当前位置:文档之家› 全国高中物理竞赛专题一 运动学

全国高中物理竞赛专题一 运动学

全国高中物理竞赛专题一 运动学
全国高中物理竞赛专题一 运动学

2

22z y x r ?+?+?=? 竞赛专题一 运动学

【基本知识】

一、 质点的位置、位置矢量和位移

1、质点 如果物体的大小和形状可以忽略不计,就可以把物体当做一个有质量的点。称该点为质点。

2、参考系 物理学中把选作为标准的参考物体系统为参考系。

3、位置矢量 由参考点指向质点所在位置的有向线段称为位置矢量,简称位矢或矢径。

其大小为

方位是 4、位移 由初位置指向末位置的矢量称为位移,它等于质点在t ?时间内位置矢量的增量,即 12r r r -=?

k j i z y x r ?+?+?=?

其中

12x x x -=? 12y y y -=? 12z z z -=?

位移的大小为

位移的方位是

r

x ??=

αcos

r

y

??=

βc o s

r

z

??=

γc o s

二、直线运动的速度和加速度 1、速度

平均速度 质点在t t t ?+~内产生的位移r ?与t ?之比,称为此时间间隔内的平均速度,表达式是为t

r v ??=

瞬时速度 当0→?t 时,平均速度的极限值,即位移矢量对时间的一阶导数,称为质点在t 时刻的瞬时速度,简称速度,表达式为

dt

d t r r v t =??=→?lim 0

2、、 加速度

平均加速度 在t t t ?+~内质点速度的增量与时间之比,称为时间间隔内的平均加速度,表达式为

t

v a ??=

瞬时加速度 平均加速度的极限值,即速度对时间的一阶导数,或位置矢量对时间的二阶导数,称为质点在t 时刻的瞬时加速度,简称加速度,表达式为

dt d dt d t

r v v a t 20lim =

=??=→?

(1)加速度具有瞬时性,即)(t a a =。只有质点做匀变速直线运动时,=a 恒矢量,这时

有如下运动公式

k z j y i x r

++=222z y x r ++=

r x /cos =αr /y cos =βr /z cos =γx

y

z

p

r

y

x

z ?β

γ

x

y

z

P 1(x 1,y 1,z 1)

r 1

r 2

△r

P 2(x 2,y 2,z 2)

A(t) B(t+△t)

△r v

??

?

?

?

??-=-+=-+=)

(221020220

00x x a v v at t v x x at v v (2)加速度具有相对性,对于不同的参考系来说,质点的加速度一般不同。在两个相对做匀

速直线运动的参考系中(两个惯性系),质点具有相同的加速度。

(3)加速度与速度本身无关,只与速度的变化(包括方向或大小的变化)有关。某时刻速度为零而加速度不为零的是可能的。例如,竖直上抛运动到顶点时,0=v ,但0≠=g a

三、运动学的基本问题

微分问题 已知运动方程,求速度、加速度。因求解方法用微分方法,故称此类问题为微分问题。

积分问题 已知加速度和初始条件,求速度、运动方程。因求解方法用积分方法,故称此类问题为积分问题。

(1)当)(t a a

=时,?+=→=t

dt

t dt t d a v v a v 00)()(。同理由dt

d r

v =

,可得

?=-t

y dt t v r r 00)(。

(2)当)(v a a

=时,由)()(v a dv dt dt dv v a =→=

,可得??=v v t v a dv

dt 0

)

(0。 (3)当)(x a a

=时,vdv dx x a dx

dv

v dt dx dx dv dt dv x a =→===

)()( 四、曲线运动的速度和加速度 1、曲线运动的速度和加速度

物体(质点)运动轨迹是曲线的的运动称为曲线运动。参照直线运动中瞬时速度的概念描写质点在某一时刻运动的快慢情况。

平均速度 质点在t t t ?+和时刻位矢分别为)(t r 和)(t t

r ?+,则

在t ?时间内的平均速度为r ?与t ?之比,表达式是为t r v ??= 瞬时速度 当0→?t 时,平均速度的极限值为质点在t 时刻的瞬时速

度,表达式为 dt d t r r v t =??=→?lim 0

瞬时加速度 在t 时刻质点位于A 点,速度为A v ,经过t ?时间后质

点位于B 点速度为B v ,瞬时加速度为t

t v v v a t A B t ??=?-=→?→?lim

lim 00

2、圆周运动 圆周运动是曲线运动的特例,设质点作半径为R 的圆周运动,在t 时刻质点的速度为v ,则圆周运动的加速度为

t

n a a a t t n a R

v +=+=2

,其中切向加速度

A

B V A

V B

V B

△V

y

x

R

H θ

o v t t

t v

a t ??=→?0lim ,反映的是速度大小的变化;法向加速度n a R v n 2=,反映的是速度方向的

变化 。n 和t 分别为法线方向单位矢量和切向方向单位矢量。

若质点做匀速圆周运动,其速率不随时间变化,即

0=t a ,即质点的运动加速度

n a a R

v n 2

==就是法向加速度,其大小保持不变,方向始终指向圆心。

3、抛体运动 物体以一定的速度v o 抛出后,若忽略空气阻力,且物体的运动地球表面附近,它的运动高度远小于地球半径,则在运动过程中,其加速度恒为竖直向下的重力加速度g 。抛体运动是一种加速度恒定的曲线运动。(o 0=θ时为平抛运动,o 90=θ时为上抛运动)

