当前位置:文档之家› 数理方程例题I

数理方程例题I

数理方程例题I
数理方程例题I

数学物理方程例题和习题

(2009-10-31)

一、二阶常微分方程常数变易法

二阶常微分方程初值问题

??

?='=>=+''β

αω)0(,)0(0

),()()(2y y x x f x y x y 先考虑对应齐次方程:02=+''y y ω。利用辅助方程

022=+ωm , ωi m ±=

得齐次方程通解

)sin()cos()(21x C x C x y ωω+=

将常数替换为待定的函数,即

)sin()()cos()()(x x v x x u x y ωω+=

有两个未知函数待定。代入微分方程得恒等式,由一个等式不能唯一确定两个函数。如果人

为增加一个等式,就可以构造出二元线性方程组,朗斯基行列式方法是成功的确定两个待定函数的方法,方法如下,对假设的函数求一阶导数,得

在上面表达式中,令第一个方栝号为零,得第一个等式

0)sin()cos(='+'x v x u ωω

同时,由

)cos()sin(x v x u y ωωωω+-='

继续求导数,得

)]sin()cos([)]cos()sin([22x v x u x v x u y ωωωωωωωω+-'+'-=''

代入方程,得第二个等式

f x v x u ='+'-)cos()sin(ωωωω

将两个等式联立,得线性代数方程组

??

?='+'-=+'f

x v x u x v x u )cos()sin(0

)sin()cos(ωωωωωω 或写成矩阵形式

??

????=??????''??????-f v u x x x x 0)cos()sin()sin()

cos(ωωωωωω 上式的系数矩阵行列式称为朗斯基行列式,由于

ωωωωωωω=-=

)

cos()sin()

sin()cos(x x x x ?

利用克莱姆法则解方程组,有

)sin()()cos()sin(01x x f x f x ωωωω-==?,)cos()()

sin(0

)cos(2x x f f

x x ωωωω=-=

? )sin()(1

/1x x f u ωω

-

=='??,)cos()(1

/2x x f v ωω

=

='??

)]cos()sin([)]sin()cos([x v x u x v x u y ωωωωωω+-+'+'='

积分,得两个待定函数表达式

10

)sin()(1

)(C d f x u x

+-

=?

ξωξξω,20

)cos()(1

)(C dgx f x v x

+=

?

ωξξω

代入常数变易法假设的函数中,得

)sin()cos(21x C x C y ωω+=

??+

-x

x

d f x dx f x 0

)()cos()sin(1

)()sin()cos(1

ξξωξωω

ξωξωω

利用初始条件确定任意常数C 1和C 2,显然

α=1C ,ωβ/2=C

代入并利用三角函数和差化积公式,得

?-++=x

d f x x x x y 0

)()](sin[1)sin()cos()(ξξξωωωωβωα

二、二阶偏微分方程分类与化简

例1.判别二阶微分方程 0910=++yy xy xx u u u 的类型并求通解。 解:利用判别式

092522112

12>-=-=a a a ?

所以方程是双曲型方程。构造辅助方程

09102=+-λλ

解得:91=λ,12=λ,由

9=dx dy ,1=dx

dy

积分,得

19C x y +=,2C x y +=

由此构造变换

y x -=9ξ,y x -=η

显然,变换矩阵为

??????--=??????=1119y x

y x Q ηηξξ 且

03244]19[119551]19

[≠-=??

????---=??????-??????-

将变换表达式代入方程,化简得0=ξηu ,对其积分,得

)()(ηξg f u +=

其中,g f ,是两个任意一元函数(二阶连续可微)。代回原来变量,得原方程的通解

)()9(y x g y x f u -+-=

三、分离变量法 1.固有值问题

(1)第一类边界条件固有值问题

?

?

?==∈=+''0)(,0)0()

,0(,0L X X L x X X λ 固有值和固有函数

2)(

L n n πλ=,x L

n x X n πsin )(=,(n=1,2,……) (2)第二类边界条的固有值问题

?

?

?='='∈=+''0)(,0)0()

,0(,0L X X L x X X λ 固有值和固有函数

2)(

L n n πλ=,x L

n x X n πcos )(= 例2.求解欧拉方程固有值问题

????

?===+'+''==0

,00

12e x x y y y y x y x λ 解:作变换:)exp(

t x =,即x t ln =,未知函数的导数为 dt

dy

x dx dt dt dy dx dy 1== )(1)(1122222

2dt dy

dx

y d x dt dy dx d x dt dy x dx y d -=+-= 代入微分方程,得

0)(22=++-y dt dy

dt dy dt

y d λ

方程化简为:022=+y dt

y

d λ,

对应边界条件:0,010====t t y y

所以固有值和固有函数为:2)(πλn n =,t n y πsin = 代回原自变量,固有函数为:)ln sin(x n y π=

2.双曲型方程分离变量法

?

