当前位置:文档之家› 碳纤维

碳纤维

碳纤维
碳纤维

今年3月日本东丽公司宣布成功研制出T1100G型高强高模碳纤维,我国企业近年来也不断传出突破高性能碳纤维研制和生产的报道。

碳纤维的关键力学指标包括拉伸强度、拉伸模量、断裂伸长率等。拉伸强度是指材料在拉伸过程中可承受的最大应力;拉伸模量是指材料拉伸时受到的应力与形变的比值,模量值越高,表示碳纤维的刚度越好;伸长率是指断裂前材料能被拉长的比例,伸长率越高,表示碳纤维的韧性越好。理论上碳纤维的拉伸强度可以达到180GPa,拉伸模量更是在1000GPa左右,虽然日本东丽公司已经研制出拉伸强度9GPa的高强碳纤维,拉伸模量也达到690GPa的高模碳纤维,但两者尤其是拉伸强度还有很大的发展潜力。碳纤维的断裂伸长率指标从早期的T300级别的1.5%增加到目前T1000级别的2.4%,有效缓解了碳纤维韧性不足的问题,进一步了扩展应用范围,如用于制造大型客机机体。

按照碳纤维丝束中的单丝数量,聚丙烯腈基碳纤维又可分为小丝束和大丝束两种。相比小丝束,大丝束的劣势在于,在制作板材等结构时,丝束不宜展开,导致单层厚度增加,不利于结构设计。此外,大丝束碳纤维粘连、断丝等现象更多,这样会使强度、刚度受影响,性能有所降低,性能的分散性也会较大。飞机、航天器一般只用小丝束碳纤维,因此小丝束碳纤维又被称为"宇航级"碳纤维,大丝束碳纤维被称为"工业级"碳纤维。

但是大丝束生产成本比小丝束低,而随着生产技术的进步,人们对碳纤维材料结构的熟悉,大丝束碳纤维越来越多用于对可靠性要求严苛的领域。这样,小丝束与大丝束之间区分也发生了变化,如早期曾以丝束中单丝数量12000根(12K)作为分界线,但目前单丝数量1K~24K的碳纤维被分为小丝束,而48K以上的的划为大丝束。而空客公司在制造A380超大型客机时已经开始使用了24K碳纤维,估计随着技术的进步,小丝束与大丝束之间的分界线还会向上推。

碳纤维材料具有诸多优点,但其生产工艺流程长,需要突破的技术障碍很多。碳纤维的制造,可以分为原丝制造和碳化两个关键过程。原丝制造,简单地说是先通过丙烯腈聚合和纺纱等工艺,先聚合制成聚丙烯腈,再纺丝制出聚丙烯腈纤维原丝。聚丙烯腈原丝随后进行预氧化、低温和高温碳化等步骤,最后进行表面处理、上浆烘干并收丝就得到了碳纤维。相对碳化,生产出高质量的聚丙烯腈原丝更加关键,即使是东丽公司也曾因为原丝质量在碳纤维研制过程中上摔过跟头。要生产处高质量的碳纤维,要降低生产成本,聚丙烯腈原丝须满足高纯化、高强化、均质化、细纤度化和表面光洁等要求,这长期以来一直是碳纤维批量生产中最大的拦路虎。

东丽公司此后又研制了T400、T700、T800、T1000、T1100、T1200等多个系列的高强度碳纤维,此外该公司还研制了M30、M35、M40、M46、M50、M55、M60和M70等多个系列的高模量(可以理解为高刚度)碳纤维。T系列高强度碳纤维中T300系列的拉伸模量为3530MPa,T700就达到了4900MPa,而T800进一步提高到5490MPa,至于T1000更是高达6370MPa。由这些数据可以看到,虽然产品编号中数字越高性能越好,但T300或是T800等编号中的300、800等数字并没有与性能数据具体对应的含义。说到这里,大家或许意识到日本东丽公司在碳纤维行业中的地位了,其公司产品编号被行业直接用作碳纤维的分级。

东丽公司出产的各种碳纤维型号中,还有不同的字母后缀,如T300J、T400H、T700S和T700G等型号,其中J代表相比基本型号增强了拉伸强度,H表示相比

基本型和J型号增强了拉伸强度和拉伸模量,S代表拉伸强度最高的型号,G代表在S型号基础上进一步增强拉伸模量和粘合性能的型号。东丽公司已经研制出了T1200型碳纤维,反而又新研制出T1100G的碳纤维,这是因为T1100G是T1100系列碳纤维中拉伸模量(刚度)最高的型号。或许会有人问,为什么不直接使用东丽公司M系列的高模量碳纤维,而是要持续提高T系列高强度碳纤维的模量呢?东丽公司在宣布研制成功T1100G碳纤维时就已经专门指出,高模量和高强度难以两全。东丽公司的产品说明书中,M60JB的拉伸强度只有3820MPa,有些要求高强度但不要求那么高模量的场合,就只能使用T700G、T1000G等增强了模量的高强度碳纤维了。

日本和美国掌握着世界碳纤维的大多数产能,并控制了高端碳纤维的生产。日本东丽公司在PAN基碳纤维研制生产中最早起步,是日本碳纤维生产企业的代表。美国Hexcel公司也紧随日本东丽的步伐,20世纪80年代美国研制的三叉戟II潜射导弹和侏儒小型机动洲际导弹都是用了Hexcel公司的IM7型碳纤维(大致相当于T800级别)。目前世界上小丝束碳纤维的主要生产商包括日本东丽、日本东邦人造丝、日本三菱人造丝三家公司,美国的Hexcel公司和Cytec公司虽然产量相差较大,但技术上仍可与日本三巨头媲美。此外台湾台塑公司拥有数千吨的产能,并在2013年开始批量供应T800级碳纤维,土耳其阿克萨公司的低端T300碳纤维也在迅速扩张。大丝束碳纤维的主要生产商包括美国Zoltek、Aldila 公司,日本东邦、日本东丽和德国SGL公司等。总的说来虽然美国Hexcel公司在小丝束生产、日本东丽公司在大丝束碳纤维生产上都有很强的实力,但美国在大丝束碳纤维生产上优势明显,日本在小丝束碳纤维的生产上垄断地位更为稳固。

