当前位置:文档之家› (模电)集成运算放大器的基本应用─有源滤波器

(模电)集成运算放大器的基本应用─有源滤波器

(模电)集成运算放大器的基本应用─有源滤波器
(模电)集成运算放大器的基本应用─有源滤波器

实验题目:集成运算放大器的基本应用─有源滤波器(模电实验)实验时间:2018年_____

班级:___学号: ___姓名:_康少___

表3-23 二阶高通滤波器的测量

0.1 0.2 0.4 0.6 1.2 1.5 1.8 2.2 3 4 6 8 9

40 40 80 140 380 500 600 700 800 900 940 960 980 整理实验数据,画出各电路实测的幅频特性

有源滤波实验报告

姓名: 学号:2009118125 班级:电工二班 实验十一 有源滤波器 实验目的 1. 掌握有缘滤波器的构成及其特性 2. 学习有缘滤波器的幅频特性的测量方法 实验仪器 数字示波器 信号发生器 交流毫伏表 直流电源 预习要求 1. 复习有缘滤波器的概念、工作原理。 2. 分析计算图5-11-1、图5-11-2电路的截止频率,图5-11-3电路 的中心频率。 3. 画出三个电路的幅频特性曲线 实验原理 有源滤波器又称作有源选频电路,通常用继承运放和电阻,电容网络构成。它的作用是让指定频段信号通过,而将其余频段信号加以抑制或大幅度衰减。分低通、高通、带通、带阻等电路。 1. 低通滤波电路 低通滤波器是指通过低频而抑制高频信号的滤波器,如图5-11-1所示为二阶低通滤波器。 传输函数: 200 11()f A j Q ωωωω-+ 1 (1)f f R A R =+ 1( )3f Q A =- 01 RC ω= 根据上式可知,当Q 取不同值时,可使电路的频率特性具有不同的特点。一般Q 取0.7。 2. 高通滤波器 高通滤波器的功能是使频率高于某一数值(如fo )的信号通过,而低于fo 的信号不能通过。图5-11-2电路为二阶高通滤波器。

其频率特性为:200()11()f A H j j Q ωωωωω = -- 1 1f f R A R =+ 13f Q A = - 01RC ω = 3. 带通滤波器 带通滤波器可由低通滤波器和高通滤波器构成,也可以直接由集成运放外加RC 网络构成,不同的构成方法,其滤波特性也不同。带通滤波器的功能是指定频段内的信号通过而衰减其它频段的信号。 4.带阻滤波器 带阻滤波器又称陷波器,它衰减指定频段的信号,而让其它频段的信号通过。带阻滤波器可由低通电路和高通电路构成,也可由集成运放外加RC 网络构成。常用的带阻滤波器是由双T 网络构成的,如图5-11-3所示。 其幅频特性为:

实验五集成运算放大器的基本应用共7页文档

实验五集成运算放大器的基本应用(I) ─模拟运算电路─ 一、实验目的 1、了解和掌握集成运算放大器的功能、引脚 2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算 电路的功能。 3、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A =∞ ud =∞ 输入阻抗r i =0 输出阻抗r o 带宽 f =∞ BW 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:

(1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图8-1所示。对于理想运放, 该电路的输出电压与输入电压 之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图8-1 反相比例运算电路 图8-2 反相加法运算电路 2) 反相加法电路 电路如图8-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O U R R U - =

模电实验报告集成运算放大器

实验六 集成运算放大器的基本应用——模拟运算电路 一、 实验目的 1、 研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能 2、 了解运算放大器在实际应用时应考虑的有些问题 二、 实验仪器 1、 双踪示波器; 2、数字万用表; 3、信号发生器 三、 实验原理 在线性应用方面,可组成比例、加法、减法的模拟运算电路。 1) 反相比例运算电路 电路如图6-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 // 。 图6-1 反相比例运算电路 2) 反相加法电路 电路如图6-2所示,输出电压与输入电压之间的关系为: // // 图6-2 反相加法运算电路 Ui1 Ui2