??

??====><<=====)

(),(0

,0)0,0(,0002x u x u u u t L x u a u t t t L x x xx tt ψ? 满足边界条件和初值条件的解为

∑∞

=+=1

sin ]sin cos

[),(n n n x L

n t L a n D t L a n C t x u π

ππ 其中系数

?=

L n d L n L C 0sin )(2ξξπξ?,?=L n d L

n a n D 0sin )(2ξξπ

ξψπ,(n=1,2,……) 例3.求解双曲型方程初边值问题

????

???====∞+∈∈=====0

,sin 0

,0)

,0(),,0(,0002t t t x x xx tt u x u u u t x u a u ππ 解:对应的固有值和固有函数分别为:2n n =λ,nx x X n sin )(=,(n=1,2,……)。

满足边界条件的解为

∑∞

=+=1

sin ]sin cos [),(n n n nx ant D ant C t x u

利用初值条件,得

x nx C

n n

sin sin 1

=∑∞

=,0sin 1

=∑∞

=n n nx nD a

对比等式两端,得

C 1=1,C n =0,(n=2,3,……);

D n = 0,(n=1,2,……)

所以初边值问题的解为

x at t x u sin cos ),(=

2.抛物型方程分离变量法

例4.求解抛物型方程初边值问题

????

???===∞+∈∈====x

u u u t x u a u t x x xx t sin 0

,0),0(),,0(,002ππ 解:对应的固有值和固有函数分别为:2n n =λ,nx x X n sin )(=,(n=1,2,……)。

满足边界条件的解为

∑∞

=-=1

22sin )exp(),(n n nx t n a C t x u

利用初值条件,得

x nx C

n n

sin sin 1

=∑∞

=

对比等式两端,得

C 1=1,C n =0,(n=2,3,……)

所以初边值问题的解为

x t a t x u sin )exp(),(2-=

例5.分离变量法求解热传导问题

????

???-===><<====)

2/.(0

,00,0,00L x u u u t L x u u t L x x x x xx t δ 解:对应的固有值和固有函数分别为

2)(

L n n πλ=,x L

n X n πcos =,(n =0,1,2,…… ) 满足边界条件的解为

∑∞

=-+=020cos ])(exp[2),(n n x L

n t L n C C t x u π

π

利用初始条件,得

)2/(cos 200L x x L

n C C n n -=+∑∞

=δπ 利用付里叶级数展开式,得

2

cos 2cos )2/(20ππδn L xdx L n L x L C L n =-=

?,(n =0,1,2,…… ) 当n 为偶数时,有

L

k L C k k 2

)1(cos 22-==

π 所以,原问题的解

∑∞=--+=122cos ])2(exp[)1(21),(k k x L

k t L k L L t x u π

π

3.椭圆型方程分离变量法

例6.用分离变量法求解拉普拉斯方程边值问题

??

?

??====<<=+)sin(),1(0)1,()0,(),0(1,0,0y y u x u x u y u y x u u yy xx π 解:令u (x ,y )=X (x )·Y (y ),代入拉普拉斯方程,分离变量得

λ='

'-=''Y

Y X X 得两个常微分方程:

0=-''X X λ,0=+''Y Y λ

由边界条件可得,Y (0)=0,Y (1)=0,与第二个方程联立,得固有值问题

?

?

?==∈=+''0)1(,0)0()

1,0(,0)()(Y Y y y Y y Y λ 求解,得固有值和固有函数

22πλn =,)sin()(y n y Y n π=,( n = 1,2,……)

将固有值代入第一个方程中并求解,得

)exp()exp()(x n B x n A x X n n n ππ-+= ( n = 1,2,……)

从而有基本解

)sin()]exp()exp([),(y n x n B x n A y x u n n n πππ-+=

所以有级数形式解

∑∞

=-+=1

)sin()]exp()exp([),(n n n y n x n B x n A y x u πππ

利用边界条件 u (0,y )=0,u (1,y )= sin π y 得

0)sin()(1

=+∑∞

=n n n

y n B A

π

y y n e

B e A n n n

n n

ππππsin )sin()(1

=+∑∞

=-

由此得

A n =

B n =0 ( n ≠1) A 1 +B 1 = 0,A 1 e π +B 1 e -π =1

解得

πsinh 11=-=B A

所以边值问题的解如下

)sin()

sin()

sinh(),(y x y x u πππ=

四、行波法

1.行波法求解无界区域的双曲型方程初值问题

????

?==>+∞<<∞-===)(),(0

,,00

2

x u x u t x u a u t t t xx tt ψ? 的达朗贝尔公式

?+-+++-=

at x at x d a

at x at x t x u ξξψ??)(21)]()([21),( 例7.求解双曲型方程初值问题

????