由于碳纤维优秀的力学性能,碳纤维复合材料在结构增强方面的应用非常广泛,在对质量斤斤计较的航空航天领域,如飞机机体、导弹/火箭壳体、卫星承力筒等多个用途中,对比传统金属材料,碳纤维有很强的性能优势。碳纤维复合材料用量较大而场合是民航客机,自美国波音公司的777客机大量使用碳纤维以来,波音777和787客机,空中客车公司的A380和A350XWB客机都大量使用碳纤维复合材料。美国波音公司的787客机主要使用日本东丽公司的24K丝束的T800碳纤维复合材料,同时也使用了部分美国Hexcel公司的碳纤维复合材料。欧洲空中客车公司的350XWB客机也使用了美国Hexcel公司的IM7碳纤维。Hexcel公司还将向中国商飞研制的大型客机提供碳纤维材料,不仅如此,中国商飞C919、

波音737 MAX和空中客车A320 NEO等客机使用的新一代LEAP发动机的叶片也使用了Hexcel公司提供的碳纤维复合材料。各国军用飞机上更是广泛使用了各种碳纤维增强型复合材料,不过这些高性能碳纤维同样基本由日本和美国公司研制生产和提供。

在航天领域,如卫星的太阳能电池阵列结构、卫星和航天器的本体尤其是承力结构等,碳纤维得到了广泛应用。国际空间站巨大的桁架架构就使用了碳纤维/环氧树脂复合材料。美国波音公司还正在为下一代运载火箭研制革命性的碳纤维复合材料推进剂储箱,目前已经研制出5.5米直径的碳纤维储箱。从实际产品数据看,碳纤维推进剂储箱的质量可以比现有的铝合金储箱降低30%,从而显著降低火箭各级的结构质量。碳纤维的导电性很好而且没有磁性,可用于电磁屏蔽等多方面用途,使用它制造卫星的天线兼顾了质量和导电性,同样拥有比金属天线更好的性能,目前越来越多的卫星天线使用了高模量的碳纤维复合材料。

碳纤维不仅在高端的航空航天市场大放异彩,在化工、发电、医疗、交通和建筑等领域也获得了广泛应用,尤其是风力发电的叶片广泛使用了碳纤维增强型复合材料,风力发电已经成为碳纤维复合材料的重要市场之一。随着各国节能减排要求的提高,汽车工业也越来越多的使用碳纤维,尤其是电动车为了降低汽车整车质量,更是对碳纤维复合材料如饥似渴。目前欧美日各大汽车研制和生产厂商都在开发基于碳纤维复合材料的车型,可以预见未来汽车市场将成为碳纤维复合材料的主要市场。碳纤维诞生以后,20世纪70年代就已经用于钓鱼竿的生产,今天的体育产业更是碳纤维复合材料的主要用户之一,目前世界上很大一部分碳纤维都我国碳纤维生产落后美日30年

我国碳纤维的发展并不晚,东丽公司研制出碳纤维前后,我国就开始独立研制碳纤维。不过遗憾的是,从20世纪70年代中期开始经过近40年发展,我国的碳纤维产业总体研制和生产水平还还很落后,无法与美日公司在市场上正面竞争。

最直观的例子是,日本东丽和美国Hexcel公司在上世纪80年代就研制成功T800/IM7级别的高强度碳纤维,而我国刚完成T800级别碳纤维生产技术的突破,最终批量生产的质量和成本如何还有待观察,可以说落后美日30年。我国目前只能较为稳定的大批量生产相当于东丽公司T300级别的碳纤维,相当于T700级别的碳纤维,国内只有少数单位和企业能小规模生产,但日美碳纤维企业都开始准备批量生产T1000级别的碳纤维了。我国也没有批量生产高模量碳纤维的能力,导致很多时候不得不冒巨大的风险走私东丽公司的MJ50、MJ60等高模量碳纤维。

但即便是T300级别的碳纤维,由于生产技术上的落后,忽视高质量聚丙烯腈的生产,绝大部分国内厂家生产成本居高不下。目前国产T300级别碳纤维售价达到了进口东丽公司T700级别碳纤维的价格,能有什么样的市场表现也就可想而知了。近些年来,随着政府在产业政策方面的支持,我国碳纤维行业呈现全面

开花、大干快上的局面,全国各地规划的碳纤维产能甚至超过了我国之外全世界的碳纤维产能。但这只不过是虚假的繁荣,2012年我国碳纤维生产线设计产能超过了2万吨,但实际产量只有2000吨左右,而且完全是生产越多亏损越多的局面,同时我国却还在进口上万吨的碳纤维产品满足国民经济的需求。我国目前号称要建设的碳纤维生产线建成后,设计产能将达到约8万吨,几乎相当于2013年我国以外全世界的碳纤维产能。但成本居高不下的低端碳纤维生产线即使建成,又能发挥什么作用呢?恐怕除了增加银行的不良贷款,就是让碳纤维生产线的开工率再下降一个甚至几个台阶。使用在钓鱼竿、网球拍、自行车等各种体育用品上。

我国碳纤维行业还面临着国际碳纤维行业巨头的蓄意压制。近些年来我国可以稳定批量生产一个级别的碳纤维后,东丽、东邦和Hexcel等企业的对华销售价格就大幅下降一次,如2010年12K的T300级碳纤维还要24万元每吨,2012年就下降到12万元每吨,现在T700级碳纤维的价格也开始稳步下降。国际巨头们的营销策略虽然有利于我国碳纤维应用厂商的发展,但却对我国碳纤维生产厂商造成了巨大的成本压力。目前国内碳纤维生产企业面临着一生产就亏损,生产越多亏损越多的极端不利局面,大部分企业只能减产甚至停产,这也是国内碳纤维产业设计产能高但实际产量低的根本原因之一。

