当前位置:文档之家› 生物脱氮机理、AO工艺脱氮解释

生物脱氮机理、AO工艺脱氮解释

生物脱氮机理、AO工艺脱氮解释
生物脱氮机理、AO工艺脱氮解释

生物脱氮机理、AO工艺脱氮过程解释

生物脱氮的基本原理是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即将NH3转化为NO2--N和NO3--N。在缺氧条件下通过反硝化作用,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,并有外加碳源提供能量,将硝氮转化为氮气,即,将NO2--N (经反亚硝化)和NO3--N(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。

由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:硝化阶段:足够的溶解氧(DO)值在2mg/L以上,合适的温度,最好20℃,不低于10℃,足够长的污泥泥龄,合适的pH条件。反硝化阶段:硝酸盐的存在,缺氧条件(DO)值在0.5mg/L左右,充足的碳源(能源),合适的pH条件。通过上述原理,可组成缺氧与好氧池,即所谓A/O系统。

AO工艺法也叫厌氧-好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。

A/O法生物去除氨氮原理:污水中的氨氮,在充氧的条件下(O段),被硝化菌硝化为硝态氮,大量硝态氮回流至A段,在缺氧条件下,通过兼性厌氧反硝化菌作用,以污水中有机物作为电子供体,硝态氮作为电子受体,使硝态氮波还原为无污染的氮气,逸入大气从而达到最终脱氮的自的。

硝化反应:

NH4++2O2→NO3-+2H++H2O

反硝化反应:

6NO3-+5CH3OH(有机物)→5CO2↑+7H2O+6OH-+3N2↑

如图,A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

A/O法脱氮工艺的特点:

(a)流程简单,勿需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;

(b)反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;

(c)曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;

(d)A段搅拌,只起使污泥悬浮,而避免DO的增加。O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。

废水生物处理基本原理—生物脱氮原理

废水生物处理基本原理 ——废水生物脱氮原理 1.1.1 废水中氮的存在形式 氮在废水中有以下几种形式 无机氮 N anorgan .: ? 氨氮 NH 4-N ? 亚硝氮 NO 2-N ? 硝氮 NO 3-N 有机氮 N organ . 总氮 N total = N anorgan . + N organ . 总凯氏氮 TKN = N organ . + NH 4-N 以氮的形式氮化合物的换算关系如下: NH NH N NH NO NO N NO NO NO N NO 4128541285 4 2328523285 2 3442834428 3 ++ -- -- ?→??-?→???→??-?→???→??-?→??/,*,/,*,/,*, 1.1.2 废水生物脱氮的基本过程 ①氨化(Ammonificaton ):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification ):废水中的氨氮在好氧自养型微生物(统称为硝化菌)的作用下被转化为NO 2- 和NO 3-的过程; ③反硝化(Denitrification ):废水中的NO 2- 和/或NO 3-在缺氧条件下在反硝化菌(异养型细菌)的作用下被还原为N 2的过程。

1.1.3 氨化作用基本原理 在废水中部分氮以无机物的形式存在。蛋白质被生化降解为氨氮 的作用成为氨化作用。尿素在酶的催化下降解也属于该作用。 举例: COOH O ∣∣ R - C - H + H2O + 1/2 O2 ----> R - C + NH4+ + OH-∣∣ NH2COOH NH2 ∣ C=0 + 3 H2O 尿素酶> 2 NH4++ 2 OH-+ CO2 ∣ NH2

微生物脱氮原理

简介:介绍了生物脱氮基本原理及影响因素,为环境工作者掌握生物脱氮。废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为NO3-N和NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气。由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快。在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键字:生物脱氮基本原理影响因素 废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为NO3-N和NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快。在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1 氨化作用 1.1 概念 氨化作用是指将有机氮化合物转化为氨态氮的过程,也称为矿化作用。 1.2 细菌 参与氨化作用的细菌成为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌,兼性的变形杆菌和厌氧的腐败梭菌等。 1.3 降解方式(分好氧和厌氧) 在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨。例如氨基酸生成酮酸和氨: [2-1] 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们式好氧菌,其反应式如下: [2-2]