取抛体轨迹所在平面Oxy 平面,抛出点为坐标原点,水平方向为x 轴,竖直方向为y 轴,则抛体运动的规律为:

g a a y x -==,0;

gt v v v v o y o x -==θθsin ,cos ;

202

1sin ,cos gt t v y t v x o -

==θθ

射程 R =g

V θ2sin 20

其轨迹方程为222cos 2tan x v g

x y o θ

θ-=,飞行时间 T =g V θsin 20

, 射高 H =g

V θ220sin

抛体运动具有对称性,上升时间和下降时间相等;上升和下降时经过同一高度时速度大小相等,速度方向与水平方向的夹角大小相等。

五、运动的合成

1、运动的合成与分解:包括位移、速度、加速度的合成与分解,合运动与分运动具有独立性、 等时性、等效性。

2、 相对运动:物体相对静止参考系的速度等于物体相对运动参考系的速度和运动参考系相对 于静止参考系两者的矢量和。牵连相对绝对

v v v

+=

六、刚体的平动和定轴转动 1、刚体

在无论多大的外力作用下,总保持形状和大小不变的物体叫刚体。刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可看做刚体。

刚体运动时,其上各点的运动状态总是相同,这种运动叫平动。如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫转动。刚体的任何一个复杂运动总可视作平动与转动的叠加,刚体的运动同样遵从运动独立性原理。

刚体绕轴转动时,其上的任一质点都绕轴做圆周运动,既可以用线量来描述,又可以用角量来描述,角量与线量的关系为

x

Q

P

θ

θ

θ

θ?+????

???===2ω

βωτr a r a r v n 2、角位置与角位移

角位置 刚体上任一点在t 时刻到达P 点,刚体的方位可由r OP =与Ox 之夹角θ来确定,称为t 时刻的角位置,亦称角坐标。如图所示。

角位移 若t 时刻刚体的角位置为θ,t t ?+时刻角位置为θθ?+,则θ?称为刚体在t

?时间内的角位移 。

3、角速度与角加速度

平均角速度 刚体在t t t ?+~内产生的角位移θ?与t ?之比,称为t ?时间内的平均角速度。表达式为t

??=θω

瞬时角速度 0→?t 平均角速度的极限值。表达式为dt

d t

t θθω=??=→?0lim

平均角加速度 在t t t ?+~内刚体角速度的增量与时间之比,

称为时间间隔内的平均角加速度。表达式为t

??=ωβ

瞬时角加速度 0→?t 时平均角速度的极限值。表达式为2

2

0lim dt d dt d t t θωωβ==??=→?

七、刚体定轴转动的基本问题

微分问题 已知角运动方程,求角速度、角加速度。因求解方法用到微分方法用到积分方法,故此类问题称为微分问题。

积分问题 已知叫加速度和初始条件,求角速度、角运动方程。因求解方法用到积分方法,故此类问题称为积分问题。

⑴描述刚体定轴转动时,如下对应关系:dt

d dt d ω

βθωθ

=

→=

→ ⑵当)(t ββ

=时,可利用定义dt t d dt

d )(βωω

β=→=

,求得 ?+=t

o o dt t )(βωω

, ?+=t

o o dt t )(ωθθ

当)(ωββ

=时,据定义对变量进行调整

)

()(ωβωωωβd dt dt d =→=,然后取积分并

代人初始条件就可以求出角速度方程,进一步可以求出角运动方程

当)(θββ=时,需作如下变换θ

ω

ω

θθωωβd d dt d d d dt d ===,然后分离变量取积分,求出角速度方程和角运动方程.

⑶考虑如下两种特殊情况:

当刚体做匀变速转动时()c =β,如下公式成立:

t βωω+=0

22

100t t βωθθ++=

)(202

02θθβωω-+=

当刚体做匀速转动()0=β

)时,公式成t ωθθ+=0成立.

【例题解析】

例1 质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张 力为T ,求此圆环可以绕几何轴旋转的最大角速度.

解析:因为向心力F=mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω,r 应取最大值.如图1-1所示,在圆环上取一小段△L ,对应的圆心角

为△θ,其质量可表示为M m πθ

2?=

?,受圆环对它的张 力为T ,则同上例分析可得 22

sin 2ωθ

mr T ?=?

因为△θ很小,所以2

2sin θ

θ?≈

?,即 2222ωπθ

θMr T ?=??

解得最大角速度 Mr

T

πω2= 注释 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。

例2 一 只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s 成反比,当老鼠到达距老鼠洞中心距离s 1 = 1m 的A 点时,速度大小为v 1 = 20cm/s ,问当老鼠到达距老鼠洞中心s 2=2m 的B 点时,其速度大小v 2 = ?老鼠从A 点到达B 点所用的时间t = ?