所以,我国碳纤维行业目前仍处于大浪淘沙的混沌阶段,未来能获得成功的或许只会是那些重视技术攻关、产品质量、专注于高性能产品的企业。因为我国军事现代化进程仍在加速,军工、航天航空领域未来肯定需要大量T800以上级别的碳纤维,在高性能碳纤维方面我国遭受着国际禁运,国内厂家只要能提供高品质产品,即便成本价格贵一些,也能获得军工采购。此外,高性能产品还避开了美日碳纤维巨头的倾销打压,开拓国内民用市场也更容易一些。

碳纤维的生产固然重要,它的应用技术也是一个关键环节,我们前面介绍的只是碳纤维丝线,应用还需要对丝线进行结构成型。目前碳纤维成型工艺包括接触成型、喷射成型、缠绕成型、拉挤成型、模压成型以及编织成型等多种方式。日本三大碳纤维巨头虽然产能占据了半壁江山还多,技术上也与美国平分秋色,但碳纤维材料成型以及应用上与美国相差很大,典型如日本H-IIA火箭使用的固体助推器,其碳纤维复合材料壳体的制造工艺就是美国ATK公司转让给日本IHI 公司的。美国在军工和民用领域数十年积累的丰富经验,是日本远远不能比拟的。波音公司的787客机虽然大量使用了日本东丽公司的的碳纤维,但从碳纤维复合材料的树脂材料到更后端的加工和设备,完全是美国公司垄断。例如波音787客

机中段机身的承包商是日本川崎公司,其生产完全在日本进行,但除了东丽的24K 丝束T800碳纤维丝线,这个碳纤维机身的制造,从工艺技术到机器设备完全要从美国进口。

综上所述,美日企业掌握了世界碳纤维产业的大部分产能和技术,日本在碳纤维的产量上虽然超过了美国,但美国拥有从科研、制造到应用的最完整和最先进的碳纤维产业链。我国目前仍在努力研制高性能的碳纤维,但即使不考虑民用领域的发展,仅仅从满足国防军工和航空航天领域对高性能碳纤维复合材料的要求而言,也应重视热压罐、自动铺带机/铺丝机等成型应用设备的发展。毕竟我国并非日本,不可能在偏科的情况下得到美国老大哥的热心帮助。(

碳纤维复合材料应用研究报告Word版

碳纤维复合材料应用研究报告 摘要:本文对碳纤维复合材料的应用进行了综述,介绍了目前碳纤维复合材料的优异性能、国内外发展现状及趋势及在其所应用领域中的发展前景。同时,也指出了碳纤维复合材料在应用和发展中所存在的问题,并给出了解决这些问题的对策及建议。 关键字:碳纤维,复合材料,应用前景 1 前言 碳纤维复合材料是以碳纤维为增强体与树脂、陶瓷及金属等基体复合而成的结构材料。碳纤维是纤维状的碳素材料,含碳量在90% 以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维除了具有十分优异的力学性能外,碳纤维还具有低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、穿透性高等优良性能[1]。基于此,到目前为止,用碳纤维与其他基体复合而成的先进基复合材料是目前用得最多,也是最重要的一种结构复合材料。 碳纤维复合材料与金属材料或其他工程材料相比有许多优良的性能,如表1-1所示[2]: 表1-1 各材料性能比较 通过比较可知,(1)碳纤维复合材料比强度是钢SAE1010(冷轧)的近20倍,是铝6061-T6 的近10倍;其比模量则超过这些钢和铝材的3倍。因此其具有高的比强度和比模量。(2)大多数碳纤维复合材料可通过设计增强纤维的取向及用量来对结构材料的性能实行剪裁,达到性能最佳。(3)碳纤维复合材料密度低,质量轻,能有效减轻构件重量。除此之外,碳纤维复合材料还有多选择性成型工艺、良好的耐疲劳性能及良好的抗腐蚀性等。

由于碳纤维复合材料具有优于其他材料的性能,世界各国都在大力发展碳纤维复合材料。2013年碳纤维复合材料总产值147亿美元,其中CFRP产值94亿美元,约占64%。碳纤维复合材料的需求7.2万t,2020年预计需求量将达14.6万t(图1-1),2010—2020年全球碳纤维复合材料年均增长率都将超过11%[3][4]。 2016、2020年的需求量为预测值。 图1-1 2011—2020年全球碳纤维和碳纤维复合材料的需求量 其中,欧洲的碳纤维复合材料需求占全球市场的40 %,美国占25 %,中国占20 %,其他国家与地区的碳纤维复合材料占市场份额在15 %上下。其中中国市场对碳纤维的需求每年也在逐步增加,中国碳纤维复合材料市场需求如图1-2所示: 图1-2 中国碳纤维复合材料市场需求 2015年,碳纤维制造商日本帝人公司扩大碳纤维复合材料合作领域,其目标是将他们