?==>+∞<<∞-===1,sin 0

,,00

2t t t xx tt u x u t x u a u 解:应用达朗贝尔公式

?+-+++-=

at x at x d a

at x at x t x u ξ21)]sin()[sin(21),( 整理,得

t at x t x u +=cos sin ),(

例8.求解初值问题:

???==>∞<<-∞+===x

t t t xx tt xe

u x u t x x u u 00|,sin |)

0,(sin 解:利用叠加原理,令 u (x ,t ) = v (x ,t ) + w (x )。代入原方程,得

v tt = [v xx + w xx ] + sin x

故取 w (x ) = sin x ,得v (x ,t )满足的初值问题

???

??===x t

xx tt xe x v x v v v )0,(0)0,( 由达朗贝尔公式,得

?+--+-++---+==t x t x t x t x t x t x e e e t x e t x d e t x v ])()[(2

1

21),(ξξξ

])1()1[(2

1

t x t x e t x e t x -++---+=

所以初值问题的解为

x e t x e t x t x u t x t x sin ])1()1[(2

1

),(++---+=

-+ 2.行波法求解半无界区域的双曲型方程初边值问题 例9.求解半无界弦定解问题

????

???===>∞<<====0

sin ,cos )0,0(0002x x t t t xx tt u x

u x u t x u a u 解:对初始条件函数做偶延拓

??

?<≥=0,cos 0,cos )(x x x x x ?,???<-≥=0

,sin 0,

sin )(x x x x x ψ

应用达朗贝尔公式,当x >0,且 x > at 时,有

?+-+-++=at

x at

x d a at x at x t x u ξξsin 21)]cos()[cos(21),(

)]cos()[cos(21

cos cos at x at x a

at x --+-+

= at x a

at x sin sin 1

cos cos -

= 当x >0,且 x < at 时,有

??+--+-++=

at

x at x d d a at x at x t x u 0

0sin sin [21)]cos()[cos(21),(ξξξξ

)]cos(11)[cos(21

cos cos at x at x a

at x -+--+-+

= )cos cos 1(1

cos cos at x a

at x -+

=

五、付里叶变换方法 重要积分公式

απα/)exp(2=-?

+∞

-dx x

证明:令

?+∞

--=dx x I )exp(2α

则有重积分

?

?

+∞∞-+∞

-+-=dxdy y x I )](exp[222

α

做极坐标变换,有

???+∞

+∞

=-=-=0

2220

2/)exp(2)exp(απαπαθπ

dr r r dr r r d I

所以

απα/)exp(2=-?

+∞

-dx x

例10.求矩形波函数?

??>≤=1||,01

||,1)(x x x f 的付里叶变换。

解:应用付里叶正变换,有

?

?+-+--===11

11

sin 2cos )(?ω

ωωωωxdx dx e f x j 所以矩形波的付里叶变换为:ω

ωωsin 2)(?=f

。 例11.求函数2

cos )(x a x f =的付里叶变换 解:为了方便积分,构造函数

)exp(sin cos )(222iax ax i ax x g -=-=

应用付里叶正变换,有

??+∞

-+∞

-+-=--=dx x ax i dx x i iax x g F )](exp[)exp()exp()]([22ωω

将二次多项式配方

a

a

x a x ax 4)2(2

2

2

ωω

ω-

+

=+

利用重要积分公式,得

)4/exp(//])2(exp[2πππω

i a ia dx a

x ia -==+

-?

+∞

-

所以

a a

i dx a

x ia a

i

x g F /)]4

4(

exp[])2(exp[)4exp()]([2

2

2

ππ

ωω

ω-

=+

-=?∞

+∞

-

提取上式右端的实部,得

)4cos(

/)]([2a

a a x f F π

ωπ-=

六、格林函数方法

通常狄利克雷-格林函数是指如下泊松问题

????

?=Ω

∈=?-0

),(S G M M G δ 的解。其中,Ω是求解区域,而S 是Ω的边界。

由于方程是非齐次方程,可以将格林函数设想为非齐次方程的特解v 和对应齐次方程的解w 两部分,即

G= v – w

这里,v 是非齐次方程(泊松方程)的特解,满足方程 – ?v = δ(M ),不满足边界条件;w 是齐次方程(拉普拉斯方程)的解,满足方程 ?w = 0,也不满足边界条件。

1.二维问题的特解

方程的极坐标形式:)(1)(12

22r v

r r v r r r δθ

=??+????- 假设特解具有对称性,即

0=??θv 。方程化为:)()(1r r

v

r r r δ=????- 在半径为r 的圆域内,对化简后的方程两端积分,得

??