解析:我们知道当汽车以恒定功率行驶时,其速度v 与牵引力F 成反比,即v =P

F

,由此可把老鼠的运动等效为在外力以恒定的功率牵引下的弹簧的运动。

由此分析,可写出:v =P F =P kx

当x = s 1时,v = v 1 将其代入上式求解,得:k =

11P v s =22

P v s 所以老鼠到达B 点时的速度v 2 =

1

2

s s v 1 =12×20 = 10cm/s

再根据外力做的功等于此等效弹簧弹性势能的增加,Pt =1

2

k 22

s -12

k 21s

图1-1

代入有关量可得:Pt =

12?11

P

v s (22

s -21s ) 由此可解得:t =222

111s s 2s v -=2221210.2

-??= 7.5s

注释 等效法是用较简单的因素代替较复杂的因素,以使问题得到简化而便于求解。在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律。

例3 如图1-2所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取2

/10s m g =,求所需的最小初速及对应的发射仰角。 解析 水流做斜上抛运动,以喷口O 为原点建立如图所示的直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。

根据平抛运动的规律,水流的运动方程为??

?

??-?=?=20021sin cos gt t v y t v x αα

把A 点坐标(d 、h )代入以上两式,消去t ,得:

h

h

d h h

d d h d gd h d gd d h gd v -?+-

?++=+-=-?-=]2cos 2sin [

/)]12(cos 2sin /[)

tan (cos 2/2

2

2

2

2222222

0αααααα

令 ,sin /,cos /,tan /2222θθθ=+=+=h d h h d d d h 则上式可变为

,

,6.713

4arctan 45arctan 2145245902,1)2sin(,,)2sin(/02222

0最小时亦即发射角即当显然v d h h h d gd v

=+=+=+==-=---+=θ

αθαθαθα 且最小初速0v =./5.9/103)(2

2s m s m h h d g ==++

注释 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推

理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易。

例4 有一个很大的湖,岸边(可视湖岸为直线)停放着一艘小船,缆绳突然断开,小船被风刮跑,其方向与湖岸成15°角,速度为2.5km/h 。 同时岸上一人从停放点起追赶小船,已知他在岸上跑的速度为4.0km/h ,在水中游的速度为2.0km/h ,问此人能否追及小船?

解析:费马原理指出:光总是沿着光程为极小值的路径传播。据此可以证明,光在平面分界面上的折射是以时间为极小值的路程传播。本题求最短时间问题,可类比类在平面分界面上的折射情况,这样就把一个运动问题通过类比可转化为光的折射问题求解。

如图1-3所示,船沿OP 方向被刮跑,设人从O 点出发先沿湖岸跑,在A 点入水游到OP 的B 点,如果符合光的折射定律,则所用时间最短。根据折射定律:

o sin 90sin γ=4.0

2.0

,解得:γ = 30° α = 180°-15°-(90°+γ) = 45°

1-2

图1-3

在这最短时间内,若船还未到达B 点,则人能追上小船,若船已经通过了B 点,则人不能追上小船,所以船刚好能到达B 点所对应的船速就是小船能被追及的最大船速v m 。 根据正弦定理:

m o v t sin120=11o v t sin 45=22

o

v t sin15 ①

又:t = t 1 + t 2

由以上两式可解得:v m =o

12o o

12v v sin120v sin15v sin 45+= 22km/h ②

此即小船能被人追上的最大速度,而小船实际速度只有2.5km/h ,小于22km/h ,所以人能追上小船。

注释 类比法是在于发现和探索发现某些不同问题在一定范围内具有形式上的相似性,其中包括数学表达式上的相似性和物理图像上的相似性,利用已知系统的物理规律去寻找未知系统的物理规律。

例5 一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。A 、B 两地相距s ,火车做加速运动时,其加速度最大为a 1 ,做减速运动时,其加速度的绝对值最大为a 2 ,由此可可以判断出该火车由A 到B 所需的最短时间为 。

解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图象法来解。根据题意作v —t 图,如图(4)所示。

由图可得:a 1 =1

v

t ①

a 2 =

2

v

t ② s =12

v (t 1 + t 2) =12

vt ③ 由①、②、③解得:t =

1212

2s(a a )

a a +

注释 图象法是把抽象复杂的物理过程有针对性地表示成物理图象,将物理量

间的代数关系转变为几何关系,运用图象直观、形象、简明的特点,来分析解决物理问题。 例6 A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物?

解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。由题意作图1-5-1,设顶点到中心的距离为s ,则由已知条件得:s =

33

a 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为:

v ′= vcos30°=

32

v 由此可知三角形收缩到中心的时间为:t =

s v '=2a 3v

注释 对称法

由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使

图 1-4

图1-5-1

对称现象普遍存在于各种物理现象和物理规律中。利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。

解法(2)三只猎犬都做等速率曲线运动,而且任一时刻三只猎犬的位置都分别在一个正三角形的三个顶点上,但这正三角形的边长不断减小,如图1-5-2要想求出捕捉的时间,则需用微元法将等速率曲线运动变成等速率直线运动,再用递推法求解.

设经时间t 可捕捉猎物,再把t 分为n 个微小时间间隔△t ,在每一个△t 内每只猎犬的运动可视为直线运动,每隔△t ,正三角形的边长分别为a 1、a 2、a 3、…、a n ,显然当a n →0时三只猎犬

相遇.t

v n a a t v a t v a a t v a t v a a t v a BB AA a a n ??-=??-=?-=??-=?-=?-=?--=2

3

,2

3

323,

23

223,

2

3

60cos 2312111

因为,02

3

=??

