当前位置:文档之家› 拉氏变换定义及性质

拉氏变换定义及性质

拉氏变换定义及性质
拉氏变换定义及性质

2.5 拉氏变换与反变换

机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。

2.5.1 拉普拉斯变换的定义

如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为

()()()0

e d st

F s L f t f t t ∞

-=?????? (2.10)

s 是复变数, ωσj +=s (σ、ω均为实数), ?∞

-0e st

称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。

式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。

1.单位阶跃函数

)(1t 的拉氏变换

单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能

的标准输入,这一函数定义为

??

?≥

)0(0)(1t t t

单位阶跃函数如图2.7所示,它表示在 0=t 时刻突然作用于系统一个幅值为1的不变量。

单位阶跃函数的拉氏变换式为

0e 1

d e )(1)](1[)(0∞-===-∞-?st

st s

t t t L s F 当 0)Re(>s ,则 0

e lim →-∞

→st t 。

所以:

[]s s s t L st 1

)1(00e 1)(1=

??????--=∞-=- (2.11)

2.

指数函数的拉氏变换

指数函数也是控制理论中经常用到的函数,其中

是常数。

则与求单位阶跃函数同理,就可求得

(2.12)

3.正弦函数与余弦函数的拉氏变换 设

,则

由欧拉公式,有

所以

(2.13)

同理 (2.14)

4.单位脉冲函数 δ(t ) 的拉氏变换

单位脉冲函数是在持续时间期间幅值为的矩形波。其幅值和作用时间

的乘积等于1,即。如图2.8所示。

单位脉冲函数的数学表达式为

其拉氏变换式为

此处因为时,,故积分限变为。

(2.15)

2.5.3 拉氏变换的主要定理

根据拉氏变换定义或查表能对一些标准的函数进行拉氏变换和反变换,但利用以下的定理,则对一般的函数可以使运算简化。

1.叠加定理

拉氏变换也服从线性函数的齐次性和叠加性。

(1)齐次性设,则

(2.18)式中——常数。

(2)叠加性设,,则

(2.19)两者结合起来,就有

这说明拉氏变换是线性变换。

2.微分定理

式中——函数在时刻的值,即初始值。

同样,可得的各阶导数的拉氏变换是

(2.20)

式中

,

,…——原函数各阶导数在

时刻的值。

如果函数及其各阶导数的初始值均为零(称为零初始条件),则

各阶导

数的拉氏变换为

(2.21)

3.复微分定理

可以进行拉氏变换,则除了在

的极点以外,

()[]()s F s t tf L d d

-

= (2.22)

式中,

。同样有

()[

]

()

s F s t f t L 22

2

d d =

一般地,有

()()()

d 11,2,3,d n

n

n

n L t f t F s n s ??=-=??

(2.23)

4.积分定理

,则

(2.24)

式中——积分在时刻的值。

当初始条件为零时,

(2.25)

对多重积分是

(2.26)

当初始条件为零时,则

(2.27)

5.延迟定理

设,且时,,则

(2.28)

函数为原函数沿时间轴延迟了,如图2.11所示。

6.位移定理

在控制理论中,经常遇到一类的函数,它的象函数只需把用代替即可,这相当于在复数坐标中,有一位移。

设,则

(2.29)

例如的象函数,则的象函数为

7.初值定理

它表明原函数在时的数值。

(2.30)

即原函数的初值等于乘以象函数的终值。

8.终值定理

设,并且存在,则

(2.31)

即原函数的终值等于乘以象函数的初值。这一定理对于求瞬态响应的稳态值是很有用的。

9.卷积定理

设,,则有

(2.32)

即两个原函数的卷积分的拉氏变换等于它们象函数的乘积。

式(2.32)中,为卷积分的数学表示,定义为

10.时间比例尺的改变

(2.33)

式中——比例系数

例如,的象函数 ,则的象函数为

11.拉氏变换的积分下限

在某些情况下,在处有一个脉冲函数。这时必须明确拉普拉斯积分的下

限是还是,因为对于这两种下限,的拉氏变换是不同的。为此,可采用如下符号予以区分:

若在处包含一个脉冲函数,则

因为在这种情况下

显然,如果

在处没有脉冲函数,则有

2.5.4 拉普拉斯反变换 拉普拉斯反变换的公式为

()[]?∞+∞--=

=j j 1d e )(πj 21)(c c st

s s F s F L t f (2.36)