生物脱氮除磷原理

生物脱氮原理 (碳源) (碳源)图1 硝化和反硝化过程 图2 A2/O工艺流程

水体中氮的存在形态 生物脱氮原理 1、氨化作用 在好氧或厌氧条件下,有机氮化合物在氨化细菌的作用下,分解产生氨氮的过程,常称为氨化作用。 有机氮 氨氮 2、硝化作用 以A 2/O 工艺为例,硝化作用主要发生在好氧反应器中,污水中的氨氮NH 4+-N 在亚硝酸 细菌的作用下转化为亚硝酸氮NO 2--N ,亚硝酸氮NO 2--N 在硝酸细菌的作用下进一步转化为硝酸氮NO 3 --N 。(见图 1左边) 亚硝酸细菌和硝酸细菌统称为硝化细菌,属于好氧自养型微生物,不需要有机物作为营养物质。 3、反硝化作用 反硝化作用主要发生在缺氧反应器中,好氧反应器中生成的硝酸氮NO 3--N 和亚硝酸氮NO 2--N 通过内循环回流到缺氧池中,在有一定碳源的条件下,由反硝化细菌先将硝酸氮NO 3--N 转化为亚硝酸氮NO 2--N ,亚硝酸氮再进一步转化为氮气N 2,水体中的氮从化合物转化为氮气进入到空气中,才能最终将污水中TN 降低。(见图1右边) 反硝化细菌是异养兼性缺氧型微生物,其反应需要在缺氧环境中才能进行。 氨化菌

生物除磷原理 磷在自然界以2 种状态存在:可溶态(正磷酸盐PO43-)或颗粒态(多聚磷酸盐)。 所谓除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。 厌氧释磷 污水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生自身生长所需的所需的能量,称该过程为磷的释放。 好氧吸磷 进入好氧环境后,聚磷菌活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。 富含磷的污泥通过剩余污泥外排的方式最终使磷得到去除。

生物脱氮基本原理精选版

生物脱氮基本原理 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

生物脱氮基本原理 作者:weidongwin 阅读:994次 上传时间:2005-10-13 推荐人:weidongwin 简介:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施 中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键字:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。 废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1.氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮 酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱 水脱氨三种途径的氨化反应。 (2-3)

生物脱氮的基本原理

摘要:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键词:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。 废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1. 氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 (2-3) (2-4)

(2-5) 2. 硝化作用 硝化作用是指将NH3-N氧化为NO x--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。该反应历程为: 亚硝化反应 (2-6) 硝化反应 (2-7) 总反应式(2-8) 亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。亚硝酸菌和硝酸菌统称为硝化菌[22]。发生硝化反应时细菌分别从氧化NH3-N 和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为: 亚硝化反应 (2-9) 硝化反应 (2-10) 在综合考虑了氧化合成后,实际应用中的硝化反应总方程式为: (2-11) 由上式可以看出硝化过程的三个重要特征: ⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2; ⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季; ⑶硝化过程中产生大量的质子(H+),为了使反应能顺利进行,需要大量的碱中和,理论上大约为每氧化1g的NH3-N需要碱度5.57g(以NaCO3计)。