-t v n a 即v

a t t t n 32=

=?所以 注释 递推法是解决物体与物体发生多次作用后的情况. 即当问题中涉及相互联系的物体较多并且有规律时,应根据题目特点应用数学思想将所研究的问题归类,然后求出通式。具体方法是先分析某一次作用的情况,得出结论. 再根据多次作用的重复性和它们的共同点,把结论推广,然后结合数学知识求解。用递推法解题的关键是导出联系相邻两次作用的递推关系式.

例7 已知地球半径约为6.4×106m ,又知月球绕地球的运动可近似看做匀速圆周运动,则可估算出月球到地心的距离约为 m.(结果只何留一位有效数字) 解析 因为月球绕地球的运动可近似看做匀速圆周运动,所以可根据月球所受的万有引力提供月球做匀速圆周运动所需要的向心力及月球公转周期求解此问题,也可根据地球上的光经月球反射2秒后返回地球的知识估算. 根据运动定律及万有引力定律得: r T m r

GMm 2

2

)2(π=

g m R

m GM '='

2

两式代入数据可得r =4.1×108m (其中T 是月球绕地球旋转周期,T=30天)

注释 估算法是在我们解决问时题缺乏必要的已知条件,无法用常规的方法来求出物理问题

的准确答案,采用“估算”的方法就能忽略次要因素,抓住问题的主要本质,充分应用物理知识进行快速数量。

例8 如图1-6-1所示,质点自倾角为α的斜面上方定点O 沿光滑的斜槽从静止开始下滑,为使质点在最短时间内从O 点到达斜面,斜槽与竖直方向的夹角β应等于多少?

图1-5-2

图1-6-1

1-6-2

解析:如图1-6-2所示,以经过O 点的竖直线上的一点O ′ 为圆心,OO ′ 为半径作圆,并使该圆与斜面恰好相切于A 点,与OO ′延长线交于B 点。已知从O 点由静止出发沿倾角不同的光滑斜面下滑的质点,到达圆周上不同点所需时间相等,显然,质点沿OA 方向从静止开始滑到斜面上所需时间比沿其他方向滑到斜面上所需时间短。

连接O ′A ,由几何关系得:∠AO ′B = α

所以所用时间最短时,斜槽与竖直方向的夹角:β =

2

α 注释 作图法是根据题意把抽象复杂的物理过程有针对性的表示成物理图像,将物理问题转化成一个几何问题,通过几何知识求解,作图法的优点是直观形象,便于定性分析,也可定性计算,灵活应用作图法会给解题带来很大方便

例9(第21届预赛题)如图1-7所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上。A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动。碗和杆的质量关系为:m B =2m A 。初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图)。然后从静止开始释放A ,A 、B 便开始运动。设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角。求A 与B 速度的大小(表示成θ 的函数)。 解析 由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B ,若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为A V 。杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,

速度合成的矢量图如图中的平行四边形所示。由图1-7得: A A sin V v θ=

B A

c o s V v θ

= 因而 B A cot v v θ=,由能量守恒 A 22

B B

A A 12

1cos 2m gR m v m v θ=+ 且知 m B =2m A 得 : A 22cos sin 1cos gR v θθ

θ=+; B

22c o s c o s 1c o s gR v θθθ

=+ 例10(第24届复赛题)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。

AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示)

A

C D

B B v

C v

a Cn a C t a C

θ

图1-8-1

图1-7

图1-8-2

解法一 因为B 点绕A 轴作圆周运动,其速度的大小为B l ω=v (1) B 点的向心加速度的大小为2B a l ω=

(2)

因为是匀角速转动,B 点的切向加速度为0,故B a 也是B 点的加速度,其方向沿BA 方向.因为C 点绕D 轴作圆周运动,其速度的大小用C v 表示,方向垂直于杆CD ,在考察的时刻,由图可知,其方向沿杆BC 方向.因BC 是刚性杆,所以B 点和C 点沿BC 方向的速度必相等,故有

C π2cos

42

l ω==B v v (3) 此时杆CD 绕D 轴按顺时针方向转动,C 点的法向加速度2C

Cn a CD

=v (4)

由图可知22CD l =,由(3)、(4)式得2

28

Cn a l ω= ,方向沿CD 方向 (5)

下面来分析C 点沿垂直于杆CD 方向的加速度,即切向加速度Ct a .因为BC 是刚性杆,所以C 点相对B 点的运动只能是绕B 的转动,C 点相对B 点的速度方向必垂直于杆BC .令CB v 表示其速度的大小,根据速度合成公式有CB C B =-v v v 由几何关系得2222

22

CB B C B l ω=

-=

=v v v v (6) 由于C 点绕B 作圆周运动,相对B 的向心加速度2

CB

CB a CB

=v (7) 因为2CB l =

,故有2

24

CB a l ω=

,方向垂直杆CD (8) 由(2)式及图可知,B 点的加速度沿BC 杆的分量为()π

cos 4

B B B

C a a = (9) 所以C 点相对A 点(或

D 点)的加速度沿垂直于杆CD 方向的分量

()2

324

Ct CB B BC a a a l ω=+=

(10) C 点的总加速度为C 点绕D 点作圆周运动的法向加速度Cn a 与切向加速度Ct a 的合加速度,即

22

2

748

C Cn Ct a a a l ω=+=

(11) C a 的方向与杆CD 间的夹角arctan

arctan 680.54Ct

Cn

a a θ===?(12) 解法二 通过微商求C 点加速度。以固定点A 为原点作一直角坐标系Axy ,Ax 轴与AD 重合,Ay 与AD 垂直.任意时刻t ,连杆的位形如图所示,此时各杆的位置分别用θ,?和α表示,且已知AB l =,2BC l =,22CD l =,3AD l =,

d d t

θ

ω=-,C 点坐标表示为 cos 2cos C x l l θ?=+ (1)

sin 2sin C y l l θ?=+ (2)

将(1)、(2)式对时间t 求一阶微商,得

d d d sin 2sin d d d C x l t t t θ?θ??