式中 1

-L ——表示拉普拉斯反变换的符号

通常用部分分式展开法将复杂函数展开成有理分式函数之和,然后由拉氏变换表一一查出对应的反变换函数,即得所求的原函数 )(t f 。

1. 部分分式展开法

在控制理论中,常遇到的象函数是的有理分式

为了将

写成部分分式,首先将

的分母因式分解,则有

式中,

,…,

的根的负值,称为

的极点,按照这些根

的性质,可分为以下几种情况来研究。

拉氏变换及其计算机公式

时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。 一、拉氏变换的定义 已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45) 式中,称为原函数,称为象函数,变量为复变量,表示为 (2-46) 因为是复自变量的函数,所以是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48)

上式为复变函数积分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号 理想单位脉冲信号的数学表达式为 (2-49) 且 (2-50) 所以 (2-51) 说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋

于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。在坐标图上经常将单位脉冲函数 表示成单位高度的带有箭头的线段。 由单位脉冲函数的定义可知,其面积积分的上下限是从到的。因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。 (2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53)

由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图2-15单位斜坡信号

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域

若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移

拉氏变换、传递函数、数学模型18页word文档

拉普拉斯变换的数学方法 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数()t F ,其中0t ≥,则f(t)的拉氏变换记作: 称L —拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。 f(t)—原函数 拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。 2)当∞→t 时,at Me )t (f ≤,M ,a 为实常数。 2、拉氏反变换:将象函数F (s )变换成与之相对应的原函数f(t)的过程。 1L -—拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 1.单位阶跃函数 2.单位脉冲函数 3.单位斜坡函数 4.指数函数at e 5.正弦函数sinwt 由欧拉公式:wt sin j wt cos e jwt += 所以,)e e (j 21wt sin jwt jwt --= 6.余弦函数coswt 其它的可见表2-1:拉氏变换对照表

三、拉氏变换的性质 1、线性性质 若有常数k 1,k 2,函数f 1(t),f 2(t),且f 1(t),f 2(t)的拉氏变换为F 1(s),F 2(s), 则 有 : F k )s (F k )]t (f k )t (f k [L 2112211+=+,此式可由定义证明。 2、位移定理 ?? ?复数域的位移定理实数域的位移定理 (1)实数域的位移定理 若f(t)的拉氏变换为F(s),则对任一正实数a 有 ) s (F e )]a t (f [L as -=-, 其中,当t<0时,f(t)=0,f(t-a)表 f(t)延迟时间a. 证明:?∞ --=-0st dt e )a t (f )]a t (f [L ,

(推荐)拉氏变换常用公式

常用拉普拉斯变换总结 1、指数函数 00)(≥

? ? ∞ -∞ -∞ ----==0 d d ][t s e s e t t te t L st st st 2 01d 1s t e s st == ?∞- 6、正弦函数 0sin 0 )(≥

拉氏变换

控制原理补充讲义——拉氏变换 拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作: 称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。2)当时, ,M,a为实常数。 2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。 —拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 注意:六大性质一定要记住 1.单位阶跃函数

2.单位脉冲函数 3.单位斜坡函数 4.指数函数 5.正弦函数sinwt 由欧拉公式: 所以,

6.余弦函数coswt 其它的可见下表:拉氏变换对照表

三、拉氏变换的性质 1、线性性质 若有常数k 1,k 2 ,函数f 1 (t),f 2 (t),且f 1 (t),f 2 (t)的拉氏变换为F 1 (s),F 2 (s), 则有:,此式可由定义证明。 2、位移定理 (1)实数域的位移定理 若f(t)的拉氏变换为F(s),则对任一正实数a有 , 其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a. 证明:, 令t-a=τ,则有上式= 例:求其拉氏变换

拉氏变换与反变换

机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 拉普拉斯变换的定义 如果有一个以时间为自变量的实变函数,它的定义域是,那么的拉普拉斯变换定义为 式中,是复变数,(σ、ω均为实数),称为拉普拉斯积分;是函数的拉普拉斯变换,它是一个复变函数,通常也称为的象函数,而称为的原函数;L是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数。 几种典型函数的拉氏变换 1.单位阶跃函数的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 单位阶跃函数如图所示,它表示在时刻突然作用于系统一个幅值为1的不变量。单位阶跃函数的拉氏变换式为 当,则。 所以 () 图单位阶跃函数 2.指数函数的拉氏变换 指数函数也是控制理论中经常用到的函数,其中是常数。 令