生物脱氮技术

污水中的氮一般以有机氮、氨氮、亚硝酸盐氰和硝酸盐氮四种形式存在。生活污水中 氮的主要存在形态是有机氮和氨氮。通常采用的二级生化处理技术对氮的去除率是比较低的,一般将有机氮化合转化为氨氮,却不能有效地去除氮。污水脱氮,从原理看,可以分为物理法、化学法和生物法三大类。由于生物脱氮一般能够满足有关方面对污水净化的要求,而且价格低廉,产生的二次污染物较易处理,因此生物脱氮方法是当前最活跃的研究与投资开发领域。 一、生物脱氮技术 生物脱氮技术主要是利用污水中某些细菌的生物氧化与还原作用实现的。生物脱氮工 艺从碳源的来源分,可分为外碳源工艺和内碳源工艺;从硝化和反硝化过程在工艺流程中的位置来分,可分为传统工艺和前置反硝化工艺;按照细菌的存在状态不同,可以分为活性污泥法和生物膜法生物脱氮工艺。前者的硝化菌、反硝化菌等微生物处于悬浮态,而后者的各种微生物却附着在生物膜上。 1.活性污泥法 活性污泥法是一种历史悠久、目前应用最广泛的生物脱氮技术,它有许多种形忒。 (1)活性污泥法传统流程这是一种传统的三级生物脱氮工艺,即有机物的氧化、硝化和 反硝化作用分别在不同的构筑物中完成,如下图所示: 由于有机物去除、氨氧化和硝酸盐还原依次进行,彼此之间相对独立,并分别设置污 泥沉淀及回流系统,系统运行的灵活性比较强,有机物降解菌、硝化菌和反硝化菌的生长环境均较佳,因而反应速度快,脱氮效果也比较好。但是,三级活性污泥法的流程长、构筑物多、附属设备多,因此基建费用高、管理难度大。此外,为了保持硝化所需的稳定pH值,往往两要向硝化池加碱,为了保证反硝化阶段有足够的电子受体,需要外加甲醇等碳源,为了除去尾水中剩余的有毒物质甲醇,又必须增设后曝气池,所以运行费用也很高。可以看出,这种工艺的确具有很大的局限性。 如果将有机物去除和硝化放在同一个反应器中进行,而将反硝化作用放在另一个反应 器中进行,则可以将三级生物脱氮系统简化为两级生物脱氮系统。如下图:

同步硝化反硝化脱氮技术_百度文库.

同步硝化反硝化脱氮技术 郭冬艳 1,2,李多松 1,2,孙开蓓 1,2,刘丽茹 1,2 1中国矿业大学环境与测绘学院,江苏徐州(221008 2江苏省资源环境信息工程重点实验室,江苏徐州(221008 E-mail: 摘要:同步硝化反硝化脱氮 (SND技术不同于传统的脱氮理论,其具有节省碳源、减少曝气量、降低基建投资和运行费用等优点。文章从宏观环境理论、微环境理论、微生物理论三个方面阐述了同步硝化反硝化的作用机理,并结合目前的国内外研究成果综述了其影响因素,最后简单介绍了同步硝化反硝化的应用状况,提出了该技术的研究方向。 关键词:生物脱氮;同步硝化反硝化;好氧反硝化 中图分类号:X703.1 1. 引言 近年来, 水体中的氮素污染越来越严重, 给环境造成的污染问题日益突出。生物脱氮技术较物化脱氮技术具有工艺简单、成本低廉、较易推广等特点,越来越被人们所采用。传统生物脱氮技术的理论基础是微生物的硝化和反硝化作用。硝化作用即在好氧的条件下, 自养型硝化细菌将氨氧化为亚硝酸 (盐和硝酸 (盐 ; 反硝化作用是指亚硝酸 (盐和硝酸 (盐在异氧型反硝化菌的作用下, 被还原为氮气的过程。因此, 目前大多数的生物脱氮工艺都将好氧区和缺氧区(或厌氧区分隔开,分别在不同的反应器中运行,或者采用间歇的好氧和厌氧条件来实现。 然而, 自 20世纪 80年代以来, 研究人员在一些没有明显缺氧及厌氧段的活性污泥法工艺中, 曾多次观察到氮的非同化损失现象, 即存在有氧情况下的反硝化反