=????-π

ρρ

ρρθ20

1)(r

d v

d 整理,得:12=??-r v r

π,再次对r r v 121π-=??积分,得特解:r

v 1ln 21π=。 2.三维问题的特解

方程的球坐标形式:)(sin 1sin sin 1)(12

222222r v

r v r r v r r r δ?θθθθ

=??+??+????- 假设特解具有球对称性,即

0=??θv ,0=???

v 。方程化为:)()(122r r v r r r δ=????- 在半径为r 的球域内,对化简后的方程两端积分,得

??

?=????-ππρρ

ρρ??θ20

20

1)(sin r

d v

d d 整理,得:142

=??-r v r

π,再次对241r

r v π-=??积分,得特解:r v π41

= 例12.求半径为R 的半圆域上的Dirichler-Green 函数

解:设M (x ,y )是圆域内的任意一点,

M 0(x 0,y 0)是圆域内一定点。构造M 0的镜像点如下:

M 1(x 1,y 1) M 2(x 0,– y 0) M 3(x 1,– y 1)

其中,M 1是M 0关于上半圆的圆外镜像点,M 2是M 0关于x 轴的域外镜像点,M 3既是M 1关于x 轴的镜像点也是M 2关于虚圆的镜

像点。动点M 到M 0以及各镜像点距离

2

0200)

()(y y x x r MM -+-=21211)()(y y x x r MM -+-=

20202)()(y y x x r MM ++-= 21213)()(y y x x r MM ++-=

利用镜像点构造半圆域上的Green 函数如下

]1ln 1ln 1ln 1[ln 21),(3

2100MM MM MM MM r r r r M M G +--=

π 利用对数函数性质,得

3

0210ln 21

)

,(MM MM MM MM r r r r M M G π

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0z f z e d ζ ζζ=?,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)uxy = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y - C.(cos sin )x e y y y y - D.(cos sin )x e x y y y -

研究生数理方程期末试题-10-11-1-A-答案

北京交通大学硕士研究生2010-2011学年第一学期 《数学物理方程》期末试题(A 卷) (参考答案) 学院__________ 专业___________ 学号 __________ 姓名____________ 1、( 10分)试证明:圆锥形枢轴的纵振动方程为: 玫[I h .丿&」V h .丿& 其中E是圆锥体的杨氏模量,「是质量密度,h是圆锥的高(如下图所示) 【提示:已知振动过程中,在x处受力大小为ES ,S为x处截面面积。】 ex 【证明】在圆锥体中任取一小段,截面园的半径分别是r1和r2,如图所示。于是,我们有 2、::u(x dx,t) 2 u(x,t) — 2 u2(x,t) E( D) E( * ) ( A )dx 于 x x t r1 = (h「x)tan : r2= (h _(x dx)) tan : 上式化简后可写成

2 2 ::U(X,t) 2 ::u(x,t) 2, ;u (x,t) E[(h -x) 卜亠 & -(h -'X) 〔x J - - (h -'X)dx 2 从而有 E ::[(^x)2;:U(x ,t)H-(^x)2::u2(x,t) .x :X :t 或成 2 ::[(1「)2汽("]“2(1「)小叩) .x h ::x h ;:t 其中a^E ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片, 它的一边y=b 处于较高温度U ,其它三边y=0. x = 0和x = a 则处于冷却介质中,因而保持较低的温度 u o 。试求该截面上的稳定温度 分布u(x,y),即求解以下定解问题: u|y 卫二 %, u|y 生二 U, 0 x a. 【提示:可以令u(x, y)二u 0 v(x, y),然后再用分离变量方法求解。】 【解】令u(x, y) v(x, y),则原定解问题变为 Wl x£=0, V=0, 0cy

数理方程练习题(1)

一、填空题 1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。 2.在实际中广泛应用的三个典型的数学物理方程: 第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0 x x y y u u +=, (,)xx yy u u x y ρ+=-),属于(椭圆)型; 二、选择题 1.下列泛定方程中,属于非线性方程的是[ B ] (A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ( )22 0y xx xxy u x y u u +++=; (D) 340t x xx u u u ++=; 2. 下列泛定方程中,肯定属于椭圆型的是[ D ] (A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=; (C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题 ()()( )()()()2,0,00,,0 ,0,,0tt xx x x t u a u t x l u t u l t u x x u x x ?φ?=><

