当前位置:文档之家› 四阶行列式的一种展开法

四阶行列式的一种展开法

四阶行列式的一种展开法
四阶行列式的一种展开法

四阶行列式的一种展开法

笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。

四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下:

四阶行列式:

44

43

42

41

343332312423222114131211

4a a a a a a a a a a a a a a a a D

第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一):

(图表一)

作乘积关系,可得如下八项:

a 11a 22a 33a 44,a 12a 23a 34a 41,a 13a 24a 31a 42,a 14a 21a 32a 43,a 41a 32a 23a 14,a 42a 33a 24a 11,a 43a 34a 21a 12,a 44a 31a 22a 13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。

(图表二)

同前理可得如下八项:

a 11a 23a 34a 42,a 13a 24a 32a 41,a 14a 22a 31a 43,a 12a 21a 33a 44,a 41a 33a 24a 12,a 43a 34a 22a 11,a 14a 32a 21a 13,a 42a 31a 23a 14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。

第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三:

424144

43

4241333231343332312322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a 43

42414443

4241333231343332312322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a 4241444342413332313433323123222124232221131211141312

11a a a a a a a a a a a a a a a a a a a a a a a a a a a a

(图表三)

同前理可得如下八项:

a11a24a32a43,a14a22a33a41,a12a23a31a44,a13a21a34a42,a41a34a22a13,a44a32a23a11,a42a33a21a14,a43a31a24a12,

这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。

综合三次变形,其符号确定方法,可得四阶行列式的及展开如下:

D4=a11a22a33a44-a12a23a34a41+a13a24a31a42-a14a21a32a43+a41a32a23a14-a42a33a24a11

+a43a34a21a12-a44a31a22a13+a11a23a34a42-a13a24a32a41+a14a22a31a43-a12a21a33a44

+a41a33a24a12-a43a34a22a11+a14a32a21a13-a42a31a23a14+a11a24a32a43-a14a22a33a41

+a12a23a31a44-a13a21a34a42+a41a34a22a13-a44a32a23a11+a42a33a21a14-a43a31a24a12四阶行列式的展开式共有24项,全如上面所述结论式。

下面将从三个方面进行证明。

证明:

一、前述展开四阶行列式的结论中的每一项,均由四阶行列式中的元素组成,而且四个元素取自不同的排列。由于每次排列的各列中,相邻4列始终没有相同的列,所以,组成每项的元素绝对不会相同。即满足行列式的展开项的特征。

二、由所作出的对角线关系可知,在每一次所得的乘积中,每一个元素只能有两条线经过,所以,一个元素只能在两个乘积中出现,共作三次图表。所以只能得六项含有该元素,在n阶行列式中,当首选某一个元素为某一展开项中的元素时,其余元素的选择只能从余下的n-1阶子式中去选择n-1个元素组成该项,方法有(n-1)!种。对于四阶行列式而言,且有(4-1)!=6种,所以该展开法符合上述原则。

三、按上述三次所作的展开项中,每一项的行标的排列应为1234或4321,此二排列的逆序数为0和6,均为偶数,所以每一项的符号全由列标排列的逆序数确定,第一次所得的第一项的列标为1234,其逆序数为零,所以,该项前应冠以正号。而第二项恰为将1234作一次向前的轮换而得的2341,由于是4个元素参与轮换,相当于作3次置换,逆序数发生改变,并由前偶数变为现今的奇数,所以,第二项前应冠以负号。第三项又是对第二项的列标作一轮换而得到的列标,因此,就在该项前冠以正号,依此类推,前八项的符号为+,-,+,-,+,-,+,-,由于第二次与第二次所作的图表是在前一次的基础之上将234列作一轮换,而3个元素作一轮换相当于向前置换两次,逆序数的奇偶特性未发生改变,所以它们所得八项的符号仍与第一次一样为正负相间的。因此,展开式的第一项为正,第二项为负,第三项为正,第四项为负,依此下去,各项符号是正负相间的。

下面举例说明。

例1:计算四阶行列式:

111

101111011110D4=

解:D 4=-1+1-1+1-1+1-1-1-1=-3 例2:计算四阶行列式:

4

565

534527537367D4=

展开图表如下:

(例题2图表一)

(例题2图表二)

(例题2图表三)

解: D 4=7?6?3?4-6?7?5?5+3?2?5?6-7?3?4?5+5?4?7?7-6?3?2?7 +5?5?3?6-4?5?5?3+7?7?5?6-3?2?4?5+7?5?5?5-6?3?3?4 +5?3?2?6-5?5?5?7+4?4?3?3-6?5?7?7+7?2?4?5-7?5?3?5

+6?7?5?4-3?3?5?6+5?5?5?3-4?4?7?7+6?3?3?7-5?5?2?6 =420-1056+180-420+980-252+450-300+1470-120+875-216+180-875+144 -1470+280-525+840-270+375-784+378-300 =-10

例3:计算四阶行列式:

5

6545653455345753275336773674

5564555354535273527373767376

455645455345552375236773677

3

52358945

7433452D4------=

展开图表如下:

(例题3图表一)

(例题3图表二)

(例题3图表三)

解: D 4=2?(-4)?8?3-(-5)?7?5?(-3)+4?5?4?2-3?3?(-9)?(-5)+(-3)?(-9)?7?5 -2?8?5?2+(-5)?5?3?(-5)-3?4?(-4)?4+2?7?5?2-4?5?(-9)?(-3) +3?(-4)?4?(-5)-(-5)?3?8?3+(-3)?8?5?(-5)-(-5)?5?(-4)?2+3?(-9)3?4 -2?4?7?3+2?5?(-9)?5-3?(-4)?8?(-3)+(-5)?7?4?3-4?3?5?2

+(-3)?5?(-4)?4-3?(-9)?7?2+2?8?3?3-5?4?5?(-5)

=-192-525+160-405+567-160+375+192+140-540+240+360+600-200-324 -168-430-288-420-120+240+378+144+500 =4

通过以上三例说明,该展开式简单易学,在未学习行列式性质之前,也能计算四阶行列式并加以应用。此法容易记忆,很快地掌握四阶行列式的计算方法。今作此文,方便计算四阶行列式时,减少繁杂的运算,提高运算速度。但是五阶以上的行列式不能用此法,因为元素多,排列种数(全排列)增大,不可能用此简便的方法,将所给元素进行全排列。

2009年8月于水城

52523894

5

8

9474357434523452----------3532

3533

8

4

9

58

4

57345733425347-------2

3

352

3

39

54

8

954

45374535324532--------

关于行列式的计算方法8页word文档

行列式的计算方法综述 目录 1.定义法(线性代数释疑解难参考) 2.化三角形法(线性代数释疑解难参考) 3.逐行(列)相减法(线性代数释疑解难参考) 4.升降法(加边法)(线性代数释疑解难参考) 5.利用范德蒙德行列式(线性代数释疑解难参考) 6.递推法(线性代数释疑解难参考) 7.数学归纳法(线性代数释疑解难参考) 8.拆项法(课外辅导书上参考) 9.换元方法(课外辅导书上参考) 10.拆因法(课外辅导书上参考) 线性代数主要内容就是求解多元线性方程组,行列式的计算其中起重要作用。下面由我介绍几种常见的计算行列式的方法: 1.定义法 由定义看出,n级行列式有!n个项。n较大时,!n是一个很大的数字。直接用定义来计算行列式是几乎不可能的事。但在n级行列式中的等于零的项的个数较多时,它展开式中的不等于零的项就会少一些,这时利用行列式的定义来计算行列式较方便。 例1.算上三角行列式 解:展开式的一般项为 同样,可以计算下三角行列式的值。 2.化三角形法 画三角形法是先利用行列式的性质将原行列式作某种保值变形,化为上