应、低氧情况下的硝化反应。在这些处理系统中,硝化和反硝化往往发生在相同的条件下或同一处理空间内, 这种现象被称作同步硝化反硝化(simultaneous nitrification and dinitrification,SND ,亦有研究人员将这种现象中的反硝化过程称之为好氧反硝化。有氧条件下的反硝化现象确实存在于各种不同的生物处理系统,如流化床反应器、生物转盘、 SBR 、氧化沟、 CAST 工艺等 [1]。 2. 作用机理 2.1宏观环境理论 宏观环境主要是从众多生物反应器在实际运行过程中可能发生的情况为依据,分析 SND 现象发生的环境条件 [2]。在生物反应器中, 由于曝气装置类型的不同, 使得其内部出现氧气分布不均的现象,从而形成好氧段、缺氧段及(或厌氧段,此为 生物反应器的宏观环境。例如:在生物膜反应器中,由于基质浓度和膜厚变化的影响,形成膜内的缺氧区,其他如 RBC 、 SBR 反应器及氧化沟等也存在类似的现象 [3]。实际上,在生产规模的生物反应器中,完全均匀的混合状态并不存在,所以,同步硝化反硝化现象是完全可能发生的。 2.2微环境理论 微环境理论从物理学角度解释 SND 现象, 是目前被普遍接受的一种机理, 被认为是 SND 发生的主要原因之一 [4]。由于活性污泥和生物膜微环境中各种物质(如DO 、有机物、氨氮、NO 2― 、 NO 3-等传递的变化,从而导致微环境中物理、化学和生物条件或状态的改变。在活性污泥絮体和生物膜内部存在各种各样的微环境。但是,对于 SND 现象来说,主要是由于溶解氧扩散作用的限制, 使微生物絮体内产生 DO 梯度, 从而导致微环境的同步硝 化反硝化。微生物絮体的外表面 DO 浓度较高, 自养型硝化细菌利用氧气进行硝化反应; 絮体内部,由于氧传递受阻,以及有机物氧化、硝化作用的消耗,形成缺氧区,反硝化菌占优势,反硝化菌利用 NO 3-为电子受体,发生反硝化反应,即系统缺氧

生物脱氮基本原理

生物脱氮基本原理 摘要:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键词:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程[1]。 废水中存在着有机氮、NH3-N、NOx--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NOx--N,最后通过反硝化作用使NOx--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

1. 氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 (2-3) (2-4) (2-5)

2. 硝化作用 硝化作用是指将NH3-N氧化为NOx--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。该反应历程为: 亚硝化反应 (2-6) 硝化反应 (2-7) 总反应式 (2-8) 亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。亚硝酸菌和硝酸菌统称为硝化菌[22]。发生硝化反应时细菌分别从氧化NH3-N和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为:亚硝化反应 (2-9) 硝化反应 (2-10) 在综合考虑了氧化合成后,实际应用中的硝化反应总方程式为: (2-11) 由上式可以看出硝化过程的三个重要特征:

生物脱氮原理

水体中氮素过多所引起的危害—水体的富营养化:水体中含 氮量大于0.2~0.3m g/L就会引起水体的富营养化。 经富营养化污染的水体,治理关键是要脱氮除磷,而脱氮最常用的是生物脱氮。 生物脱氮原理:生物脱氮是在好氧条件下通过硝化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下的反硝化反应将硝酸盐还原成气态氮从水中去除。生物脱氮通过氨化、硝化、反硝化三个步骤完成。 1、氨化反应:氨化作用是指将有机氮化合物转化为N H -N的过程,也称为 3 矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨,另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 2、硝化反应:在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨(N H4 + )转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。 影响硝化反映的因素: 1、好样环境条件下,并保持一定的碱度:溶解氧在1.2~2.0m g/L。 2、pH:硝化反应的pH在8.0~8.4 3、温度:硝化反应的适宜温度在20~30℃ 4、尽量减少有毒有害物质的进入,且高浓度的氨氮和硝态氮对硝化作用有抑 制。 以上因素之所以会对硝化作用有影响,主要是因为他们对硝化细菌的生长环境造成了影响。 3、反硝化反应:反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮(N2 )的过程。进行这类反应的细菌主要有变形杆菌属、微球菌属、假单胞菌属、芽胞杆菌属、产碱杆菌属、黄杆菌属等兼性细菌,它们在自然界中广泛存在。 影响反硝化作用的因素: 1、要有充足的碳源 2、pH:反硝化反应的pH在6.5~7.5 3、溶解氧浓度:反硝化菌是异养兼性厌氧菌,溶解氧应控制在0.5mg/L以下 4、温度:反硝化反应的适宜温度在20~40℃ 生物脱氮工艺 主要有传统生物脱氮工艺(三级生物脱氮工艺)、A/O 工艺、A2/O 工艺(脱