数理方程期末考试试题

2013-2014学年度第二学期数理方程(B )期末考试试题 考后回忆版本 一、求下列偏微分方程的通解),(y x u u =(16分) (1)y x y x u 22=???(2)xy x u y x u y =??+???2二、求下列固有之问题的解。要求明确指出固有值及其所对应的固有函数(10分) ?????=′+∞<<<=+′+′′.0)2(,)0()20(,022y y x y x y x y x λ三、求第一象限}0,0|),{(2 >>∈=y x R y x D 的第一边值问题的Green 函数。(12分) 四、用积分变换法求解下列方程。(12分)???=>+∞<<<=).21(),0(,)(),0(. 1)1,(,0)0,()0,10(,4x x u x x x u t u t u t x u u t xx tt δ?七、用分离变量法求解下列方程。(15分) ?????=<++=++=++0|)1(,1 222222z y x zz yy xx u z y x z u u u 八、求解下列定解问题。(5分) ?????==>+∞<

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

研究生数理方程期末试题10111A答案

《数学物理方程》期末试题(A 卷) (参考答案) 学院 专业 学号 姓名 1、 (10分)试证明:圆锥形枢轴的纵振动方程为: 其中E 是圆锥体的杨氏模量,ρ是质量密度,h 是圆锥的高(如下图所示): 【提示:已知振动过程中,在x 处受力大小为u ES x ??,S 为x 处截面面积。】 【证明】在圆锥体中任取一小段,截面园的半径分别是1r 和2r ,如图所示。于是,我们有 上式化简后可写成 从而有 或成 其中2 E a ρ = ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片,它的一边y b =处于较高温度U ,其它三边0y =, 0x =和x a =则处于冷却介质中,因而保持较低的温度0u 。试求该截面上的稳定温度 分布(,)u x y ,即求解以下定解问题: 【提示:可以令0(,)(,)u x y u v x y =+,然后再用分离变量方法求解。】 【解】令0(,)(,)u x y u v x y =+,则原定解问题变为 分离变量:

代入方程得到关于X 和Y 的常微分方程以及关于X 的定解条件: 可以判定,特征值 特征函数 利用特征值n λ可以求得 于是求得特征解 形式解为 由边界条件,有 得到 解得 最后得到原定解问题的解是 3、 (20分)试用行波法求解下列二维半无界问题 【解】方程两端对x 求积分,得 也即 对y 求积分,得 也即 由初始条件得 也即 再取0x =,于是又有 从而得 于是 将这里的()g x 和()h y 代入(,)u x y 的表达式中,即得 4、 (20分)用积分变换法及性质,求解无界弦的自由振动问题: 【提示:可利用逆Fourier 积分变换公式:11 ,||sin []20, ||x at a t F a a x at ωω-?

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

数理方程试卷

南昌航空大学2009—2010 学年第二学期期末考试 课程名称:数 理 方 程 闭 卷 A (B )卷 分钟 一、 解答题(共40 分) 1、 当n 为正整数时,讨论()n J x 的收敛范围。(5分) 2、解一维热传导方程,其初始条件及边界条件为: 0t u x ==, 0x u x =?=?, 0x l u x =?=? (10分)

3、有一均匀杆,只要杆中任一小段有纵向位移或速度,必导致邻段的压缩或伸长, 这种伸缩传开去,就有纵波沿着杆传播。试推导杆的纵振动方程。(10分) 4、写出01(),(),()n J x J x J x (n 是正整数)的级数表示式的前5项。(15分)

二、计算题(共60分) 1、求方程:22,1,0u x y x y x y ?=>>??, 满足边界条件: 2 0y u x ==,1cos x u y ==的解。 (10分) 2、就下列初始条件及边界条件解弦振动方程: (,0)0,0u x x l =≤≤; (,0) (),0u x x l x x l t ?=-≤≤?; (0,)(,)0,0u t u l t t ==> (15分)

3、试确定下列定解问题: 2 2200(),0,0,,,0, (),0x x l t u u a f x x l t t x u A u B t u g x x l ===???=+<<>????? ==>?? =≤≤??? (15分) 解的一般形式。

4、(20分)求下列柯西问题: 22222200 2 80,0,3,0,y y u u u y x x x y y u u x x y ==????+-=>-∞<<+∞?????? ? ??==-∞<<+∞??? 的解。 (20分)