3) 同相比例运算电路 图6-3(a )是同相比例运算电路。 (a )同乡比例运算 (b )电压跟随器 图6-3 同相比例运算电路 它的输出电压与输入电压之间关系为: // 当即得到如图6-3所示的电压跟随器。图中,用以减小漂 移和起保护作用。一般取10K Ω, 太小起不到保护作用,太大则影响跟随性。 4) 差动放大电路(减法器) 对于图6-4所示的减法运算电路,当 Uo Uo

图6-4 减法运算电路 5) 积分运算电路 图6-5 积分运算电路 反相积分电路如图6-5所示,在理想化条件下,输出电压 等于 式中是t=0时刻电容C 两端的电压值,即初始值。 如果 E 的阶跃电压,并设 =0,则 Uo Ui2Ui1 Uo Ui

此时显然RC 的数值越大,达到给定的值所需的时间就越长,改变R 或C 的值 积分波形也不同。一般方波变换为三角波,正弦波移相。 6) 微分运算电路 微分电路的输出电压正比与输入电压对时间的微分,一般表达式为: 利用为自焚电路可实现对波形的变换,矩形波变换为尖脉冲。 图6-6 微分运算电路 四、 实验内容及实验数据 实验时切忌将输出端短路,否则将会损坏集成块。输入信号时先按实验所给的值调好信号源再加入运放输入端,另外做实验前先对运放调零,若失调电压对输出影响不大,可以不用调零,以后不再说明调零情况。 1、 方向比例运算电路 1) 按图6-1正确连线。 2) 输入f=100HZ ,=0.5V (峰峰值)的正弦交流信号,打开直流开关,用毫伏表测量 值,并用示波器观察的相位关系,记入表6-1。 表6-1 (峰峰值),f=100HZ Uo Ui

集成运算放大器及其应用

第九章集成运算放大器及其应用(易映萍) 9.1 差分放大电路 9.2互补功率放大电路 9.3 集成运算放大电路 9.4 理想集成运放的线性运用电路 9.5 理想集成运放的非线性运用电路 习题 第九章集成运算放大器及其应用 9.1 差分放大电路 9.1.1 直接耦合多级放大电路的零点漂移现象 工业控制中的很多物理量均为模拟量,如温度、流量、压力、液面和长度等,它们通过不同的传感器转化成的电量也均为变化缓慢的非周期性连续信号,这些信号具有以下两个特点: 1.信号比较微弱,只有通过多级放大才能驱动负载; 2.信号变化缓慢,一般采用直接耦合多级放大电路将其放大。 u=0)时,人们在试验中发现,在直接耦合的多级放大电路中,即使将输入端短路(即 i u≠0),这种现象称为零点漂移(简称为零漂),如图输出端还会产生缓慢变化的电压(即 o 9.1所示。 (a)测试电路(b)输出电压u o的漂移 图9.1 零点漂移现象 9.1.2 零漂产生的主要原因 在放大电路中,任何参数的变化,如电源电压的波动、元件的老化以及半导体元器件参数随温度变化而产生的变化,都将产生输出电压的漂移,在阻容耦合放大电路中,耦合电容对这种缓慢变化的漂移电压相当于开路,所以漂移电压将不会传递到下一级电路进一步放