?=-+ ???

(3)

d d d cos 2cos d d d C y l t t t θ?θ??

?=+ ??

? (4) 把(3)、(4)式对时间t 求一阶微商,得

22

222222d d d d d cos sin 2cos 2sin d d d d d C x l t t t t t θθ??θθ????????=-+++?? ? ????????? (5)

22

2222

22d d d d d sin cos 2sin 2cos d d d d d C y l t t t t t θθ??θθ????????=-+-+?? ? ????????

? (6)

根据几何关系,有

sin sin sin CD AB BC αθ?=+ cos cos cos 3CD AB BC l αθ?++=

即 22sin sin 2sin αθ?=+ (7)

22cos 3cos 2cos αθ?=--

(8)

将(7)、(8)式平方后相加且化简,得2sin sin 2cos cos 3cos 32cos 20θ?θ?θ?+---=(9)

对(9)式对时间t 求一阶微商,代入π2θ=

,π4?=,d d t

θω=-,得d 1

d 2t ?ω= (10) 对(9)式对时间t 求二阶微商,并代入上述数据,得22

2d 3d 8

t ?ω=

(11)

将(10)、(11)式以及θ,?,d d t

θ

的数值代入(5)、(6)式,得

222d 5d 8C x l t ω=-,22

2

d 7d 8

C y l t ω=- 所以2

2

222

22d d 74d d 8C C C x y a l t t ω????=+=

? ?????

(12) 由图知,C a 与x 轴的夹角为β

2222d d tan 1.4d d C C y x t t β??

??

== ?

?????

(13)

所以求得arctan1.454.46β==,这个夹角在第三象限,为234.46,故C a 与CD 的夹角=80.54γ

例11(第25届预赛题)为训练宇航员能在失重状态下工作和生活,需要创造一种失重的环境。在地球表面附近,当飞机模拟某些在重力作用下的运动时,就可以在飞机座舱内实现短时间的完全失重状态。现要求一架飞机在速率为v 1=500m/s 时进入失重状态试验,在速率为v 2=1000m/s 时退出失重状态试验。重力加速度g =10m/s 2。试问:

(i )在上述给定的速率要求下,该飞机需要模拟何种运动,方可在一定范围内任意选择失重时间的长短?试定量讨论影响失重时间长短的因素。

(ii )飞机模拟这种运动时,可选择的失重状态的时间范围是多少?

解析 当飞机作加速度的大小为重力加速度g ,加速度的方向竖直向下的运动时,座舱内的

试验者便处于完全失重状态。这种运动可以是飞机模拟无阻力下的自由落体运动或竖直上抛运动,也可以是斜抛运动。当进入试验的速率和退出试验的速率确定后,飞机模拟前两种运动时,失重时间的长短都是一定的、不可选择的。当飞机模拟无阻力作用下的斜抛运动时,失重时间的长短与抛射角有关,可在一定范围内进行选择。

考察飞机模拟无阻力作用下的斜抛运动。设开始试验时飞机的初速度的大小为v 1,方向与水平方向成θ角,起始位置为A 点,经做抛物线运动在B 点退出试验,如图所示。以t 表示试验经历的时间,在退出试验时的速率为v 2,则有v 2x =v 1cos θ (1) v 2y =v 1sin θ?gt

(2) 而222222y x v v v +=

(3)

由(1)、(2)、(3)式得0sin 22

221122=-+-v v θgt v t g

(4) 解(4)式得g

v v θv θv t )

(sin sin 212

22211-++=

(5)

由(5)式可知,当进入试验时飞机的速度v 1和退出试验时飞机的速度v 2确定以后,失重时间的长短可通过角θ来调节。

(ii)当θ=90°时失重时间最长,由(5)式可求得最长失重时间t max =150s (6) 当θ=?90°时,失重时间最短,由(5)式可求得最短失重时间t min =50s (7)

失重时间的调节范围在150s 到50s 之间。

【训练题】

练习1 在进行“飞镖”训练时,打飞镖的靶上共有10环,且第10环的半径为1cm ,第9环的半径为2cm ,……,依此类推,如图1-9所示,当人离靶的距离为5m ,将飞镖对准10环中心以水平速度v 投出,则(g=10m/s 2

)( )