碳纤维吸波材料的研究进展_吴红焕

碳纤维吸波材料的研究进展 吴红焕,王晓艳,张 玲,朱冬梅,周万城 (西北工业大学凝固技术国家重点实验室,西安710072) 摘要 通过对碳纤维在复合材料中吸波性能的研究,得出通过控制碳纤维的长度和含量,以及采用化学掺杂或异型截面是得到频带宽、厚度薄、质量轻、吸收强结构吸波材料的有效方法,同时大力开展螺旋碳纤维和碳纳米管的研究是加快进展的新方向。 关键词 碳纤维 吸波材料 碳纳米管 化学掺杂 中图分类号:TQ342+.742 文献标识码:A Present Development of Absorbing Composites Containing C arbon Fibers WU Honghuan,WAN G Xiaoyan,ZHAN G Ling,ZHU Dongmei,ZHOU Wancheng (State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an710072) Abstract The characteristic and transforming methods of short carbon fibers are discussed in this paper,in2 cluding additive lengths,contents,adulteration and non2circular section.Controlling the length and content of carbon fibers and exploiting adulteration and non2circular section are effective methods to get“wide,thin,light,strong”structure absorbing materials.At the same time,coiled carbon fibers and carbon nano2pipes are the new direction to ac2 celerate development. K ey w ords carbon fiber,absorbing material,CN Ts,chemical adulteration   0 前言 雷达吸波材料是指能吸收、衰减入射的电磁波,并将电磁能转换成热能而耗散掉,或使电磁波因干涉相消的一类材料。它由吸收剂与能透过雷达波的基体材料复合而成,经历了由单一纤维到混杂纤维、由次承力件到主承力件、由热固性树脂到热塑性树脂的发展过程[1~3]。除一般的吸波材料外,隐身用的特种碳纤维是制造吸波材料的关键。碳纤维结构吸波材料具有承载和减少雷达比反射面的双重功能,是功能与结构一体化的优良微波吸收材料。与其它吸波材料相比,它不仅具有硬度高、高温强度大、热膨胀系数小、热传导率高、耐蚀、抗氧化等特点,还具有质轻、吸收频带宽的优点。通过研究碳纤维的吸波性能和吸波机理,并对纤维吸收剂进行改性和结构设计,研制出高性能的碳纤维复合材料是现在研究的热点课题[4,5]。但目前国内对碳纤维吸波材料的理论研究与实际应用之间仍存在一定差距,亟需进一步突破。由于连续碳纤维对雷达波易产生强反射作用,而短切碳纤维在材料中随机分布,改善了这方面的性能,对雷达波有较好的吸收性能。本文从短切碳纤维的吸波性能出发,总结了碳纤维的吸波特性及改性措施。 1 短切碳纤维的吸波机理及影响因素 1.1 短切碳纤维的吸波性能及频响机理 连续碳纤维对雷达波产生强反射作用,主要是因为电磁场在碳纤维中形成了较大的连续传导电流。而短碳纤维在基体当中的吸波机理目前基本存在两种解释[6],一是认为短切碳纤维在吸波材料中起半波谐振子的作用。在短切碳纤维的近区存在似稳感应场,此感应场激起耗散电流,在周围基体作用下,耗散电流被衰减,从而使雷达波能量转换为其他形式的能量,主要为热能。另一说法认为在含短切碳纤维的吸波材料中,可以把短切碳纤维作为偶极子。短切碳纤维偶极子在电磁场的作用下会产生极化耗散电流,在周围基体作用下,耗散电流被衰减,从而使雷达波能量转换为其它形式的能量。 碳纤维吸波材料是一种介电型吸波材料,与磁性吸收剂相比,介电常数控制是吸收剂研究的重点和难点,而介电常数频散效应的控制则是宽频带吸收所必须追求的目标。因此,研究碳纤维吸波材料频响效应的机理至关重要。频响效应就是随着频率的增加,介电参数的实部、虚部下降,损耗增加的现象。其本质是在频率变化的过程中,电极化出现了极化的惯性或滞后性,以至于在不同频率电场中极化来不及响应电场的变化而出现的现象。根据电磁波理论,随着频率的增加,当电磁波在碳纤维导体表面产生涡流时,在导线截面上的电流分布将越来越向导线表面集中,即产生趋肤效应现象。趋肤效应越明显,产生的涡流损耗越相应地增加,从而导致电磁波的消耗。电磁波在碳纤维之间传播时,除了涡流损耗外,在每束碳纤维之间的部分电磁波还会经散射发生类似相位对消现象引起损耗增加[7]。 1.2 添加最佳长度和含量的探索 邢丽英等[8]研究了掺混短碳纤维的复合材料在电磁波作用下某些宏观物理量的响应特性。结果表明,调整纤维长度及含量可在很宽范围内改变材料的电磁参数与衰减量;不同长度的短碳纤维在介质中的最佳填充量不同,当纤维的长度接近传输  吴红焕:女,1982年生,硕士,主要从事碳纤维结构吸波材料研究 Tel:029********* E2mail:whh—8278@https://www.doczj.com/doc/8c18043375.html,

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

碳纤维市场深度研究报告(简版)

前言 碳纤维是一种高强度、高模量的高性能纤维材料,碳纤维密度不到钢的1/4、强度是钢的5-7倍,广泛应用于航空航天、能源装备、交通运输、体育休闲等领域。经过多年的研发和约十年的产业化建设,我国建立起了自己的碳纤维技术体系和较完整的碳纤维产业,初步形成了产业化的碳纤维研发与生产平台,逐步打破了日、美长期的技术封锁和市场垄断局面。随着国碳纤维应用领域的扩大,碳纤维的市场需求急剧增加,碳纤维产业日趋成熟。 一、碳纤维行业概述 1、碳纤维行业定义及分类 (1)行业定义 碳纤维是一种高强度、高模量的高性能纤维材料,含碳量90%以上,碳以外的主要元素是氮。作为一种性能优异的战略性新材料,碳纤维密度不到钢的1/4、强度是钢的5-7倍,广泛应用于航空航天、能源装备、交通运输、体育休闲等领域。目前市场销售的90%以上的碳纤维,是以聚丙烯腈(PAN)纤维为原料制成的聚丙烯腈基碳纤维。 图表:碳纤维与常用材料的力学性能对比