大。但是,在直接耦合的多级放大电路中,前一级产生的漂移电压会和有用的信号(即要求放大的输入信号)一起被送到下一级进一步放大,当漂移电压的大小可以和有用信号相当时,在负载上就无法分辨是有效信号电压还是漂移电压,严重时漂移电压甚至把有效信号电压淹没了,使放大电路无法正常工作。 采用高质量的稳压电源和使用经过老化实验的元件就可以大大减小由此而产生的漂移,所以由温度变化所引起的半导体器件参数的变化是产生零点漂移现象的主要原因,因而也称零点漂移为温度漂移,简称温漂,从某种意义上讲零点漂移就是静态工作点Q点随温度的漂移。 9.1.3抑制温漂的方法 对于直接耦合多级放大电路,如果不采取措施来抑制温度漂移,其它方面的性能再优良,也不能成为实用电路。抑制温漂的方法主要由以下几种: (1)采用稳定静态工作的分压式偏置放大电路中Re的负反馈作用; (2)采用温度补偿的方法,利用热敏元件来抵消放大管的变化; (3)采用特性完全相同的三极管构成“差分放大电路”; 9.1.4 差分放大电路 差分放大电路是构成多级直接耦合放大电路的基本单元电路。直接耦合的多级放大电路的组成框图如图9.2所示。 图9.2 多级放大的组成框图 A倍后传送到负载上,对电路造从上图可知输入级一旦产生了温漂,会经中间级放大 u2 A≈1,对电路造成的成严重的影响,而中间级产生的温漂,由于直接到达功放级而功放的 u 影响跟输入级相比少得多,所以,我们主要应设法抑制输入级产生的温漂,故在直接耦合的多级放大电路中只有输入级常采用差分放大电路的形式来抑制温漂。 9.1.4.1 差分放大电路的组成及结构特点 一.电路组成 差分放大电路如图9.3所示。

集成运算放大器的基本应用

实验十一 集成运算放大器的基本应用 —— 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验仪器 1、双踪示波器 2、万用表 3、交流毫伏表 4、信号发生器 三、实验原理 在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。 1、 反相比例运算电路 电路如图11-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1 - = (11-1) U i O 图11-1 反相比例运算电路 为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1∥R F ,此处为了简化电路,我们选取R2=10K 。

2、反相加法电路 U O U 图11-2 反相加法运算电路 电路如图11-2所示,输出电压与输入电压之间的关系为 )( 22 11i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、同相比例运算电路 图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U )1(1 + = R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。图中R2=R F ,用以减小漂移和起保护作用。一般RF 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算 (b)电压跟随器 图11-3 同相比例运算电路 4、差动放大电路(减法器) 对于图11-4所示的减法运算电路,当R1=R2,R3=R F 时,有如下关系式: )(1 120i i U U R RF U -= (11-4)

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

集成运算放大器的基本应用

第7章集成运算放大器的基本应用 7.1 集成运算放大器的线性应用 7.1.1 比例运算电路 7.1.2 加法运算电路 7.1.3 减法运算电路 7.1.4 积分运算电路 7.1.5 微分运算电路 7.1.6 电压—电流转换电路 7.1.7 电流—电压转换电路 7.1.8 有源滤波器 *7.1.9 精密整流电路 7.2 集成运放的非线性应用 7.2.1 单门限电压比较器 7.2.2 滞回电压比较器 7.3 集成运放的使用常识 7.3.1 合理选用集成运放型号 7.3.2 集成运放的引脚功能 7.3.3 消振和调零 7.3.4 保护 本章重点: 1. 集成运算放大器的线性应用:比例运算电路、加减法运算电路、积分微分运算电路、一阶有源滤波器、二阶有源滤波器 2. 集成运算放大器的非线性应用:单门限电压比较器、滞回比较器 本章难点: 1. 虚断和虚短概念的灵活应用 2. 集成运算放大器的非线性应用 3. 集成运算放大器的组成与调试 集成运算放大器(简称集成运放)在科技领域得到广泛的应用,形成了各种各样的应用电路。从其功能上来分,可分为信号运算电路、信号处理电路和信号产生电路。从本章开始和以后的相关章节分别介绍它们的应用。 7.1 集成运算放大器的线性应用

集成运算放大器的线性应用 7.1.1 比例运算电路 1. 同相比例运算电路 (点击查看大图)反馈方式:电压串联负反馈 因为有负反馈,利用虚短和虚断 虚短: u-= u+= u i