A 、当v ≥50m/s 时,会射中第8环线以内

B 、当v=50m/s 时,会射中在第6环线上

C 、若要击中第10环以内,速度v 至少应为s m /550

D 、若要击中靶子,速度v 至少应为s m /225

练习2 如图1-10所示,长度为L 的直杆上端连着一个半径不计的小球A,下端固定在转轴O 上,物体B 与转轴O 在同一水平面上,球A 顺时针转动时,A 、B 紧密接触,当杆与水平方向的夹角等于θ时,物体B 水平移动的速度等于v ,那么,此时,球A 转动的角速度是

练习3 如1-11图所示,细绳长l ,吊一个质量为m 的铁球,绳受2mg 拉力就会断裂,绳的上端系一质量不计的环,环套在光滑水平杆上。起初环带着球一起以速度gl v =

向右匀速运动,在A 处环被挡住而停下的瞬间,绳子所受拉力

A

B

O

v

θ

图1-9 图1-10

图1-11

为多少?在以后的运动过程中,球是先碰墙还是先碰地?(已知A 处离墙水平距离为l ,球离地高度h=2l )

练习4 如图1-12所示,质量为m 的带电小球静止在绝缘水平面上,某时刻给小球加上某方向上的范围足够大的匀强电场,小球腾空沿着与水平面成300

角的直线飞去。电场力的大小恒为mg F 3=,小球经过一段时间t 的飞行后,将所加电场方向逆时针旋转1200

再经过

2

t

撤去电场。小球在重力的作用下落回水平面,试求: ⑴落回点与出发点相距多远; ⑵小球的飞行时间?

练习5 2007年春节期间,城乡许多家庭为了增添节日的热闹气氛,燃放了不少组合“春雷”花炮,组合“春雷”花炮一般由炮筒、炮体和引线等部分组成。组合“春雷”花炮有16响、25响、36响……不同的组合方式,如图1-13所示为16响“春雷”的示意图。燃放“春雷”的过程一般是先点火,炮体在炮筒中经过一段匀加速运动的过程后,从炮筒口以较大的速度冲向天空,在最高点炸裂,然后落地。已知炮筒的高度cm h 50=,炮体在炮筒中的加速度为

2/400s m ,炮体与炮体间的水平距离为cm l 8=,导入炮体的引线长度与炮筒高度相同,如图所示,引线的燃烧速度为s cm v /2=,不计空气阻力,试求:

(1)从点火到最后一个炮体离开炮筒的时间; (2)炮体能达到的最大高度?

练习6 为了测量一高楼的高度,某人设计了如下实验,在一根长为l 的绳两端各拴一重球,一人站在楼顶上,手执绳的上端无初速度释放使其自由落下,另一个人在楼下测量两球落地的时间差t ?,即可根据g t l ,,?得出楼的高度(不计空气阻力)。请问:

(1)从原理上讲,这个方案是否正确? (2)从实际测量来看,你估计最大困难是什么?

(3)若测得s t m l 4.0,10=?=,g 取10m/s 2,估算楼高多少?

练习7 一把雨伞边缘的半径为r ,且高出水平地面h .当雨伞以角速度ω旋转时,雨滴自边缘甩出落在地面上成一个大圆周.这个大圆的半径为_______.

练习8 羚羊从静止开始奔跑,经过50 m 距离能加速到最大速度25 m/s ,并能维持一段较长的时间;猎豹从静止开始奔跑,经过60 m 的距离能加速到最大速度30 m/s ,以后只能维持这个速度4.0 s.设猎豹距离羚羊x m 时开始攻击,羚羊则在猎豹开始攻击后1.0 s 才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑.求:

(1)猎豹要在其最大速度减速前追到羚羊,x 值应在什么范围? (2)猎豹要在其加速阶段追上羚羊,x 值应在什么范围?

练习9 我们在电影或电视中经常可以看到这样的惊险场面:一辆汽车从山顶落入山谷,为

300

图1-12

图1-13

了拍摄重为15 000 N 的汽车从山崖上坠落的情景,电影导演通常用一辆模型汽车代替实际汽车.设模型汽车与实际汽车的大小比例为

251,那么山崖也必须用25

1的比例来代替真实的山崖.设电影每1 min 放映的胶片张数是一定的,为了能把模型汽车坠落的情景放映得恰似拍摄实景一样,以达到以假乱真的视觉效果.问:在实际拍摄的过程中,电影摄影机每1 s 拍摄的胶片数应是实景拍摄的几倍?

练习10 飞机以恒定的速度v 0沿水平方向飞行,飞行高度为2 000 m ,在飞行过程中释放一炸弹,在30 s 后飞行员听见炸弹落地的爆炸声.假设此爆炸声向空间各个方向的传播速度都为320 m/s ,炸弹受到的空气阻力可以忽略,取g =10 m/s 2.则炸弹经_______s 时间落地,该飞机的飞行速度v 0=_______m/s.(答案保留两位有效数字)

练习11 如图1-14所示,有一质量为m 的小球P 与穿过光滑水平板上小孔O 的轻绳相连,用手拉着绳子另一端,使小球在水平板上绕O 点做 半径为a 、角速度为ω的匀速圆周运动. 求:(1)此时绳上的拉力有多大?

(2)若将绳子从此状态迅速放松,后又拉直,使小球绕O 做半径为b 的匀速圆周运动.从放松到拉直这段过程经历了多长时间?