(2)行业分类 碳纤维可以按照原丝类型、制造方法、性能等不同维度进行分类,具体分类方式大致有以下几种: 按照原丝类型分类:聚丙烯腈(PAN)基;沥青基(各向同性、中间相);粘胶基(纤维素基、人造丝基)。 图表:不同原丝碳纤维对比 按照制造条件和方法分类:碳纤维(800-1600℃);石墨纤维(2000-3000℃);活性碳纤维;气相生长碳纤维。 按力学性能分类:高强型(GQ)、高强中模型(QZ)、高模型(GM)、高强高模型(QM)。碳纤维在应用时多是作为增强材料而利用其优良的力学性能,因此使用中更多的是按其力学性能分类。 按丝束大小分类:碳纤维可划分为小丝束和大丝束,小丝束碳纤维初期以1K、3K、6K 为主,逐渐发展为12K和24K,主要应用于国防军工等高科技领域,以及体育休闲用品,如飞机、导弹、火箭、卫星和渔具、高尔夫球杆、网球拍等。 通常将48K以上碳纤维称为大丝束碳纤维,包括48K、60K、80K等,主要应用于工业领域,包括:纺织、医药卫生、机电、土木建筑、交通运输和能源等。

碳纤维综述

PAN 基碳纤维 摘要: 聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。本文简要介绍了其结构,制备方法,性能,应用领域及其前景。 关键词:PAN 基碳纤维 碳纤维结构 PAN 基碳纤维制备 PAN 基碳纤维性能 PAN 基碳纤维应用前景 航天 军事 体育用品 1. 碳纤维结构 碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。 碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98%~99%,杂志少。碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。 2. PAN 基碳纤维的制备 从原料丙烯晴到聚丙烯晴基碳纤维的制备过程中可以看出四个关键步骤:PAN 的聚合, 原丝的制备,原丝的预氧化以及预氧化丝的炭化和石墨化。 2.1 PAN 的聚合 由于PAN 分子结构的特性,纯聚体PAN 不适宜作为碳纤维前驱体。工业生产中,往往采用共聚PAN 来制备PAN 原丝。引入共聚单体可以起到如下作用:减少聚合物原液中凝胶的产生;增加聚合物的溶解性和可纺性;降低原丝环化温度及变宽放热峰。但也可能带来一些负作用:降低原丝的结构规整性和结晶度;增加大分子链结构的不均匀性;引入更多的无机和有机杂质等。 2.2 原丝的制备 PAN 在熔点(317°C )以下就开始分解,因此形成纤维主要通过湿法或干湿法进行纺丝。 干湿法纺丝由于将挤出膨化与表皮凝固进行了隔离,纤维的成形机理有所改变,因此湿法纺丝凝固过程中皮层破裂或径向大孔及表皮褶皱等现象基本消失,干湿法纺丝的原丝表面及内单体引发剂 聚合 纺丝 原丝 预氧化 预氧丝 炭化 石墨化 表面处理 上浆 碳纤维 石墨纤维

碳纤维的发展与现状

人员分工情况 资料收集:蔡煜简江婷婷宋爽韵周晓楠张领中英文摘要:蔡煜张领周晓楠 内容编写:发展部分简江婷婷宋爽韵 现状与差距部分蔡煜张领周晓楠排版校对:简江婷婷宋爽韵 宋爽韵 20110815023 简江婷婷 20110815036 蔡煜 20110815045 周晓楠 20110815047 张领 20110815050

碳纤维的发展与现状 学生:蔡煜简江婷婷宋爽韵周晓楠张领指导老师:秦文峰 摘要:简要介绍了碳纤维的性能、发展历史以及在航空航天领域中的应用,同时分析了国内外碳纤维的发展差距,给出了对我国碳纤维发展的建议。 关键词:碳纤维;碳纤维复合材料;应用领域;发展差距;发展建议 Abstract:The brief introduction of the performance and development history and application in the aviation&aerospace field of carbon fiber ,the analysis of the development gap of carbon fiber between home and abroad ,the advises of carbon fiber’s development to our country are given in this paper. Key words:carbon fiber;carbon fiber composites;application territory; development gap;development advises

全球碳纤维材料知名企业解读

全球碳纤维材料知名企业——全球碳纤维顶尖企业 东丽公司 东丽公司是一家综合型化工企业,以生产合成纤维为主,是世界最大的碳纤维生产公司,在塑料、复合材料、化工、水处理事业、电子材料、医药、医疗器械等领域在全世界各地展开着广泛的业务。创立日期 1926年1月总销售额 1兆5,460亿日元(2007年3月)员工人数约36,000人(日本国内约16,500人、海外20,100人)关连公司日本国内118家、海外在20个国家和地区有124家,合计238家经营内容(1)综合化学公司:合成纤维、树脂、薄膜、碳纤维、电子材料、医药医疗设备、水处理事业等(2)世界第一的纤维公司:从原料到聚合、纺丝、织布、印染、缝制的一条龙生产业务(3)积极开展的海外事业:为各国的经济发展(技术水平提高、扩大出口、增加就业机会)做贡献 1960年以来,在东南亚3国展开合成纤维一条龙事业、薄膜事业 1980 年以来,在欧美展开纤维、薄膜、碳纤维事业 1990年以来,在中国展开合成纤维的一条龙生产业务、塑料加工事业等 2000年以来,在经济增长地区设立控股管理公司,向地区本部制过渡(4)重视基础研究.基本技术(5)注重安全.防灾.环保及保护地球环境 西格里集团 西格里集团创建于 1992 年,由德国 SIGRI 集团与美国大湖碳素(Great Lakes Carbon)集团合并而成,总部位于德国威斯巴登。西格里集团(SGL Group - The Carbon Company)是全球领先的碳素石墨材料以及相关产品的制造商之一。拥有从碳石墨产品到碳纤维及复合材料在内的完整业务链。凭借对原材料透彻深入的了解、精湛的生产技术以及广泛的应用和工程技能,能够为客户提供量身定做的解决方案。通过遍布欧洲、北美和亚洲40 多个生产基地所形成的全球网络,我们与客户更加贴近。 三菱丽阳株式会社 三菱丽阳株式会社创立于1933年8月31日,是日本三菱集团旗下最著名的高分子材料制造商。所生产的聚乙烯中空纤维膜,被广泛应用在供水、排水、水处理设备及医院手术用的无菌水装置、发电厂的叶轮机液化水过滤等领域。 产品范围:MBR专用中空纤维微滤膜片、MBR专用膜组器、净水专用中空纤维微滤膜组件、水处理装置、商用/家庭用净水器、全屋净水装置。 三菱丽阳自1933年作为人造短纤维的生产公司创业以来,应用合成纤维和合成树脂领域所积累的高分子技术,不断拓展中空纤维膜、光纤、碳素纤维等新兴业务领域。现在,三菱丽阳集团已经建立了世界上独特且强有力的丙烯系列业务实体(MMA[甲基丙烯酸甲酯]系列及AN[丙烯腈]系列),发展成为以此为支柱业务的高分子化学制造企业。 Hexcel Composites