生物脱氮原理及6大参数

生物脱氮原理及6大参数 高氨氮废水是我们经常会遇到的一种废水,想要将污水中的氨氮去除,除了要了解各种脱氮原理,还要从经济有效的角度来考虑选用哪种工艺,而生物脱氮技术恰恰符合以上条件,成为污水脱氮中最常见的工艺之一。今天我们就来聊一聊生物脱氮原理和主要控制参数。 污水中的氮主要以氨氮和有机氮的形式存在,通常没有或只有少量亚硝酸盐和硝酸盐形式的氮。只有不到20%——40%的氮在传统的二级处理中被去除。污水生物处理脱氮主要是靠一些专性细菌实现氨形式的转化,经过氨化、硝化、反硝化过程,含氮有机化合物最终转化为无害的氮气,从污水中去除,其过程如图所示: 1、工艺原理及过程 硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物--亚硝酸盐菌和硝酸盐菌。这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。这两个反应过程都释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。 反硝化过程是反硝化菌异化硝酸盐的过程,即由硝化菌产生的硝酸盐和亚硝酸盐在反硝化菌的作用下,被还原为氮气后从水中溢出的过程。反硝化过程也分为两步进行,第一步由硝酸盐转化为亚硝酸盐,第二步由亚硝酸盐转化为一氧化氮、氧化二氮和氮气。同时,反硝化菌利用含碳有机物和部分分硝酸盐转化为氨氮用于细胞合成,该碳源既可以是污水中的有机碳或细胞体内碳源,也可以外部投加。 2、生物脱氮的工艺控制 (1)消化过程(硝化菌)的影响因素 1.温度:硝化反应的最适宜温度范围是30一35℃,温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性。温度低于5℃,硝化细菌的生命活动几乎完全停止:在5一35℃的范围内,硝化反应速率随温度的升高而加快;但达到30℃后,蛋白质的变性会降低硝化菌的活性,硝化反应增加的幅度变小。对于同时去除有机物和进行硝化反应的系统,温度低于15℃时硝化速率会迅速降低。低温对硝酸菌的抑制作用更为