虚断: i +=i i- =0 , i 1 =i f 电压放大倍数: 平衡电阻R=R f//R1 2. 反相比例运算 (点击查看大图)反馈方式:电压并联负反馈 因为有负反馈,利用虚短和虚断 i - =i+= 0(虚断) u + =0,u-=u+=0(虚地) i 1 =i f 电压放大倍数:

电路实验报告12 有源滤波器设计

课程名称:电路与电子技术实验II 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、掌握有源滤波器的分析和设计方法。 2、学习有源滤波器的调试、幅频特性的测量方法。 3、了解滤波器的结构和参数对滤波器性能的影响。 4、用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 二、实验内容和原理 1、滤波器的5个主要指标: (1) 传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。 (2) 通带增益A v p:为一个实数。(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。 (3) 固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。 (4) 通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。 (5) 品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。 2、有源滤波器的设计流程: 设计一个有源低通滤波器时,一般可以先按照预定的性能指标,选择一定的电路形式,然后写出电路的电压传递函数,计算并选定电路中的各个元器件参数。最后再通过实验进行调试,确定实际的器件参数。 三、实验器材 运放LM358、 四、操作方法和实验步骤 1、实验内容 (1) 在实验板上安装所设计的电路。 (2) 有源滤波器的静态调零。 (3) 测量滤波器的通带增益A v p、通带截止频率f p。 (4) 测量滤波器的频率特性(有条件时可使用扫频仪)。 (5) 改变电路参数,研究品质因数Q 对滤波器频率特性的影响。 2、设计一个二阶有源低通滤波器。具体要求如下: (1) 通带截止频率:f p=1kHz;

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

有源滤波器实验报告

实验七 集成运算放大器的基本应用(n )—有源滤波器 一、 实验目的 i 熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、 实验原理 (a )低通 (b )高通 (c)带通 (d )带阻 图7—1四种滤波电路的幅频特性示意图 由RC 元件与运算放大器组成的滤波器称为 RC 有源滤波器,其功能是让一定频率范围内的信号通过, 抑制或急剧衰减此频率范围以外的信号。 可用在信息处理、数据传输、 抑制干扰等方面,但因受运算放 大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通 (LPF)、高通 (HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图 7— 1所示。 具有理想幅频特性的滤波器是很难实现的, 只能用实际的幅频特性去逼近理想的。 一般来说,滤波 器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高 ,幅频特性衰减的速率越快,但 RC 网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶 RC 有 滤波器级联实现。 1、低通滤波器(LPF ) 低通滤波器是用来通过低频信号衰减或抑制高频信号 如图7— 2 (a )所示,为典型的二阶有源低通滤波器。它由两级 RC 滤波环节与同相比例运算电路 组成,其中第一级电容 C 接至输出端,弓I 入适量的正反馈,以改善幅频特性。图 7—2 (b )为二阶低 通滤波器幅频特性曲线。 (a) 电路图 图7—2二阶低通滤波器 电路性能参数 ―1奈二阶低通滤波器的通带增益 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 (b)频率特性 1 2 T RC

有源滤波器实验报告

实验报告 课程名称:电路与电子技术实验Ⅱ指导老师:张德华成绩:__________________ 实验名称:有源滤波器实验类型:模拟电路实验 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.了解有源滤波器的工作原理、特点; 2.掌握有源滤波器典型电路的设计、分析与实现; 3.学习有源滤波器典型电路的频率特性测量方法、电路调试与参数测试,了解其滤波性能; 4.通过仿真方法进一步研究有源滤波电路,了解不同的有源滤波器结构、参数等对滤波性能的影响。 二、实验内容和原理 实验内容: 1.原理分析; 2.频率特性; 3.滤波效果。 实验原理: 0.滤波器 ⑴定义: 让指定频段的信号通过,而将其余频段上的信号加以抑制,或使其急剧衰减。(选频电路) ⑵分类: a)按照器件类型分类: 无源滤波器:由电阻、电容和电感等无源元件组成; 有源滤波器:采用集成运放和RC 网络为主体; b)按照频段分类: 低通滤波器(LPF )、高通滤波器(HPF )、带通滤波器(BPF )、带阻滤波器(BEF ); 通带:能够通过(或在一定范围内衰减)的信号频率范围; 阻带:被抑制(或急剧衰减)的信号频率范围; 过渡带越窄,说明滤波电路的选频特性越好。