碳纤维行业市场研究报告

碳纤维行业市场研究报告2020年5月

1.碳纤维简介 碳纤维(Carbon Fiber,简称CF)是由聚丙烯腈(PAN)(或沥青、粘胶)等有机母体纤维采用高温分解法在1,000摄氏度以上高温的惰性气体下碳化(其结果是去除碳 以外绝大多数元素)制成的,是一种含碳量在90%以上的无机高分子纤维。 完整的碳纤维产业链包含从一次能源到终端应用的完整制造过程:先从石油、煤炭、天然气等化石燃料中制得丙烯,并经氨氧化后得到丙烯腈;丙烯腈经聚合和 纺丝之后得到聚丙烯腈(PAN)原丝;再经过预氧化、低温和高温碳化后得到碳纤维; 碳纤维可制成碳纤维织物和碳纤维预浸料,作为生产碳纤维复合材料的原材料;碳 纤维与树脂、陶瓷等材料结合,形成碳纤维复合材料,最后由各种成型工艺得到下 游应用需要的最终产品。 图1:碳纤维产业链 资料来源:中简科技,市场部 碳纤维分类: 目前市场销售的90%以上的碳纤维,是以聚丙烯腈(PAN)纤维为原料制成的聚丙烯腈基碳纤维,其它还包括沥青、粘胶基碳纤维。 表1:碳纤维按照原丝类型分类 分类优势劣势应用现状 成品品质优异,工艺较简 单,产品力学性能优良 聚丙烯腈(PAN)基- 已经成为碳纤维主流 原料调制复杂,产品性 能较低 沥青基 粘胶基 原料来源丰富,碳化收率高 高耐温性 目前规模较小 碳化收率低,技术难度 大,设备复杂,成本高 主要用于耐烧蚀材料及 隔热材料 资料来源:光威复材,市场部 碳纤维按照丝束大小分类被划分为宇航级和工业级两类,亦称为小丝束和大丝束。 K表示碳纤维单丝的数量,如1K代表一束纤维丝里包含了1000根单丝。小丝束碳纤维在 工艺控制上要求更严格,碳化等设备造价高;大丝束碳纤维生产成本相对较低,具有更

碳纤维发展现状及其发展趋势

碳纤维发展现状及其发展趋势 0 引言 高性能纤维是指耐热好、质量轻、强度高、高模量的特种纤维材料。作为高性能纤维的一种,碳纤维既有碳材料的固有本征,又兼备纺织纤维的柔软可加工性,是新一代军民两用新材料,已广泛用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等各领域。 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有 十分优异的力学性能,是目前已大量生产的高性能 纤维中具有最高的比强度和最高的比模量的纤维,特 别是在2000℃以上的高温惰性环境中,碳材料是唯 一强度不下降的物质,是其他主要结构材料(金属及 其合金)所无法比拟的。除了优异的力学性能外, 碳纤维还兼具其他多种优良性能,如低密度、耐高 温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、 电及热传导性高、热膨胀系数低、光穿透性高,非磁 体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 1国内外碳纤维的发展现状1.1 国外碳纤维的发展现状 碳纤维的起源可追溯到19世纪后期,美国人爱迪生(Edson)用碳丝制作灯泡的灯丝,从而发明了电灯,给人类社会带来了光明。但是在20世纪初期,美国通用电器公司的库里基(Coolidge)发明了用钨丝取代碳丝作为灯丝,并

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维和碳纳米管的一篇综述

Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane Weili Hu, Xiaofan Niu, Ran Zhao, and Qibing Pei Citation: Appl. Phys. Lett. 102, 083303 (2013); doi: 10.1063/1.4794143 View online: https://www.doczj.com/doc/8c18043375.html,/10.1063/1.4794143 View Table of Contents: https://www.doczj.com/doc/8c18043375.html,/resource/1/APPLAB/v102/i8 Published by the American Institute of Physics. Additional information on Appl. Phys. Lett. Journal Homepage: https://www.doczj.com/doc/8c18043375.html,/ Journal Information: https://www.doczj.com/doc/8c18043375.html,/about/about_the_journal Top downloads: https://www.doczj.com/doc/8c18043375.html,/features/most_downloaded Information for Authors: https://www.doczj.com/doc/8c18043375.html,/authors Downloaded 09 Apr 2013 to 210.34.5.240. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: https://www.doczj.com/doc/8c18043375.html,/about/rights_and_permissions