新型生物脱氮工艺

摘要:本论文介绍几种新型的生物化脱氮工艺,其中有新型脱氮工艺:短程硝化反硝化, 同时硝化反硝化, 厌氧氨氧化, 固定化微生物脱氮技术工艺等几种。关键词:生物脱氮工艺短程硝化反硝化同时硝化反硝化厌氧氨氧化1.短程硝化反硝化短程硝化反硝化生物脱氮(shortcut nitrification denitrification)是由荷兰Delft技术大学开发出来的脱氮新工艺[1-3]。其基本原理是将NH3-N氧化控制在亚硝化阶段,然后进行反硝化。反应方程式可表示为: (2-15) (2-16) 短程硝化反硝化的生物脱氮途径与传统硝化反硝化相比,在处理高浓度有机氮废水中具有潜在的优势:⑴短程硝化反硝化生物脱氮比传统硝化反硝化生物脱氮节省了25%的耗氧量;⑵在反硝化过程中是以有机碳源作为电子供体,短程硝化反硝化仅需传统硝化反硝化60%的有机碳源,节省了40%的碳源。理论上计算,传统硝化反硝化C/N为2.86:1,短程硝化反硝化C/N为1.71:1,即较低的C/N下就可以实现短程硝化反硝化反应;⑶缩短了反应历程,提高了脱氮效率。在好氧过程中短程硝化反硝化生物脱氮比传统硝化反硝化生物脱氮减少了由NO2--N氧化为NO3--N的过程,缩短了总的反应历程。另外,在短程硝化反硝化过程中由于省去了由NO3--N 到NO2--N这一转化过程,反硝化碳源不再为硝酸盐还原菌优先利用,也不存在硝酸盐还原酶对亚硝酸盐还原酶的竞争性抑制,加速了脱氮效率。2.同时硝化反硝化同时硝化反硝化(simulataneous nitrification denitrification)工艺,简单地说,是在同一个反应器中同时实现硝化和反硝化。Munch.Elisabeth V等研究了SBR法中的同时硝化反硝化现象[4。G.Bertanza运用延时曝气法对废水处理过程中的同时硝化反硝化现象进行了三年的研究[5]。试验结果表明:处理系统中的氧化还原电位在120~180mv范围内(此时DO 浓度均在1.5mg/L以下)同时硝化反硝化的处理效果最好,总氮去除率可达到60%~70%。根据以上可知,同时硝化反硝化现象确实存在于多种废水处理工艺中。目前大多数学者认为其机理的探讨主要从微环境理论、微生物学和生物化学的角度来研究:⑴从微环境角度来看,由于微生物个体形态非常微小,一般属μm级,影响生物的生存环境也是微小的。由于微生物种群结构、基质分布、代谢活动和生物化学反应的不均匀性,以及物质传递的变化等因素的相互作用,在活性污泥菌胶团和生物膜内部会存在多种多样的微环境类型。即使在好氧性微环境占主导地位的活性污泥系统中,也常常同时存在少量的微氧、缺氧、[!--empirenews.page--]厌氧等状态的微环境。⑵从生物学和生物化学角度来看,主要有两种观点存在:一种是Lloyd等及Robertson和Kuennen提出的好氧反硝化的概念,认为好氧反硝化菌和好氧反硝化酶系的存在导致了这种现象。目前已知的好氧反硝化菌有Pseudoonas、Spp、Alcaligensfaecalis、Thiosphaera、Pantotropha等[6],这些菌种为好氧反硝化的解释提供了生物学依据。另一种是Bock等提出的好氧反氨化的概念,即在有氧气限制的情况下,NH3-N直接转化为氮气。同时硝化反硝化有以下优点[7]:⑴硝化过程中消耗碱度,反硝化过程中产生碱度,这样同时硝化反硝化能有效地保持反应器中pH值稳定,而且无需添加外碳源,考虑到硝化菌最适pH值范围很窄,仅为7.15~8.16,因此这一点是很重要的。⑵同时硝化反硝化意味着在同一反应器、相同的操作条件下,硝化和反硝化应能同时进行。如果能够保证在好氧池中一定效率的反硝化与硝化反应同时进行,那么对于连续运行的同时硝化反硝化工艺污水处理厂,可以省去缺氧池的费用,或至少减少反应池容积。对于仅由一个反应池组成的序批式反应器来讲,同时硝化反硝化能够降低实现完全硝化反硝化所需的时间。同时硝化反硝化系统提供了今后降低投资并简化生物脱氮技术的可能性。然而,对于同时硝化反硝化的机理还缺乏深入的认识与了解,要使该项技术实用化还有大量研究工作有待完成。3.厌氧氨氧化1990年,荷兰Delft技术大学Kluyver生物技术实验室开发了ANAMMOX工艺。该工艺的特点是:在厌氧的条件下,以NO3―为电子受体,将NH3-N 转化为氮气。最近研究表明NO3―是一个关键的电子受体。由于这类细菌是自养菌,因此不需要添加有机物来维持反硝化。试验研究发现:厌氧反应器中NH3-N浓度的降低与NO3―的去除