第 1 页 (下)三角形行列式,再利用上(下)三角形行列式的特点(主对角线上元素的乘积)求出值。 例2.计算 解:各行加到第一行中 把第二列到第n 列都分别加上第一列的()1-倍,有 3.逐行(列)相减法 有这样一类行列式,每相邻两行(列)之间有许多元素相同,且这些相同元素都集中在某个角上。因此可以逐行(列)相减的方法化出许多零元素来。 例3.计算n 级行列式 解:从第二行起,每一行的()1-倍都加上上一行,有 上式还不是特殊三角形,但每相邻两行之间有许多相同元素()10或,且最后一行有()1n -元素都是x 。因此可再用两列逐列相减的方法:第()1n -列起,每一列的()1-倍加到后一列上 4.升降法(加边法) 升降法是在原行列式中再添加一列一行,是原来的n 阶成为()1n +阶,且往往让()1n +阶行列式的值与原n 阶行列式的值相等。一般说,阶数高的比阶数低的计算更复杂些。但是如果合理的选择所添加的行,列元素,是新的行列式更便于“消零”的话,则升降后有利于计算行列式的值。 例4.计算n 级行列式

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

四阶行列式的一种展开法1解读

四阶行列式的一种展开法正文 四阶行列式的一种展开法 笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。 四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下: 四阶行列式: a11 D4 a21a31a41 a12a22a32a42 a13a23a33a43 a14a24a34a44 第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一): a11a12a21a31a41a42a13a43 a14 44 a11a12224142a13a23a33(图表一) 作乘积关系,可得如下八项: a11a22a33a44,a12a23a34a41,a13a24a31a42,a14a21a32a43,a41a32a23a14,a42a33a24a 11,a43a34a21a12,a44a31a22a13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。 a11a12a21a31a41a42aa43 (图表二) a44a11a12224142a13a23a3343 同前理可得如下八项: a11a23a34a42,a13a24a32a41,a14a22a31a43,a12a21a33a44,a41a33a24a12,a43a34a22a 11,a14a32a21a13,a42a31a23a14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。 第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三: a21a313241a42a43a1444a11a12224142a13a23a33 1 四阶行列式的一种展开法正文

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

三阶行列式展开

9.4(2)三阶行列式按一行(或一列)展开 一、教学内容分析 三阶行列式按一行(或一列)展开是三阶行列式计算的另外一种法则,学习这种法则有助于学生更好地理解二阶行列式、三阶行列式的内在联系,同时这个法则也是较复杂的行列式计算的常用方法,这个法则更是蕴涵了数学问题研究过程中将复杂问题转化为简单问题的研究方法.本节课的教学内容主要围绕代数余子式的符号的确定研究三阶行列式按一行(或一列)展开法则. 二、教学目标设计 ⑴ 掌握余子式、代数余子式的概念; ⑵ 经历实验、分析的数学探究,逐步归纳和掌握代数余子式的符号的确定方法和三阶行列式按一行(或一列)展开方法,体验研究数学的一般方法; (3)体会用简单(二阶行列式)刻画复杂(三阶行列式)、将复杂问题简单化的数学思想. 三、教学重点及难点 三阶行列式按一行(或一列)展开、代数余子式的符号的确定. 四、教学过程设计 一、情景引入 【实验探究1】 (1)将下列行列式按对角线展开: 223 3 b c b c =_______________ 223 3 a b a b =_______________ 2233 a c a c =_______________ 1 1 33 b c b c =_______________ 11 2 2 b c b c =_______________ 111 2223 3 3 a b c a b c a b c =_______________ (2)对比、分析以上几个行列式的展开式,你能将三阶行列式 111 2223 3 3 a b c a b c a b c 表示成含有几个二阶行列式运算的式子吗? [说明]

行列式的计算方法

专题讲座五行列式的计算方法 1.递推法 例1求行列式的值: (1) 的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方 第一条次对角线的元全为1,其余元全为0;即为三对角线型。又右下角的(n)表示行列式为n阶。 解把类似于,但为k阶的三对角线型行列式记为。 把(1)的行列式按第一列展开,有两项,一项是 另一项是 上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系: (2) 移项,提取公因子β: 类似地: (递推计算) 直接计算