数理方程习题集综合

例 1.1.1 设v=v(线x,y),二阶性偏微分方程v xy =xy 的通解。 解 原方程可以写成 e/ex(ev/ey) =xy 两边对x 积分,得 v y =¢(y )+1/2 x 2 Y, 其中¢(y )是任意一阶可微函数。进一步地,两边对y 积分,得方程得通解为 v (x,y )=∫v y dy+f (x )=∫¢(y )dy+f (x )+1/4 x 2y 2 =f (x )+g (y )+1/4 x 2y 2 其中f (x ),g (y )是任意两个二阶可微函数。 例1.1.2 即 u(ξ,η) = F(ξ) + G(η), 其中F(ξ),G(η)是任意两个可微函数。 例1.2.1设有一根长为L 的均匀柔软富有弹性的细弦,平衡时沿直线拉紧,在受到初始小扰动下,作微小横振动。试确定该弦的运动方程。 取定弦的运动平面坐标系是O XU ,弦的平衡位置为x 轴,弦的长度为L ,两端固定在O,L 两点。用u(x,t)表示弦上横坐标为x 点在时刻t 的位移。由于弦做微小横振动,故u x ≈0.因此α≈0,cos α≈1,sin α≈tan α=u x ≈0,其中α表示在x 处切线方向同x 轴的夹角。下面用微元法建立u 所满足的偏微分方程。 在弦上任取一段弧'MM ,考虑作用在这段弧上的力。作用在这段弧上的力有力和外力。可以证明,力T 是一个常数,即T 与位置x 和时间t 的变化无关。 事实上,因为弧振动微小,则弧段'MM 的弧长 dx u x x x x ? ?++=?2 1s ≈x ?。 这说明该段弧在整个振动过程中始终未发生伸长变化。于是由Hooke 定律,力T 与时间 t 无关。 因为弦只作横振动,在x 轴方向没有位移,故合力在x 方向上的分量为零,即 T(x+x ?)cos α’-T(x)cos α=0. 由于co's α’≈1,cos α≈1,所以T(X+?x)=T(x),故力T 与x 无关。于是,力是一个

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

数理方程练习题

第二章 定解问题与偏微分方程理论 习题2.1 1. 密度为ρ均匀柔软的细弦线x =0端固定,垂直悬挂,在重力作用下,于横向拉它一下,使之作微小的横振动。试导出振动方程。 2. 长为L ,均匀细杆,x = 0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆作自由振动。试写出振动方程的定解条件。 3. 长为L 、密度为ρ的底半径为R 的均匀圆锥杆(轴线水平)作纵振动,锥的顶点固定在x =0处。导出此杆的振动方程。 4. 一根长为L 、截面面积为1的均匀细杆,其x =0端固定,以槌水平击其x =L 端,使之获得冲量I 。试写出定解问题。 习题2.2 1. 一半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为u 1的介质发生热交换,且热交换的系数为k 1。试导出杆上温度u 满足的方程。 4. 设有一根具有绝热的侧表面的均匀细杆,它的初始温度为)(x ?,两端满足下列边界条件之一: (1)一端(x =0)绝热,另一端(x = L )保持常温u 0; (2)两端分别有热流密度q 1和q 2进入; (3)一端(x =0)温度为u 1(t ),另一端(x = L )与温度为)(t θ的介质有热交换。 试分别写出上述三种热传导过程的定解问题。 习题2.4 1. 判断下列方程的类型: (1)04=+++++u cu bu au au au y x yy xy xx ; (2)02=+++++u cu bu au au au y x yy xy xx ; (3)02222=+++++u au bu au au au y x yy xy xx ; (4)0=+yy xx xu u 。 2. 求下列方程的通解 (1)0910=++yy xy xx u u u ; (3)0384=++yy xy xx u u u 。 第三章 分离变量法 习题3.1 2. 求解下列定解问题

数理方法第二章热传导方程习题答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。由假设,在任意时刻t 到t t ?+内流入 截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??--=??--=111124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由 Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数理方程第二版 课后习题答案教学教材

数理方程第二版课后 习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕 3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。 证:设,为定义在区间上的向量函数,因为

在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是 因为,故,从而 为常向量,于是,,即具有固定方向。证毕

6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与 不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念 1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,, ,于是切线的方程为:

数理方程试卷A (2)

一. (10分)填空题 1.初始位移为)(x ?,初始速度为)(x ψ的无界弦的自由振动可表述为定解问题: ?????==>+∞<<∞-===).(),(0,,00 2 x u x u t x u a u t t t xx tt ψ? 2.为使定解问题 ???? ???=======0 ,000 02t l x x x xx t u u u u u a u (0u 为常数) 中的边界条件齐次化,而设)(),(),(x w t x v t x u +=,则可选=)(x w x u 0 3.方程0=xy u 的通解为)()(),(y G x F y x u += 4.只有初始条件而无边界条件的定解问题,称为柯西问题. 5.方程y x u xy 2=满足条件1cos ),0(,)0,(2-==y y u x x u 的特解为 1cos 6 1),(22 3-++= y x y x y x u 二. (10分)判断方程 02=+yy xx u y u 的类型,并化成标准形式. 解:因为)0(02≠<-=?y y ,所以除x 轴外方程处处是椭圆型的。 ……2分 它的特征方程是 022 =+?? ? ??y dx dy …… 5分