则与求单位阶跃函数同理,就可求得 () 3.正弦函数与余弦函数的拉氏变换 设,,则 由欧拉公式,有 所以 )同理 )4.单位脉冲函数δ(t)的拉氏变换 单位脉冲函数是在持续时间期间幅值为的矩形波。其幅值和作用时间的乘积等于1,即。如图所示。 图单位脉冲函数 单位脉冲函数的数学表达式为 其拉氏变换式为 此处因为时,,故积分限变为。 5.单位速度函数的拉氏变换 单位速度函数,又称单位斜坡函数,其数学表达式为 见图所示。 图单位速度函数 单位速度函数的拉氏变换式为 利用分部积分法 令 则

拉普拉斯变换公式

附录A 拉普拉斯变换及反变换

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(ΛΛ (F-1) 式中,n s s s ,,,21Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可 按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +Λ =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11 111111)()()(

对称变换

6对称变换 知识目标: 目标1:学会运用对称的思想解决将军饮马等最值问题 目标2:掌握倍角问题的常见处理方式 模块一“将军饮马”问题 例1 (1)如图,在上找一点P,使P A+PB最小. (2)如图,在上找一点P,使P A + PB最小. (3)如图,在上找一点P,使|P A—PB|最大. (4)如图,在上找一点P,使|P A—PB|最大. (5)如图,点P在锐角∠AOB的内部,在OB边上求作一点D,在OA边上求作一点C,使?PCD的周长最小.

(6)如图,点P是锐角∠AOB的内部一定点,在OB边上求作一点D,在OA边上求作一点C,使PD+CD 最小. (7)如图,点C、D在锐角∠AOB的内部,在OB边上求作一点F,在OA边上求作一点E,使四边形CEFD 的周长最小. (8)如图,直线外有两点A、B,有一定长线段,在直线上找到点M、N,使得MN间的距离等于定长a,使得四边形AMNB的周长最小. (9)如图,l1∥l2,点M、N分别是1、2上两动点,且满足MN⊥2,点A为1上方一定点,点B为2下方一定点,请确定M、N的位置,使AM+MN+BN最小.

例 2 (1)如图,等腰△底边的长为4,面积是122,腰的垂直平分线交于点,若为边上的中点,为线段上一动点,则△的周长最小值为 . F D E A B C M (2)(2013年武昌区八上期中) 如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值. 例3 (1)如图,∠AOB =30°,点M 、N 分别是射线OA 、OB 上的动点,点P 位于∠AOB 内,且OP =3,求△PMN 的周长最小值. (2)(2015年武汉二中八上期中) 如图,为∠内一定点,、分别是射线、上一点,当△周长最小时,∠=110°,则∠= . (3)(2015年青山区八上期中)

拉氏变换

拉普拉斯变换 拉普拉斯变换简称拉氏变换。它是一种函数的变换,经变换后,可将时域的微分方程变换成复数域的代数方程。并且在变换的同时,即将初始条件引入,避免了经典解法中求积分常数的麻烦,可使解题过程大为简化。因此,对于那些以时间t 为自变量的定常线性微分方程来说,拉氏变换求解法是非常有用的。 在经典自动控制理论中,自动控制的数学模型是建立在传递函数基础之上的,而传递函数的概念又是建立在拉氏变换的基础上,因此,拉氏变换是经典控制理论的重要数学基础,是分析研究线性动态系统的有力数学工具。本章着重介绍拉氏变换的定义,一些常用时间函数的拉氏变换,拉氏变换的性质以及拉氏反变换的方法。最后,介绍用拉氏变换解微分方程的方法。在学习中应注重该数学方法的应用,为后续章节的学习奠定基础。 2.1拉氏变换 2.1.1拉氏变换的定义 若()f t 为实变量时间t 的函数,且0t <时,函数()0f t =,则函数()f t 的拉氏变换记作 [()]f t L 或)(s F ,并定义为: [()]()()e d L st f t F s f t t +∞-==? (2.1) 式中s j σω=+为复变量,()F s 称为()f t 的象函数,称()f t 为()F s 的原函数。原函数是实变量t 的函数,象函数是复变量s 的函数。所以拉氏变换是将原来的实变量函数()f t 转化为复变量函数()F s 的一种积分运算。在本书中,将用大写字母表示相对应的小写字母所代表的函数的拉氏变换。 必

e 1 [1()]1e d L st st t t s s +∞ -+∞-=?=- =? (2.2) 在自动控制系统中,单位阶跃函数相当于一个实加作用信号,如开关的闭合(或断开),加(减)负载等。 ⑵单位脉冲函数 单位脉冲函数如图2.2所示。 其定义为 ()0 t t t δ∞ =?=? ≠? 同时, ()d 1t t δ+∞=? ,即脉冲面积为1。而且有如下特性: ()()d (0)t f t t f δ+∞-∞ ?=? (0)f 为()f t 在0t =时刻的函数值。 (0) ()(0) t f t t t

拉氏变换定义及性质

拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0 e st 称为拉普拉斯积分; )(s F 是 函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。

最全拉氏变换计算公式

1 最全拉氏变换计算公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑1 1 )1() 1(1 22 2) ()() 0()()(0)0()(])([)0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(])([s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

对称变换.