若;否则,除以后移项: 再一次用递推计算: ∴,当β≠α(3) 当β = α,从 从而。 由(3)式,若。 ∴ 注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式

(3) 和三对角线型行列式 (4) 有相同的递推关系式 (5) (6) 注意 两个序列 和 的起始值相同,递推关系式(5)和(6)的构造也相同,故必有 由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。前面算出,故 例2 计算n阶范德蒙行列式行列式 解:

即n阶范德蒙行列式等于这n个数的所有可能的差的乘积 2.拆元法 例3:计算行列式 解

①×(x + a) ②×(x – a)

3.加边法 例4计算行列式 分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解 4.数学归结法 例5计算行列式 解: 猜测: 证明 (1)n = 1, 2, 3 时,命题成立。假设n≤k– 1 时命题成立,考察n=k的情形:

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

四阶行列式的一种展开法1

四阶行列式的一种展开法 笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。 四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下: 四阶行列式: 44 43 42 413433323124 23222114131211 4a a a a a a a a a a a a a a a a D 第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一): (图表一) 作乘积关系,可得如下八项: a 11a 22a 33a 44,a 12a 23a 34a 41,a 13a 24a 31a 42,a 14a 21a 32a 43,a 41a 32a 23a 14,a 42a 33a 24a 11,a 43a 34a 21a 12,a 44a 31a 22a 13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。 (图表二) 同前理可得如下八项: a 11a 23a 34a 42,a 13a 24a 32a 41,a 14a 22a 31a 43,a 12a 21a 33a 44,a 41a 33a 24a 12,a 43a 34a 22a 11,a 14a 32a 21a 13,a 42a 31a 23a 14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。 第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三: 43 42 4144 43 42 413332 31 343332 312322212423222113121114131211 a a a a a a a a a a a a a a a a a a a a a a a a a a a a 43 42 4144 43 42 413332 31 343332 31 2322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a 42 4144 43 42 413332 31 343332 31 2322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a

行列式的计算方法课堂讲解版

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 00100 200 1 0000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300(1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式

计算N阶行列式若干方法

网上搜集的计算行列式方法总结, 还算可以. 计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100200 10 000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足

,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由ij ji a a =-知ii ii a a =-,即 0,1,2, ,ii a i n == 故行列式D n 可表示为 1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a =

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

(完整版)行列式的计算方法总结

行列式的计算方法总结: 1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式: B A B C A B C A == 0021 , B A B A D D B A mn )1(0 021 -== ,其中B A ,分别是n m ,阶的方阵. 例子: n n a b a b a b b a b a b a D 22O N N O = , 利用Laplace 定理,按第1,+n n 行展开,除2级子式 a b b a 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-= n n n n n n n D b a D a b b a D ,此为递推公式,应用可得 n n n n b a D b a D b a D )()()(224222222222-==-=-=--Λ. 3. 箭头形行列式或者可以化为箭头形的行列式. 例:n n n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=Λ ΛΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛ00 000 01 133112 2113213 21321 321321 -----(倍加到其余各行第一行的1-) 100 101010 011)(3 332 221 111 Λ ΛΛΛΛΛΛΛΛ-------? -=∏=n n n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1 001000 010)(3 332 222111 1 Λ ΛΛΛΛΛΛΛΛn n n n i i i i n i i i a x a a x a a x a a x a a x x a x ----+-? -=∑∏== --------(将第n ,,3,2Λ列加到第一列)

