车刀及刀尖倒棱很小的各种外圆和内孔车刀。尖形车刀几何参数(主要是几何角度)的选择方法与普通车削时基本相同,但应结合数控加工的特点(如加工路线、加工干涉等)进行全面的考虑并应兼顾刀尖本身的强度。圆弧形车刀是以一圆度或线轮廓度误差很小的圆弧形切削刃为特征的车刀。该车刀圆弧刃每一点都是圆弧形车刀的刀尖,应此,刀位点不在圆弧上,而在该圆弧的圆心上。圆弧形车

数控铣床常用刀具的合理选用

数控铣床常用刀具的合理选用 数控铣床常用刀具的合理选用 一、前言 数控加工中刀具的选择和切削用量确定是在人机交互状态下完成,要求编程人员必须掌握刀具选 择和切削用量确定的基本原则,在编程时充分考虑数控加工特点,正确选择刀刃具及切削用量。数控加工技术涉及的范围很广,就应用方面而言,其加工技术的特点 和难点仍在于如何高速、高效率地正确选用数控机床刀具编制出符合产品技术要求的数控加工工艺及程序。数控加工可以大幅度缩短产品的制造周期,有效的解决机 械产品中复杂、精密、单件小批量、形状多变的零件加工。 二、数控铣床刀具选择 1.刀具的特点及种类 数控铣床加工刀具种类很多,为了适应数控机床高速、高效和自动化程度高的特点,所用刀具正朝着标准化、通用化和模块化的方向发展,主要分为铣削刀具和孔加工刀具两大类。为了满足高效和特殊的铣削要求,

又发展了各种特殊用途的专用刀具。 1)刀柄结构形式 数控铣床刀具刀柄的结构形式分为模块式与整体式两种。模块式刀具系统是一种较先进的刀具系统,其每把刀柄都可通过各种系列化的模块组装而成。针对不同的加工零件和机床,采取不同的组装方案,可获得多种刀柄系列,从而提高刀柄的适应能力和利用率。 整体式刀柄装夹刀具的工作部分与机床上安装定位用的柄部是一体的。这种刀柄对机床与零件的变换适应能力较差。为适应零件与机床的变换,用户必须储备各种规格的刀柄,因此刀柄的利用率较低。 数控铣床刀柄与主轴孔的配合锥面采用7:24圆锥柄,并采用相应型式的拉钉,与机床主轴相结合。锥柄具有不自锁,换刀方便等特点。刀柄常用的规格有40号、45号和50号。目前在我国应用较为广泛的有IS07388—1983.MAS403—1982.ANSI/ASME 135.50—1985等,选择时应考虑刀柄规格与机床主轴、机械手相适应。JT:表示采用国际标准IS07388号加工中心机床用锥柄柄部(带机械手夹持槽);其后数字为相应的ISO锥度号。BT:表示采用日本标准MAS403号加工中心机床用锥柄柄部(带机械手夹持槽);其后数字为相应的ISO锥度号。对于高速切削一般采用HSK系列刀柄。 为提高加工效率,应尽可能选用高效率的刀具和刀柄。选用强力铣夹头刀柄,夹持精度高,可以用来夹持直柄刀具,因卡簧自身夹紧变形小自锁性好,夹紧力大,可以用于强力铣削加工;还可以用于高精度铣铰孔加工,也可通过接杆夹持带孔类刀具。 选用弹簧卡头刀柄,卡簧弹性变形量为1mm,主要夹持小规格铣刀,

高压开关设备选型技术原则

辽宁省电力有限公司高压开关设备 选型技术原则 辽宁省电力有限公司 二〇一一年二月

目录 l 通用部分 (1) 2 气体绝缘金属封闭开关设备 (5) 3 高压断路器 (7) 4 高压隔离开关 (8) 5 高压开关柜 (10)

辽宁省电力有限公司高压开关设备 选型技术原则 1 通用部分 1.1对生产企业的要求 高压开关设备生产企业(包括外资、合资企业)的生产条件和试验条件必须具备生产相应电压等级、电流等级产品的要求,产品应按国家标准、电力行业标准和IEC 标准通过型式试验,在国网系统内与辽宁电网等同或更加严格的环境下,500千伏组合电器产品应成功商业运行3年10个间隔,220千伏及以下组合电器产品应成功商业运行3年30个间隔,其它设备应成功商业运行3年3个间隔以上。 新产品在进入辽宁电网前,应由生产、基建、物资等部门组织专业人员进行考察并取得认可,并在国网系统内与辽宁电网等同或更加严格的环境下成功试运行2年5个间隔。1.2技术性能要求 1.2 .1 额定电流与额定短路开断电流 表1 额定电流与额定短路开断电流 额定电压(kV)额定电流(A)断路器额定短路开断电流(kA) 10 ≤3150 ≤31.5 20 ≤2500 ≤31.5 66 ≤3150≤40 220 ≤400050 500 3150、400063说明: l、其余参数按现行标准执行。 2、表中数据指上限值,选用时应考虑系统今后提高输送容量的可能性并留有 裕度。 3、当额定短路开断电流要求大于表中所列值时,应从系统和运行方式上采取 限制措施,原则上不考虑提高设备的额定短路开断电流能力。 4、如经核算,额定电流确实超过上述值,应根据工程实际情况按GB762中规 定的R10系列中选取。 1.2 .2 外绝缘要求 表2 开关柜外绝缘要求 额定电压(kV)相间或相对地空气绝缘净距( mm) 10 ≥125mm 20 ≥180mm

相关主题
文本预览
相关文档 最新文档