⑷关键指标: 传递函数(频率响应特性函数)A v:反映滤波器增益随频率的变化关系; 固有频率(谐振频率)f c、ωc:电路无损耗时的频率参数,其值由电路器件决定; 通带增益:A0(针对LPF)、A∞(针对HPF)、A r(针对BPF); 截止频率(-3dB频率)f p、ωp:增益下降到通带增益时所对应的频率; 品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同(低通、高通滤波器中,定义为当f = fc 时增益模与通带增益模之比)。 1.一阶低通有源滤波器 ⑴电路原理图: ⑵关键指标: ⑶幅频特性图: ⑴电路原理图: ⑵关键指标:

实验 集成运算放大器的基本应用

实验集成运算放大器的基本应用(Ⅱ)——有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图9-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图9-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图9-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图9-2(b)为二阶低通滤波器幅频特性曲线。

(a)电路图 (b)频率特性 图9-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图9-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图9-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。 (a) 电路图 (b) 幅频特性 图9-3 二阶高通滤波器 电路性能参数A uP 、f O 、Q 各量的函义同二阶低通滤波器。 图9-3(b )为二阶高通滤波器的幅频特性曲线,可见,它与二阶低通滤波器的幅频特性曲线有“镜像”关系。 3、 带通滤波器(BPF )

模电实验八集成运放基本应用之一模拟运算电路实验报告

实验八集成运放基本应用之一--模拟运算电路 班级:姓名:学号: 2015.12.30 一、 实验目的 1、研究由集成运算放大电路组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大电路在实际应用时应考虑的一些问题。 二、 实验仪器及器件 三、 实验原理 1、反相比例运算电路 电路如图8-1所示。 图8-1反相比例运算电路 2、反相加法电路 电路如图8-2所示。 图8-2 反相加法电路 )V R R V R R ( V i22 F i11F O +-= R 3═R 1// R 2// R F 3、同相比例运算电路 电路如图8-3(a)所示。 图8-3(a)同相比例运算电路图8-3(b) 电压跟随器 i 1 F O )V R R 1(V + =R 2═R 1// R F 当R 1→∞时,V O ═V i 即得到如图8-3(b)所示的电压跟随器。

4、差分放大电路(减法电路) 电路如图8-4所示。 图8-4 减法运算电路 5、积分运算电路 电路如图8-5所示。 图8-5 积分运算电路 如果v i(t)是幅值为E的阶跃电压,并设v c(0)═0,则 四、实验内容及实验步骤 实验前要看清运放组件各管脚的位置;切忌正负电源极性接反和输出端短路,否则将会损坏集成块。 1、反相比例运算电路 1)按图8-1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。 2)输入f= 100Hz,V i = 0.5V的正弦交流信号,测量相应的V o并用示波器观察v o和v i的相位关系,记入表8-1。 表8-1f= 100Hz,V i = 0.5V V i(V)V o(V)v i和v o波形A V 实测值计算值 0.175 -1.755 10.03 10.00 2、同相比例运算电路 1)按图8-3(a)连接实验电路。实验步骤同内容1,将结果记入表8-2。 2)按图8-3(a)中的R1断开,得图8-3(b)电路重复内容1)。 表8-2f= 100Hz,V i = 0.5V V i(V)V o(V)v i和v o波形A V 实测值计算值

实验--集成运算放大器的基本应用

实验--集成运算放大器的基本应用

实验集成运算放大器的基本应用(Ⅱ)——有源滤波器一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图9-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图9-1所示。