对称变换 【将军饮马】据说古代希腊有一位将军向当时的大学者海伦请教一个问题:从A地出发到河边饮马,再到B地(如图4.32所示),走什么样的路最近?如何确定饮马的地点? 海伦的方法是这样的:如图4.33,设L为河,作AO⊥L交L于O点,延长AO至A',使A'O=AO。连结A'B,交L于C,则C点就是所要求的饮马地点。再连结AC,则路程(AC+CB)为最短的路程。 为什么呢?因为A'是A点关于L的对称点,AC与A'C是相等的。而A'B 是一条线段,所以A'B是连结A'、B这两点间的所有线中,最短的一条,所以AC+CB=A'C+CB=A'B也是最短的一条路了。这就是海伦运用对称变换,找到的一种最巧妙的解题方法。运用这种办法,可以巧妙地解决许多几何问题。 【划线均分】通过中心对称图形的对称中心,任意画一条直线,都可以把原图形均分成两个大小、形状完全相同的图形。利用这一性质,可以使某些较复杂的问题迅速地解答出来。例如 (1)把图形(图4.34)的面积,用一条直线分成相等的两个部分。

解题时,只要把这个图形看成是由两个矩形(长方形)组成的组合图形,而矩形既是轴对称图形,也是中心对称图形,所以只要找出两个对称中心(对角线交点),利用中心对称图形的上述性质,通过两个对称中心作一条直线,就能把它的面积分成相等的两个部分了。如前页的三种分法都行(如图4.35所示)。 (2)如图4.36,长方形ABCD内有一个以O点为圆心的圆,请画一条直线,同时将长方形和圆分为面积相等的两个部分。 大家知道,长方形和圆都既是轴对称图形,又是中心对称图形。长方形的对称中心是对角线的交点,圆的对称中心是它的圆心。 根据中心对称图形的上述性质,先找出这两个对称中心O点和P点(如图4.37),再过O、P作直线L,此直线L即是所画的那根直线。

拉氏变换表(包含计算公式)

1 拉氏变换及反变换公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑ 1 1 ) 1() 1(1 2 2 2 ) ()() 0()() (0)0()(]) ([) 0()(])([k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L ) ( 初始条件为0时 )(]) ([ s F s dt t f d L n n n = 3 积分定理 一般形式 ∑ ???????????==+-===+=+ + = + = n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 1 1 2 2 2 2 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L )(]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

小学数学奥数解题技巧(55)对称变换

55、对称变换 【将军饮马】据说古代希腊有一位将军向当时的大学者海伦请教一个问题:从A地出发到河边饮马,再到B地(如图4.32所示),走什么样的路最近?如何确定饮马的地点? 海伦的方法是这样的:如图4.33,设L为河,作AO⊥L交L于O 点,延长AO至A',使A'O=AO。连结A'B,交L于C,则C点就是所要求的饮马地点。再连结AC,则路程(AC+CB)为最短的路程。 为什么呢?因为A'是A点关于L的对称点,AC与A'C是相等的。而A'B是一条线段,所以A'B是连结A'、B这两点间的所有线中,最短的一条,所以AC+CB=A'C+CB=A'B也是最短的一条路了。这就是海伦运用对称变换,找到的一种最巧妙的解题方法。运用这种办法,可以巧妙地解决许多几何问题。 【划线均分】通过中心对称图形的对称中心,任意画一条直线,都可以把原图形均分成两个大小、形状完全相同的图形。利用这一性质,可以使某些较复杂的问题迅速地解答出来。例如

(1)把图形(图4.34)的面积,用一条直线分成相等的两个部分。 解题时,只要把这个图形看成是由两个矩形(长方形)组成的组合图形,而矩形既是轴对称图形,也是中心对称图形,所以只要找出两个对称中心(对角线交点),利用中心对称图形的上述性质,通过两个对称中心作一条直线,就能把它的面积分成相等的两个部分了。如前页的三种分法都行(如图4.35所示)。 (2)如图4.36,长方形ABCD内有一个以O点为圆心的圆,请画一条直线,同时将长方形和圆分为面积相等的两个部分。