(3)小球做半径为b 的匀速圆周运动时,绳子上的拉力又是多

练习12 如图1-15所示,a 为一固定放置的半径为R 的均匀带电球体,O 为其球心.己知取无限远处的电势为零时,球表面处的电势为U =1000 V .在离球心O 很远的O ′点附近有一质子b ,它以 E k =2000 eV 的动能沿与O 'O 平行的方向射向a .以l 表示b 与O 'O 线之间的垂直距离,要使质子b 能够与带电球体a 的表面相碰,试求l 的最大值.把质子换成电子,再求l 的最大值.

练习13 如图1-16所示,滑轮两边悬挂的重物与盘的质量相同,均为M ,处于静止。现有距盘底高为h 质量为m 的胶泥自由下落,求胶泥粘在盘上时盘获得的初速度。不计滑轮与绳质量,及轴承摩擦和绳的伸长。

图1-15

图1-16

m

M

O

图1-14

α

H

x

y

L

v 图1-17

练习14 如图1-17所示,一摩托车运动员跳跃一壕沟,他以=0v 10m/s 且与水平面成

030=α角的初速度从沟的西边缘起跳,刚好在沟的东边缘落地。已知东边缘比西边缘低H=10m ,

重力加速度g 取10m/2

s ,设空气阻力忽略。试求:在空中飞行的时间及沟宽L 。

练习15 如图1-18所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在O 的正上方,OB 之间的距离为H 。某一时刻,当绳的BA 段与OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速率M v 。 练习16 质点以加速度a 从静止出发做直线运动,在某时刻t ,加速度变为2a ;在时刻2t ,加速度变为3a ;…;在nt 时刻,加速度变为(n +1)a ,求: (1)nt 时刻质点的速度; (2)nt 时间内通过的总路程.

练习17 小球从高m h 1800=处自由下落,着地后跳起又下落,每与地面相碰一次,速度减小

)2(1

=n n

,求小球从下落到停止经过的总时间为通过的总路程.(g 取10m/s 2) 练习18 如图1-19所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。设灯距地

面高为H ,求证人影的顶端C 点是做匀速直线运动。

练习19 某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为A v ,行星的远日点B 离开太阳的距离为b ,如图1-20所示,求它经过远日点B 时的速度B v 的大小.

练习20 如图1-21所示,小环O 和O ′分别套在不动的竖直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运动,求当∠AOO ′=α时,环O 的速度.

练习21 图1-22中AOB 是一内表面光滑的楔形槽,固定在水平桌面(图中纸面)上,夹角?=1α(为了能看清楚,图中画的是夸大了的). 现将一质点在BOA 面内从A 处以速度s m v /5=射出,其方向与AO 间的夹角.10,60m OA =?=θ设质点与桌面间的摩擦可忽略不计,质点与OB 面及OA 面的碰撞都是弹性碰撞,且每次碰撞时间极短,可忽略不计,试求:(1)经过几次碰撞质点又回到A 处与OA 相碰?(计算次数时包括在A 处的碰撞) (2)共用多少时间?

1-18

图1-19 图

1-20

图1-21

1-22

(3)在这过程中,质点离O 点的最短距离是多少?

练习22 一只蚂蚁洞沿直线爬出,已知爬出速度v 的大小与距蚂蚁洞中心的距离L 成反比,当蚂蚁爬到距蚂蚁洞中心距离L 1=1m 的A 点时,速度大小为s cm v /201=,问当蚂蚁爬到距蚂蚁洞中心L 2=2m 的B 点时,其速度大小?2=v 蚂蚁从A 点到达B 点所用的时间t=?

练习23 质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0,加速度为a ,如果将L 分成相等的n 段,质点每通过L/n 的距离加速度均增加a /n ,求质点到达B 时的速度.

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

全国第31届高中物理竞赛初赛试题

全国第31届中学生物理竞赛预赛试题 一、选择题.本题共5小题,每小题6分,在每小题给出的4个选 项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分. 1.一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于 A.αB.α1/3 C.α3D.3α 2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为lcm3的较重的合金块,杆上有表示液体密度数值的刻度.当秤砣放在Q点处时秤杆恰好平衡,如图所示,当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度.下列说法中错误的是 A.密度秤的零点刻度在Q点 B.秤杆上密度读数较大的刻度在较小的刻度的左边 C.密度秤的刻度都在Q点的右侧 D.密度秤的刻度都在Q点的左侧 3.一列简谐横波在均匀的介质中沿z轴正向传播,两质点P1和P2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24 m/s,则该波的频率可能为 A.50Hz B.60Hz C.400Hz D.410Hz 4.电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式,电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用钢、铝和硅制成的形状、大小和横截面积均相同的三种环;当电流突然接通时,它们所受到的推力分别为F1、F2和F3.若环的重力可忽略,下列说法正确的是 A.F1>F2>F3B.F2>F3 >F1 C.F3 >F2> F1D.F1=F2=F3 5.质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰.假设B球的质量m B可选取为不同的值,则 A.当m B=m A时,碰后B球的速度最大 B.当m B=m A时,碰后B球的动能最大

高中物理竞赛讲义-运动学综合题

运动学综合题 例1、如图所示,绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,当绳变为竖直方向时,圆 筒转动角速度为ω,(此时绳未松弛),试求此刻圆筒与绳分离处A 的速度以及圆筒与斜面切点C的速度 例2、如图所示,湖中有一小岛A,A与直湖岸的距离为d,湖岸边有一点B,B沿湖岸方向与A点的距离为l.一人自B点出发,要到达A 点.已知他在岸上行走的速度为v1,在水中游泳的速度为v2,且v1>v2,要求他由B至A所用的时问最短,问此人应当如何选择其运动路线?