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

生物脱氮基本原理及影响因素

生物脱氮基本原理及影响因素 摘要:介绍了生物脱氮基本原理及影响因素,为环境工作者掌握生物脱氮。废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为 NO3-N 和 NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气。由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快。在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键词:生物脱氮基本原理影响因素 废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为 NO3-N 和 NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快。在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化 1氨化作 1.1概 氨化作用是指将有机氮化合物转化为氨态氮的过程,也称为矿化作用 1.2细

参与氨化作用的细菌成为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌,兼性的变形杆菌和厌氧的腐败梭菌等 1.3降解方式(分好氧和厌氧 在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨。例如氨基酸生成酮酸和氨 [2-1 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们式好氧菌,其反应式如下 [2-2 在厌氧条件或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应 [2-3

废水生物脱氮基本原理

废水生物脱氮基本原理 关于氨氮消耗碱度的理论计算问题书上写的理论上降解1克氨氮要消耗7.14克碱度(以碳酸钙计算),这里是不是说就是消耗7.14克碳酸钙啊? 果换算成纯碱又如何计算?换算成小苏打又怎么计算呢?

消耗的是碳酸氢根。碳酸钙分子量100,纯碱106。以碳酸钙计算的量乘以1.06就是需要的纯碱量。 在不考虑细菌增值硝化消耗的碱度为1g氨氮7.14g碱度(碳酸钙),在考虑细菌增值的情况下是8.62g碱度(碳酸钙)。 碱度与硝化的比例系数为7.1 即每氧化1mg氨氮为硝酸根需消耗7.1mg碱度而发生反硝化反应时每反应掉1mg硝酸根可以产生3.57mg碱度所以,脱氮反应时为了取得好的效果必须不断补充碱度积磷菌、反硝化菌和硝化细菌生长的最佳pH值在中性或弱碱性范围,当 pH 值偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。污水厂生产实践表明,为使好氧池的pH值维持在中性附近,池中剩余总碱度宜大于 70mg/L。每克氨氮氧化成硝态氮需消耗 7.14g 碱度,大大消耗了混合液的碱度。反硝化时,还原 1g 硝态氮成氮气,理论上可回收 3.57g 碱度,此外,去除1g五日生化需氧量可以产生0.3g 碱度。出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量一7.14×硝化氮量,式中 3 为美国 EPA(美国环境保护署)推荐的还原1g硝态氮可回收3g碱度。 由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化成NO3—-N 约消耗7.14g碱度(以CaC03计)。因而当污水中的碱度不足而TKN负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0

生物脱氮基本原理

生物脱氮基本原理 作者:weidongwin 阅读:994次 上传时间:2005-10-13 推荐人:weidongwin 简介:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施 中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键字:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。 废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1.氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮 酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱 水脱氨三种途径的氨化反应。 (2-3) (2-4)

水处理中生物脱氮基本原理

水处理中生物脱氮基本原理 进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程[1]。 废水中存在着有机氮、NH3-N、NOx--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成 NH3-N,而后经硝化过程转化变为NOx--N,最后通过反硝化作用使NOx--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1.氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨: 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。

2.硝化作用 硝化作用是指将NH3-N氧化为NOx--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。该反应历程为: 亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。亚硝酸菌和硝酸菌统称为硝化菌[22]。发生硝化反应时细菌分别从氧化NH3-N 和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为: 由上式可以看出硝化过程的三个重要特征: ⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2; ⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季; ⑶硝化过程中产生大量的质子(H+),为了使反应能顺利进行,需要大量的碱中和,理论上大约为每氧化1g的NH3-N需要碱度5.57g(以NaCO3计)。 3.反硝化作用 反硝化作用是指在厌氧或缺氧(DO<0.3-0.5mg/L)条件下,NOx―-N及其它氮氧化物被用作电子受体被还原为氮气或氮的其它气态氧化物的生物学反应,这个过程由反硝化菌完成[3--4]。反应历程为:

2020年(生物科技行业)生物脱氮过程中氮的转化途径的初探

(生物科技行业)生物脱氮过程中氮的转化途径的初 探

生物脱氮过程中氮的转化途径的初探 摘要近些年来,出现了壹些新的脱氮的工艺,对生物脱氮的原理的研究也进壹步深入,这使脱氮的理论不断地得到发展和完善。本文结合实验室小型SBR试验的结果,围绕脱氮过程中N2O的产生中对脱氮途径进行了介绍,其目的在于使人们对这些不同的途径有更深的认识。其中很有必要的壹项工作便是对这些脱氮途径作出了明确的定义,且将它们进行了区分。最后对壹些尚未能解释的问题以及壹些假设作了讨论。 1.简介 对氮元素转化途径的研究起源于农业中对氮肥在土壤中的转化的探讨。土壤系统中氮元素总的输入和输出的不平衡使科学家们困惑了50多年(e.g.Allison,1995),同样的情况也出当下许多水处理的脱氮工艺中,这使得人们对氮元素其它转化途径的研究产生了兴趣。最初人们对生物脱氮的认识是NH3或NH4+在微生物的作用下转化为NO2-以及NO3-,后俩者再转化为N2而达到氮的去除,当下见来这种认识是比较粗略的。 对脱氮其它途径的研究实际上能够归结为对脱氮过程中间产物以及他们产生的环境条件和微生物机理的研究。这些中间产物包括NO、N2O以及N2。N2O是壹种对环境影响极大的温室气体,它的主要去向是在大气的同温层中原子态的氧反应生成NO,NO对臭氧层会造成破坏(Bliefert,1994)。这就使得许多水处理工艺虽然实现了水体中脱氮但却有可能对大气造成影响。 2.实验结果的分析 实验室中SBR反应器是壹个有效容积为4L的有机玻璃柱,每个周期10.5小时,实验工序为:进水→厌氧搅拌3hr→曝气8hr→厌氧搅拌1.5hr→沉淀1hr→排水,每个周期排水2L进水2L,曝气阶段溶解氧控制在2.5~3.0mg/L。在通过对照试验基本排除了游离氨被吹脱的可能之后,采用试验进水CODcr为720mg/L,NH4+-N为110mg/L,在系统稳定运行之后对壹周期各阶段内水相中各种氮化合物的浓度进行跟踪试验。实验期间每间隔1hr测定

生物脱氮机理、AO工艺脱氮解释

生物脱氮机理、AO工艺脱氮过程解释 生物脱氮的基本原理是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即将NH3转化为NO2--N和NO3--N。在缺氧条件下通过反硝化作用,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,并有外加碳源提供能量,将硝氮转化为氮气,即,将NO2--N (经反亚硝化)和NO3--N(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:硝化阶段:足够的溶解氧(DO)值在2mg/L以上,合适的温度,最好20℃,不低于10℃,足够长的污泥泥龄,合适的pH条件。反硝化阶段:硝酸盐的存在,缺氧条件(DO)值在0.5mg/L左右,充足的碳源(能源),合适的pH条件。通过上述原理,可组成缺氧与好氧池,即所谓A/O系统。 AO工艺法也叫厌氧-好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。 A/O法生物去除氨氮原理:污水中的氨氮,在充氧的条件下(O段),被硝化菌硝化为硝态氮,大量硝态氮回流至A段,在缺氧条件下,通过兼性厌氧反硝化菌作用,以污水中有机物作为电子供体,硝态氮作为电子受体,使硝态氮波还原为无污染的氮气,逸入大气从而达到最终脱氮的自的。 硝化反应: NH4++2O2→NO3-+2H++H2O 反硝化反应: 6NO3-+5CH3OH(有机物)→5CO2↑+7H2O+6OH-+3N2↑

相关主题
文本预览
相关文档 最新文档