大家知道,长方形和圆都既是轴对称图形,又是中心对称图形。长方形的对称中心是对角线的交点,圆的对称中心是它的圆心。 根据中心对称图形的上述性质,先找出这两个对称中心O点和P 点(如图4.37),再过O、P作直线L,此直线L即是所画的那根直线。

拉氏变换定义及性质

2.5 拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能 的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。 所以:

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

里氏硬度转化抗拉强度对照表 (1)

里氏硬度转换抗拉强度对照表 HLD HRC HRB HV 抗拉 强度 HLD HRC HRB HV 抗拉 强度 35260.3104 375 64841.2395 35461105379 65041.5398 35661.7106381 65241.7401 35862.4107384 65442404 36063.1108386 65642.3407 36263.8109388 65842.6411 36464.5110393 66042.8414 36665.1111395 66243.1417 36865.8112399 66443.4420 37066.4114402 66643.6423 37267115404 66843.9426 37467.7116404 67044.1429 37668.3117409 67244.4433 37868.9118415 67444.7436 38069.5119418 67644.9439 38270.1120421 67845.2442 38470.6121424 68045.5446 38671.2123427 68245.7449 38871.8124433 68446452 39072.3125437 68646.2456 39272.9126440 68846.5459 39473.4127444 69046.8463 39674129447 69247466 39874.5130451 69447.3469 40075131445 69647.5473 40275.5133459 69847.8476 40476134463 70048480 40676.5135467 70248.3483 40877136471 70448.6487 41077.5138475 70648.8491 41278139480 70849.1494 41478.4141484 71049.3498 41678.9142489 71249.6501 41879.3143493 71449.8505 42079.8145498 71650.1509 42280.2146498 71850.3513 42480.7148503 72050.6516 42681.1149508 72250.8520

拉氏变换定义、计算、公式及常用拉氏变换反变换

****拉普拉斯变换及反变换**** 定义:如果定义: ? 是一个关于的函数,使得当时候, ; ? 是一个复变量; ? 是一个运算符号,它代表对其对象进行拉普拉斯积分;是 的拉普拉斯变换结果。 则的拉普拉斯变换由下列式子给出:

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1)

式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []? ?????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→

拉普拉斯变换公式

附录A拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(l i m s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

不锈钢管的洛氏硬度、布氏硬度等硬度对照表和换算方法

不锈钢管的洛氏硬度、布氏硬度等硬度对照表和换算方法 以下资料由:天津武进不锈钢制品销售有限公司提供 一、硬度简介: 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1. 布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2. 洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: ? HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 ? HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 ? HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 word教育资料

3. 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值 (kgf/mm2)。 注:洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。 二、硬度对照表: word教育资料

对称变换和对称矩阵.doc

7.5 对称变换和对称矩阵 授课题目:7.5 对称变换和对称矩阵 教学目的: 1.掌握对称变换的概念,能够运用对称变换和对称矩阵之间的关系解题. 2.掌握对称变换的特征根、特征向量的性质. 3.对一个实对称矩阵A,能熟练地找到正交矩阵T,使 T AT '为对角形 授课时数:3学时 教学重点: 对称变换的特征根、特征向量的性质; 对实对称矩阵A,能熟练地找到正交矩阵T,使 T AT '为对角形 教学难点:定理7.5.4的证明 教学过程: 一、 对称变换 1、一个问题 问题:欧氏空间V 中的线性变换σ应该满足什么条件,才能使它在某个正交基下的矩阵是对角形?V 满足:V ∈>>=<<βαβσαβασ,,)(,),( 2、对称变换的定义 设σ是欧氏空间V 中的线性变换,如果V ∈?βα,都有、 >>=<<)(,βσαβασ),( 则称σ是V 的一个对称变换 例1 以下3 R 的线性变换中,指出哪些是对称变换? 1123122331(,,)(,,)x x x x x x x x x σ=+++ 21231323123(,,)(,2,2);x x x x x x x x x x σ=+--+ 3123213(,,)(,,)x x x x x x σ=-- 3、对称变换与对称矩阵的关系 Th1:n 维欧氏空间V 中的线性变换σ是对称变换的充分必要条件是: 关于任意一个正交基的矩阵是实对称矩阵 证:必要性:设σ是对称变换,σ关于V 的标准正交基},{21n ααα 的矩阵是 A=)(),(R n ij u A a ∈即 =))()(),((21n ασασασ },{21n ααα A 则k n k ki i a αασ∑== 1 )( n i ≤≤1

相关主题
文本预览
相关文档 最新文档