碳纤维的研究现状与发展

碳纤维的研究现状与发展 摘要:碳纤维主要是由碳元素组成的一种特种纤维,分子结构界于石墨和金刚石之间,含碳体积分数随品种而异,一般在0.9以上。 关键词:碳纤维复合材料性能与应用 正文 一、碳纤维的性能 1.1分类 根据原丝类型分类可分为聚丙烯腈(PAN)基、沥青基和粘胶基3种碳纤维,将原丝纤维加热至高温后除杂获得。目前,PAN碳纤维市场用量最大;按力学性能可分为高模量、超高模量、高强度和超高强度4种碳纤维;按用途可分为宇航级小丝束碳纤维和工业级大丝束碳纤维,其中小丝束初期以1K、3K、6K(1K为1000根长丝)为主,逐渐发展为12K和24K,大丝束为48K以上,包括60K、120K、360K和480K等。 1.2性能碳纤维的主要性能:(1)密度小、质量轻,密度为1.5~2克/立方厘米,相当于钢密度的l/4、铝合金密度的1/2;(2)强度、弹性模量高,其强度比钢大4-5倍,弹性回复l00%; (3)具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;(4)导电性好,25。C时高模量纤维为775μΩ/cm,高强度纤维为1500μΩ/cm;(5)耐高温和低温性好,在3000。C非氧化气氛下不融化、不软化,在液氮温度下依旧很柔软,也不脆化;(6)耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。 通常,碳纤维不单独使用,而与塑料、橡胶、金属、水泥、陶瓷等制成高性能的复合材料,该复合材料也具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等优良性质,已在现代工业领域得到了广泛应用。 1.3应用领域 由于碳纤维具有高强、高模、耐高温、耐疲劳、导电、导热等特性,因此被广泛应用于土木建筑、航空航天、汽车、体育休闲用品、能源以及医疗卫生等领域。此外,碳纤维在电子通信、石油开采、基础设施等领域也有着广泛的应用,主要用于放电屏蔽材料、防静电材料、分离铀的离心机材料、电池的电极,在生化防护、除臭氧、食品等领域种也有出色的表现。碳纤维复合材料片。碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。把这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物。日本、美国、英国将该材料用于加固震后受损的钢筋混凝土桥板,增强石油平台壁及耐冲击性能的许多工程上,获得了突破性进展。碳纤维复合材料片具有轻质(比重是铁的1/4~1/5),拉伸模量比钢高10倍以上,耐腐蚀性能优异,可以手糊,工艺性好等优点。因此,碳纤维复合材料片在修补加固已劣化的钢筋混凝土结构物(约束裂纹发展、防止混凝土削落)和提高结构物耐力以及对用旧标准设计建成的钢筋混凝土结构物的补强、加固应用将越来越多。 二、生产工艺

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

碳纤维综述性论文

碳纤维综述性论文 摘要:碳纤维是指由有机纤维经碳化及墨化处理而得到的微晶墨材料,是纤维中含碳量在95%左右的碳纤维和含碳量在99%左右的墨纤维。碳纤维是一种新型材料,本文主要论述了碳纤维的分类及性质、生产、制造、加工,并论述了碳纤维的改性以及用途和发展前景等。 关键词:碳纤维、生产、加工、应用领域、发展趋势; 前言:碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状墨微晶等有机纤维沿纤维轴向向堆砌而成,经碳化及墨化处理而得到的微晶墨材料。碳纤维“外柔刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用面都是重要材料。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。 一、碳纤维的分类 按制作原料分:(1) 纤维素基(人造丝基)(2) 聚丙烯氰基(3)沥青基(各向同性、各向导性中间相)。 按制造法和条件分:(1) 碳纤维(炭化温度在800~1600℃时得到的碳纤维)(2) 墨纤维(炭化温度在2000~3000℃时得到的碳纤维)(3) 活性炭纤维(4) 气相生长纤维。 按性能分:(1) 一般型(GP,在通电部件、耐热隔热体、滑动部分、耐腐蚀材料等领域使用一般型。)(2) 高性能型(HP,其中高性能型分为高强型及高模型,通常大多数应用领域使用高性能型)在通电部件、耐热隔热体、滑动部分、耐腐蚀材料等领域使用一般型。 按状态分:(1)长丝(2)短纤维(3)短切纤维。 二、碳纤维的性质 2.1碳纤维的物理性能 优点:1)密度小,质量轻,比强度高。碳纤维的密度为1.5~2g/cm3,相当于钢密度的1/4,铝合金密度的1/2。而其比强度比刚大16倍,比铝合金大12倍。 2)强度高。其拉伸强度可达3000~4000MPa,弹性比钢大4~5倍,比铝大6~7倍。 3)弹性模量高。 4)具有各向异性,热膨胀系数小,导热率随温度的升高而下降,耐骤冷、急热,

PAN基碳纤维综述

PAN基碳纤维综述 专业纺织工程学号 0843093070 学生林华萍指导老师傅师申 摘要:聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。本综述简要介绍了其结构,制备方法,性能,应用领域及前景。 关键词:PAN基碳纤维,制备,结构,性能,应用,前景 1碳纤维结构 碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。 碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98-99%,杂质少。碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。 2PAN基碳纤维的制备 图1 从原料丙烯晴到聚丙烯晴基碳纤维的制备过程中可以看出四个关键步骤:PAN 的聚合,原丝的制备,原丝的预氧化以及预氧化丝的炭化和石墨化。 2.1 PAN的聚合 由于PAN分子结构的特性,纯聚体PAN不适宜作为碳纤维前驱体。工业生产中,往往采用