行列式的展开法则

03. 行列式的展开法则 一、按一行(列)展开法则 定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则 1122||(1,2,,)A i i i i in in a A a A a A i n =+++= ; 2)按一列展开法则 1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++= . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式 1) x y x y y x ; 2) 11 1111 1 21n n ---- ; 3)121111n n n a a x D a x a x ---= - . 解 1)按1c 展开得 原式1 111111(1)(1)n n n n n n n xA yA xx y y x y -+-+=+=+-=+-. 2)原式 121 (1) (12)2 n n nn n c c c c n n n A c -++++++++= 按展开 . 3)法1 按1r 展开得 () 112112121223121211(,,,)(,,) (,,). ()n n n n n n n n n n n n n n n D a a a a x D a a a x a x D a a a x a x a x a D a a --------=+=++==++++= 法2 在n D 中,元素(21)i a i n ≤≤-的余子式为 1111 1 (1)11 i n i i x x M x x x x -----= =--- . 将n D 按1c 展开得 11211211 (1)n i n n n i i n n i D a M a x a x a x a +---==-=++++∑ . 法3 1 12 1 21211212110 1,1,,2 10 i i n n n n n n n n a a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++

浅谈行列式的计算方法x

浅 一、 特殊行列式法 1.定义法 当行列式中含零元较多时,定义法可行. 例1 计算n 级行列式 α β βαβαβα000000 0000 00 =D . 解:按定义,易见121,2,,,n j j j n === 或 1212,3,,,1n n j j j n j -==== . 得 11(1)n n n D αβ-+=+- 2.三角形行列式法 利用行列式性质,把行列式化成三角形行列式. nn a a a a a a 000n 222n 11211=nn n n a a a a a a 212212110 0112233nn a a a a = 例2 计算n 级行列式1231 131 211 2 3 1 n n x n D x n x +=++ 解: 将n D 的第(2,3,,)i i n = 行减去第一行化为三角形行列式,则 1230 1000 0200 1 (1)(2)(1) n n x D x x n x x x n -=--+=---+

3.爪形行列式法 例3 计算行列式 0121 1 220 0000n n n a b b b c a D c a c a = ()0,1,2,,i a i n ≠= 解: 将D 的第i +1列乘以(i i a c - )都加到第1列()n i ,2,1=,得 10 12 120000000 00n i i n i i n bc a b b b a a D a a - =∑= =011()n n i i i i i i b c a a a ==-∑∏ 4. 范德蒙行列式法 1 2 3 2 2221 2 3 11111 2 3 1111n n n n n n n a a a a D a a a a a a a a ----= 1()i j j i n a a ≤<≤= -∏ 例4 计算n 级行列式 2 2221233 333 1 2 3 12 3 11 1 1 n n n n n n n x x x x D x x x x x x x x = 解:利用D 构造一个1n +阶范德蒙行列式 12222 212121111()n n n n n n n x x x x g x x x x x x x x x = 多项式()g x 中x 的系数为3(1)n D +-,而()g x 又是一个范德蒙行列式,即 1 ()() n i i g x x x ==-∏∏≤<≤-n i j j i x x 1)(

行列式计算的若干种方法讲解

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 统计学年级:2008 题目: 行列式计算的若干方法 学生姓名: 曹金金学号:08067005

指导教师姓名: 汪宝彬职称:讲师 2012年4月30日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者签名: 年月日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1 引言 (2) 2.1排列 (2) 2.2行列式的定义 (2) 2.2.1 二阶、三阶行列式 (2) 2.2.2 n阶行列式的定义 (3) 2.2.3 几种特殊的行列式的定义 (3) 2.3 行列式的基本性质 (5) 3几种常见的行列式的计算方法 (6) 3.1利用行列式定义直接计算 (6) 3.2 利用行列式的性质计算 (6) 3.3 三角化法 (7) 3.4 降阶法 (8) 3.5利用范德蒙德行列式求解 (10) 3.6 数学归纳法 (11) 3.7 拆项法 (12) 3.8析因子法 (13) 3.9 加边法(升阶法) (13) 3.10递推公式法 (14) 3.11超范德蒙行列式法 (15) 3.12利用分块计算行列式 (16) 4 结论 (16) 致谢 (17) 参考文献 (17)

行列式计算的若干方法 摘要:在线性代数中,行列式的求解是非常重要的. 本文首先介绍行列式的定义与性质;然后通 过实例给出了计算行列式的几种方法.从文中可以看出,选择合适的计算方法可有效的计算行列式. 关键词:行列式;性质;计算方法 Some Methods of Determinant Calculation Abstract: Determinant plays an important role in the linear algebra. In this paper we first introduce the definition and properties of determinant. Then several methods of the calculation are given by some examples. It can be seen from the paper that choose the appropriate calculation method can efficiently compute the determinant. Key words: determinant; property; the calculation methods