即iy dx dy ±= 特征线为 21ln ,ln c ix y c ix y =+=- 作变换:???==x y ηξln …… 7分 求偏导数 ????? ???? ??-====)(1 1 2ξξξξ ηηηu u y u u y u u u u u yy y xx x 将二阶偏导数代入原方程,便可得到标准形式 ξηηξξu u u =+ (10) 分 三. (10分)求解初值问题 ?????==>+∞<<∞-===x u x u t x u u t t t xx tt cos ,0,,4020 解:x x x x a cos )(,)(,22===ψ? 利用达朗贝尔公式 ?+-+-++=at x at x d a at x at x t x u ξξψ??)(21)]()([21),( … …5分 得

数理方程试卷及答案2

长沙理工大学考试试卷 ………………………………………………………………………………………………………………… 试卷编号 拟题教研室(或教师)签名 教研室主任签名 ………………………………………………………………………………………………………………… 课程名称(含档次) 数学物理方程与特殊函数 课程代号 专 业 层次(本、专) 本 科 考试方式(开、闭卷) 闭卷 一.判断题:(本题总分25分,每小题5分) 1.二阶线性偏微分方程062242=+++-y x yy xy xx u u u u u 属于椭圆型; ( ) 2.定解问题的适定性包括解的稳定性、解的唯一性和解的存在性; ( ) 3.如果格林函数),(0M M G 已知,且它在Γ+Ω上具有一阶连续偏导数,又若狄利克雷 问题???=Ω∈=?Γ ).,,(|,),,(0z y x f u z y x u 在Γ+Ω上具有一阶连续偏导数的解存在,那么其解可 表示为=)(0M u dS n G z y x f ??Γ??-) ,,(; ( ) 4.设)(x P n 为n 次Legendre 多项式,则0)()(1 1 1050358?-=dx x P x P ; ( ) 5.设)(x J n 为n 阶Bessel 函数,则 [])()(021ax xJ a ax xJ dx d =. ( ) 二.解答题:(本题总分65分) 1.(本小题15分)设有一根长为l 的均匀细杆,它的表面是绝热的,如果它的端点温度为1),0(u t u =,2),(u t l u =,而初始温度为0T ,写出此定解问题. 2.(本小题20分)利用固有函数法求解下面的定解问题 ???????====><<+=. 0),(,0),0(,0)0,(,0)0,(),0,0(cos sin 2t l u t u x u x u t l x l x t A u a u x x t xx tt πω 其中ω,A 是常数. 3.(本小题15分)求出方程xy u u yy xx =+的一个特解. 第 1 页(共 2 页)

矢量分析与数理方程总复习题

矢量分析与场论,数理方程与特殊函数总复习题 矢量和矢性函数 1、 求下列两个矢量的加法、减法、标量积(点乘)和矢量积(叉乘) k j i A 32++= k j i B 654++= 2、 求下列两个矢性函数的加法、减法、标量积(点乘)和矢量积(叉乘) ()k t j t i t t A ++=sin cos , ()k t j e i t t B t 2++= 3、设k t j i t A 23+-=,k j i B 22+-=,k j t i C -+=3,求() C B A ?? 4、如果 ()k t j t i t t A ++=sin cos ,()k t j e i t t B t 2++= 求 ()dt t A d 和 ()dt t B d 5、如果 ()j i e ???sin cos += ① 求 ()()? ??d e d e =1 , ② 证明 ()?e ⊥()?1e . 6、如果 ()j i e ???cos sin 1+-= 证明 ()()?? ?e d e d -=1 7、求不定积分 ()? ??d e , ()? ??d e 1 。 8、计算不定积分 () ? +???d e 122 . 9、求矢量 k j i r -+=22的单位矢量 0r 。 方向导数和梯度 1、求 k j i l 22++= 的方向余弦 2、写出矢径 k z j y i x r ++=的单位矢径0r ,用方向余弦表示0r 3、求矢性函数 () k z j xy i x z y x l 4232,,+-= 的方向余弦 4、求函数2 2 2 z y x u ++=在() 1,0,1M 处沿k j i l 22++=的方向导数 5、求数量场 z y z x u 2 322+= 在点 () 1,0,2-M 处沿 k z j xy i x l 4232+-= 方向的方向导数 6、求下列数量场的梯度 ① 2 2 2 z y x r ++=, ② ??? ? ? ?++=2 221 1z y x r , ③ 223z xy z x u +-= ③ 3 2 z y x u =, ④ xz yz xy u ++=, ⑥ z y x xy z y x u 623322 2 2 --++++=.