共聚PAN来制备PAN原丝。引入共聚单体可以起到如下作用:减少聚合物原液中凝胶的产生;增加聚合物的溶解性和可纺性;降低原丝环化温度及变宽放热峰。但也可能带来一些副作用:降低原丝的结构规整性和结晶度;增加大分子链结构的不均匀性;引入更多的无机和有机杂质等。 2.2 原丝的制备 PAN在熔点(317°C)以下就开始分解,因此形成纤维主要通过湿法或干湿法进行纺丝。 干湿法纺丝由于将挤出膨化与表皮凝固进行了隔离,纤维的成形机理有所改变,因此湿法纺丝凝固过程中皮层破裂或径向大孔及表皮褶皱等现象基本消失,干湿法纺丝的原丝表面及内部的缺陷减少、致密性提高。干湿法纺丝还具有高倍的喷丝头拉伸(3-10mm的空气层是有效拉伸区),纺丝速度高(为湿法纺丝的5-10倍),容易得到高强度、高取向度的纤维等特点,从而保证了碳纤维有足够的强度,是当前碳纤维原丝生产的发展方向。 2.3 原丝的预氧化 预氧化过程中原丝的颜色由白色向黄、棕、黑过渡,主要发生的反应为脱氢、环化及氧化反应,其中环化反应是预氧化过程中最关键的一步。 环化反应:PAN热处理时,分子间相邻氰基的加成反应,形成稳定性较高的梯形结构。 脱氢反应:为环化的聚合物或环化的杂环均可由于氧的作用发生脱氢反应,产生大量的水。脱氢反应是预氧化过程中主要反应之一,其结果导致主链上双键的形成,赋予主链更高的稳定性,使预氧化丝具有耐燃性。 氧化反应:预氧化开始时,氧化脱氢为氧化反应的主要部分。除此之外,氧同时还直接与预氧化丝结合,主要生成羟基、羰基、羧基等。若PAN原纤被充分预氧化,在预氧化丝中的含氧量甚至课高达16-23%。 影响PAN原丝预氧化的因素只要有:纤维的张力,热处理温度和介质的影响。 2.4 预氧化丝的碳化及石墨化 为避免高温下碳的氧化,碳化必须在惰性气氛的保护下进行。通常采用N 2、Ar 2 或其他非氧 化性介质如HCl等气体。 碳化是纤维仍会发生物理收缩和化学收缩,因此要对纤维施加张力进行拉伸以得到优质碳纤维。 碳化阶段以多段式的升温速率进行。低于600°C的温区,需低升温速率,升温速率需严格控制在小于5℃/min的范围内。因为这一温区包含大部分的化学反应及挥发性物质的逸出,提高升温速率的话,纤维表面会形成气孔或不规则的形态。600℃以上的温区,可以以较快的升温速率进行,此加热段仍有挥发性产物的逸出,同时形成分子链聚合物之间的交联。经600℃左右的低温碳化处理后,碳纤维的强度为1.5-2.0GPa,模量约120GPa。从900℃升温到1350℃,可制取强度为3-4GPa,模量约220GPa的碳纤维;升温到1500℃,可制取强度为4-5GPa,模量约

碳纤维生产现状

碳纤维生产现状及发展趋势 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料 (金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、X光穿透性高,非磁体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 我国自20世纪60年代开始碳纤维研究开发至今已有近40年的历史,但进展缓慢,同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长期依赖进口,严重影响了我国高技术的发展,尤其制约了航空航天及国防军工事业的发展,与我国的经济社会发展进程极不相称。所以,研制生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量进口的局面,是当前我国碳纤维工业发展的迫切任务。 1 生产方法 目前,工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类。从粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,成本较高,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高,但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单,而且产品的力学性能优良,用途广泛,因而自20世纪60年代问世以来,取得了长足的发展,成为当今碳纤维工业生产的主流。 聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。 原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。 碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。 根据产品规格的不同,碳纤维目前被划分为宇航级(aerospace—grade)和工业级(commercial—grade)两类,亦称为小丝束(small—strand tow或small tow)和大丝束

碳纤维的发展现状

碳纤维的发展现状 碳纤维(carbon fiber),它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维碳,是纤维状的碳素材料,含碳量在90%以上,其中含碳量高于99%的称石墨纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。有学者在1981年将聚丙烯腈(PAN)基碳纤维浸泡在强碱溶液中,时间已过去20多年,它至今仍保持纤维形态。 图1 碳纤维 碳纤维最早由美国联合碳化物公司和美国空军材料实验室于1959年投产,原丝采用粘胶纤维。1962年,日本碳公司进行了通用级聚丙烯腈基碳纤维的生产。1971年,日本东丽公司的高性能聚丙烯腈基碳纤维投产。沥青基碳纤维是日本吴羽化学工业公司于1973年投产的。联合碳化物公司生产了高模量沥青基碳纤维,1985年,美国、日本及西欧的聚丙烯腈基碳纤维年生产能力共约有7.25kt,沥青基碳纤维为1.28kt。 碳纤维一般以力学性能和制造原材料来进行分类。 按力学性能一般可分为两类:a)通用型(GP)碳纤维;b)高性能型(HP)碳纤维。通用型碳纤维强度1000MPa、模量100GPa左右,高性能型碳纤维又可分为高强型(强度2000MPa、模量250GPa)和高模型(模量在300GPa以上)。强度大于4000MPa者称为超高强型;模量大于450GPa者称为超高模型。

按原材料可分为3类:a)聚丙烯腈基(PAN)碳纤维;b)沥青基碳纤维;c)粘胶基(纤维素)碳纤维。3种原料碳纤维的主要性能见表1。 表1 3种原料碳纤维的主要性能 碳纤维按照一束纤维中根数的多少分为小丝束和大丝束碳纤维。通常把1K、3K、6K、12K和24K的称为小丝束,36K以上碳纤维称为大丝束碳纤维,包括48K~480K等。1K为1 000根丝。 在聚丙烯腈基(PAN)碳纤维中,日本东丽公司的碳纤维为国际公认的代表性产品,分为T系列(碳化产品)、M系列(石墨化产品),规格有T300(拉伸强度大于3000MPa),T700(拉伸强度大于4500MPa(,T800,T1000(拉伸强度大于7000MPa)等。 碳纤维有长丝、短纤维、短切纤维等,可加工成织物、毡、席、带、纸及其他材料,如金属涂层。 纤维。长丝和纤维织物一般加工成预浸料。此外,还可不经碳化和石墨化生产聚丙烯腈预氧化丝和活性炭纤维。碳纤维除用作绝热保温材料外,一般不单独使用,常加入树脂、金属、陶瓷和混凝土等,构成相应的复合材料,用于制作飞机结构材料、火箭外壳、宇宙机械、高尔夫球棒、球拍、机动船、电波屏蔽除电材料、电视机天线、离心分离机的高速转子、工业机器人、汽车板簧及驱动轴、人工韧带等身体代用材料等。 碳纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器

相关主题
文本预览
相关文档 最新文档