行列式按行列展开定理

行列式按行列展开定理 一、 余子式的定义: 在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M 二、 代数余子式: 在n 阶行列式的ij a 余子式ij M 加上符号(1) i j +-,称作ij a 的代数 余子式ij A : (1)i j ij ij A M +=- 三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: i j i j D a A =? 四、 行列式按行(列)展开法则: 定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和: 1122i i i i in in D a A a A a A =?+?+???+? 1122j j j j nj nj D a A a A a A =?+?+???+? (i j ≠) 推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0: 1122i j i j in jn D a A a A a A =?+?+???+? 1122i j i j ni nj D a A a A a A =?+?+???+? (i j ≠)

五、 克拉默法则: 如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++???+= 21122222n n a x a x a x b ++???+= 31132233n n a x a x a x b ++???+= ………………………………… ………………………………… ………………………………… 1122n n nn n n a x a x a x b ++???+= 其系数行列式不等于0,即:1111...... ......0...n n nn a a D a a =≠ 那么,方程组有惟一解: 11D x D =,22D x D =,…n N D x D = 1111,1122,1 1,1............ ....... ...j n j j n n n j nn a b a a b a D a b a a +++= ① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。 ② 定理4':如果含n 个未知数的n 个线性方程组无解或

行列式的计算技巧与方法总结

计算技巧及方法总结 一、 一般来说,对于二阶、三阶行列式,可以根据定义来做 1、二阶行列式 2112221122 2112 11a a a a a a a a -= 2、三阶行列式 33 32 31 23222113 1211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 例1计算三阶行列式6 01504 321 - 解 =-6 015043 21601??)1(52-?+043??+)1(03-??-051??-624??- 4810--=.58-= 但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。但在此之前需要记忆一些常见行列式形式。以便计算。 计算上三角形行列式 nn nn n n a a a a a a a a a 2211222112110 = 下三角形行列式 nn n n a a a a a a 21 222111000.2211nn a a a = 对角行列式 nn nn n n a a a a a a a a a 221121 2221 11 0= 二、用行列式的性质计算 1、记住性质,这是计算行列式的前提 将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若

,21222 21 11211nn n n n n a a a a a a a a a D = 则 nn n n n n T a a a a a a a a a D 2122212 12111=. 性质1 行列式与它的转置行列式相等, 即.T D D = 注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有. 性质2 交换行列式的两行(列),行列式变号. 推论 若行列式中有两行(列)的对应元素相同,则此行列式为零. 性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即 .2 1 21112 112 1 21 112111kD a a a a a a a a a k a a a ka ka ka a a a D nn n n in i i n nn n n in i i n === 第i 行(列)乘以k ,记为k i ?γ(或k C i ?). 推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 推论2 行列式中若有两行(列)元素成比例,则此行列式为零. 性质4 若行列式的某一行(列)的元素都是两数之和, 例如, nn n n in in i i i i n a a a c b c b c b a a a D 2 12 21111211+++=. 则 212 1 21112112 1 21 11211 D D a a a c c c a a a a a a b b b a a a D nn n n in i i n nn n n in i i n +=+= . 性质5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变. 注: 以数k 乘第j 行加到第i 行上,记作j i kr r +; 以数k 乘第j 列加到第i 列上,记作j i kc c +. 2、利用“三角化”计算行列式 计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:

n阶行列式的计算方法

n阶行列式的计算方法 姓名: 学号: 学院: 专业: 指导老师: 完成时间:

n阶行列式的计算方法 【摘要】 本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。 【关键词】 n阶行列式行列式的性质数学归纳法递推法加边法

Some methods of an n-order determinant calculation 【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues . 【Key words】n-order determinant the property of the determinant the mathematical induction adding the edge method

相关主题
文本预览
相关文档 最新文档