数理方程试卷

工程数学 一. (10分)填空题 1.初始位移为)(x ?,初始速度为)(x ψ的无界弦的自由振动可表述为定解问题: ?????==>+∞<<∞-===).(),(0,,00 2 x u x u t x u a u t t t xx tt ψ? 2.为使定解问题 ???? ???=======0 ,000 02t l x x x xx t u u u u u a u (0u 为常数) 中的边界条件齐次化,而设)(),(),(x w t x v t x u +=,则可选=)(x w x u 0 3.方程0=xy u 的通解为)()(),(y G x F y x u += 4.只有初始条件而无边界条件的定解问题,称为柯西问题. 5.方程y x u xy 2=满足条件1cos ),0(,)0,(2-==y y u x x u 的特解为1cos 6 1),(22 3-++= y x y x y x u 二. (10分)判断方程 02=+yy xx u y u 的类型,并化成标准形式. 解:因为)0(02≠<-=?y y ,所以除x 轴外方程处处是椭圆型的。 ……2分 它的特征方程是 022 =+?? ? ??y dx dy ……5分 即iy dx dy ±= 特征线为 21ln ,ln c ix y c ix y =+=-

作变换:???==x y ηξln ……7分 求偏导数 ????? ???? ??-====)(1 1 2ξξξξ ηηηu u y u u y u u u u u yy y xx x 将二阶偏导数代入原方程,便可得到标准形式 ξηηξξu u u =+ ……10分 三. (10分)求解初值问题 ?????==>+∞<<∞-===x u x u t x u u t t t xx tt cos ,0,,4020 解:x x x x a cos )(,)(,22===ψ? 利用达朗贝尔公式 ?+-+-++=at x at x d a at x at x t x u ξξψ??)(21)]()([21),( ……5分 得 )] 2sin()2[sin(4 1 4cos 41])2()2[(21),(222222t x t x t x d t x t x t x u t x t x --+-+=+-++=?+-ξ ξ t x t x 2sin cos 2 1 422++= ……10分 四. (15分)用分离变量法解定解问题

2012、11、10、09年电子科技大学研究生数理方程期末试卷

2012、11、10、09年电子科技大学研究生数理方程期末试卷

电子科技大学研究生试卷 (考试时间: 14点 至 16 点 ,共 2小时) 课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2012年 12 月 28 日 成绩 考核方式: (学生填写) 1.把方程 22222320u u u x x y y ???++=????化为标准型,指出其 类型,求出其通解. (10分) 2. 设定解问题:(10分) 2000(),0,0,,0(),(),0. tt xx x x l t t t u a u f x x l t u A u B t u x u x x l ?ψ====?-=<<>?? ==>??==≤≤?? 将该定解问题化成可直接分离变量求解的问题(不需要求出解的具体形式)。 学 号 姓 学 院 教 座位 ……………………密……………封……………线……………以……………

第 1页 3. 长为l 的均匀细杆,其侧面与左端保持零度,右端绝热,杆内初始温度分布为()x ?,求杆内温度分布 (,)u x t . (20分) 4.求下面的定解问题:(10分) 22 009,(,0)18,sin 18 t tt xx t t t u u x e x R t u x x u x ==?-=∈>??=++=+??.

第2页 5.求22 cos()a e x d ?τ??+∞-?.(10分) 6. 222 23()(22)(25) s s F s s s s s ++=++++,求Laplace 逆变换1 (())L F s -.(10分)

天津大学研究生课程-数理方程试题

一. 判断题(每题2分). 1. 2u u x y x y x ??+=???是非线性偏微分方程.( ) 2. 绝对可积函数一定可做Fourier 积分变化.( ) 3. ()(1) 1.n n F x n Legendre F =是次正交多项式, 则 ( ) 4. (,)0xy f x y =的解是调和函数.( ) 5. **12u u 已知,是线性偏微分方程(,)xx yy u u f x y +=的解,则**12u u -是0u ?= 的解.( ) 二. 填空题(每题2分). 1. ()sin t xx yy u u u xt -+= 是____________型偏微分方程. 2. 内部无热源的半径为R 的圆形薄板,内部稳态温度分布,当边界上温度为()t φ时,试建立方程的定解问题________________________. 3. 2x 的Legendre 正交多项式的分解形式为__________________. 4.某无界弦做自由振动,此弦的初始位移为()x φ,初始速度为()a x φ-,则弦振动规律为______________________________. 5. []()____________.at m L e t s = 三.求解定解问题(12分) 200sin ; 0,0;0. t xx x x x x l t u a u A t u u u ω===-====

四.用积分变换方法求解以下微分方程(每题12分,共24分) (1) 001,0,0; 1,1. xy x y u x y u y u ===>>=+= (2) 00230, 1.t t t y y y e y y =='''+-='== 五.某半无界弦的端点是自由的,初始位移为零,初始速度为cos x ,求弦的自由振动规律。(12分)

相关主题
文本预览
相关文档 最新文档