具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC 网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC 有滤波器级联实现。 1、 低通滤波器(LPF ) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图9-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。 图9-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图9-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A += 二阶低通滤波器的通带增益 RC 2π1f O = 截止频率,它是二阶低通滤波 器通带与阻带的界限频率。 uP A 31Q -= 品质因数,它的大小影响低 通滤波器在截止频率处幅频特性的形状。

7.有源滤波器设计实验

电气工程学院 实验名称:有源滤波器设计实验课程:电路与电子技术实验2 课程号:101C0330 学期:2018春夏学期 任课教师:沈连丰

课程名称:电路与电子技术实验2 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验实验类型:练习型 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握有源滤波器的分析和设计方法。 2.学习有源滤波器的调试、幅频特性的测量方法。 3.了解滤波器的结构和参数对滤波器性能的影响。 4.用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 二、实验内容和原理 实验原理: 1.传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。 2.通带增益A v p:为一个实数。(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。 3.固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。 4.通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。 5.品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。 实验内容: 1.设计一个简单的二阶、有源、低通滤波器(LPF,同相型),并测量其幅频特性。 2.设计一个简单的有源、低通滤波器(LPF,同相型),并测量其幅频特性。 3.设计一个二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型),并测量其幅频特性。 4.设计一个二阶、有源、多路负反馈型、低通滤波器(LPF,反相型),并测量其幅频特性。 三、主要仪器设备 1.集成运算放大器LM358 2.电阻电容等元器件 3.MY61数字万用表 4.示波器 5.函数信号发生器

实验二 集成运算放大器的基本应用(I)

实验二 集成运算放大器的基本应用(I) ─ 模拟运算电路 ─ 一 实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 了解运算放大器在实际应用时应考虑的一些问题。 二 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。 (1) 反相比例运算电路 电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 i U 10-=- =i 1 F O U R R U

图1 反相比例运算电路 (2) 同相比例运算电路 图2是同相比例运算电路,它的输出电压与输入电压之间的关系为 i U 11=+ =i 1 F O )U R R (1U R 2=R 1 // R F 图2 同相比例运算电路 三 实验设备与器件 1. ±12V 直流电源 2. 函数信号发生器 3. 交流毫伏表 4. 直流电压表 5. 集成运算放大器OP07×1 9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干。 2 3 6 7 4 1 8 2 3 1 8 4 6 7

有源滤波器实验报告

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般

来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC 网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC 有滤波器级联实现。 1、低通滤波器(LPF ) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形 状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通

运算放大器基本应用

东南大学电工电子实验中心 实验报告 课程名称:电子电路实验 第一次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化 姓名:周晓慧学号:61010212 实验室: 105实验组别: 同组人员:无实验时间:2012年03月23日评定成绩:审阅教师:

实验一运算放大器的基本应用 一、实验目的: 1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法; 2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、 带宽的测量方法; 3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念; 5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。 二、预习思考: 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。

2、 设计一个反相比例放大器,要求:|A V |=10,Ri>10K Ω,将设计过程记录在预习报告上; (1) 仿真原理图 (2) 参数选择计算 因为要求|A v |=10,即|V 0/V i |= |-R f /R 1|=10,故取R f =10R 1,.又电阻应尽量大些,故取:R 1=10k Ω,Rk=100 k Ω, R L =10 k Ω (3) 仿真结果 图中红色波形表示输入,另一波形为输出,通过仿真可知|V 0/V i |=9.77≈10,仿真正确。 3、 设计一个电路满足运算关系U O = -2U i1 + 3U i2

运算放大器详细的应用电路(很详细)

§8.1 比 例运算电 路 8.1.1 反相比例电路 1. 基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2 同相比例电路 1. 基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=V i,所以共模输入等于输入信号,对运放的共模抑制比要求高 2. 电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路 8.2.1 求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2 单运放和差电路

8.2.3 双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求A vf,Ri 解: §8.3 积分电路和微分电路 8.3.1 积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

相关主题
文本预览
相关文档 最新文档