例3、一根不可伸长的细轻绳,穿上一粒质量为m的珠 子(视为质点),绳的下端固定在A点,上端系在轻质 小环上,小环可沿固定的水平细杆滑动(小环的质量及 与细杆摩擦皆可忽略不计),细杆与A在同一竖直平面 内.开始时,珠子紧靠小环,绳被拉直,如图所示,已 知,绳长为l,A点到杆的距离为h,绳能承受的最大 T,珠子下滑过程中到达最低点前绳子被拉断, 张力为 d 求细绳被拉断时珠子的位置和速度的大小(珠子与绳子 之间无摩擦) 例4、在某铅垂面上有一光滑的直角三角形细管轨道,光滑小球从顶点A沿斜边轨道自静止出发自由滑到端点C所需时间恰好等于小球从A由静止出发自由地经B滑到C所需时间,如图所示.设AB为铅直轨道,转弯处速度大小不变,转弯时间忽略不计,在此直角三角形范围内可构建一系列如图中虚线所示的光滑轨道,每一轨道由若干铅直和水平的部分连接而成,各转弯处性质都和B点相同,各轨道均从A点出发到C点终止,且不越出△ABC的边界.试求小球在各条轨道中,从静止出发自由地由A到C所需时间的上限与下限之比值.

最新近十年初中应用物理知识竞赛题分类解析专题1--机械运动

最近十年初中应用物理知识竞赛题分类解析专题1--机械运动 一、选择题 1.(2013中学生数理化潜能知识竞赛)下图是空中加油的情景,我们说加油机是静止的,是以下列哪个物体为参照物() A.以加油机自己为参照物 B.以受油机为参照物 C.以地面为参照物 D.三种说法都不对 1.答案:B解析:空中加油,我们说加油机是静止的,是以受油机为参照物,选项B正确。2.(2013中学生数理化潜能知识竞赛“频闪摄影”是研究物体运动时常用的一种实验方法,下面四个图是小严同学利用频闪照相机拍摄的不同物体运动时的频闪照片(黑点表示物体的像),其中可能做匀速直线运动的是() 2.答案:B解析:根据匀速直线运动特点可知,选项B正确。 3.(2011上海初中物理知识竞赛题)小轿车匀速行驶在公路上,坐在副驾驶位置的小青观察到轿车速度盘的指针始终在100km/h位置处,在超越相邻车道上同向匀速行驶的另一辆普通轿车的过程中,小青发现该轿车通过自己的时间恰好为1秒,则该轿车的车速范围为()A.15~20m/s B.20~25 m/s C.25~30 m/s D.30~35 m/s 解析:小轿车速度100km/h=28m/s,以小轿车为参照物,小轿车长度取3.5m,在超越相邻车道上同向匀速行驶的另一辆普通轿车的过程中,两车相对路程为7m,由s=vt可知,相对速度为7m/s。该轿车的车速范围为20~25m/s,选项B正确。 答案:B 4. (2009上海初中物理知识竞赛复赛题)2008年9月25日21时10分“神舟”七号飞船载着三名航天员飞上蓝天,实施太空出舱活动等任务后于28日17时37分安全返回地球。已知:“神舟”七号飞船在距地球表面高343千米的圆轨道上运行,运行速度为7.76千米/秒;地球半径6.37×103千米。则

高中物理竞赛试题及答案

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 40 分) 一、本题共 10 小题,每小题 4 分,共 40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有 A.若甲的初速度比乙大,则甲的速度后减到 0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M 的笼子,笼内有一只质量为 m 的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F 1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为 F 2(如图Ⅰ-3),关于 F 1 和 F 2 的大小,下列判断中正确的是 A.F 1 = F 2>(M + m )g B.F 1>(M + m )g ,F 2<(M + m )g C.F 1>F 2>(M + m )g D.F 1<(M + m )g ,F 2>(M + m )g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之 图Ⅰ -3 图Ⅰ -4 图Ⅰ-2

重点高中物理运动学专题

重点高中物理运动学专题

————————————————————————————————作者:————————————————————————————————日期:

运动学 第一讲基本知识介绍 一.基本概念 1.质点 2.参照物 3.参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点) 4.绝对运动,相对运动,牵连运动:v 绝=v 相 +v 牵 二.运动的描述 1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0 Δr/Δt.在大学教材中表述为:v=d r/dt, 表示r对t 求导数 4.加速度a=a n +a τ。 a n :法向加速度,速度方向的改变率,且a n =v2/ρ,ρ叫 做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ : 切向加速度,速度大小的改变率。a=d v/dt 5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。) 6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较 好 三.等加速运动 v(t)=v 0+at r(t)=r +v t+1/2 at2 一道经典的物理问题:二次世界大战中物理学家曾 经研究,当大炮的位置固定,以同一速度v 沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的 包络线。此抛物线为在大炮上方h=v2/2g处,以v 平抛物体的轨迹。) 练习题: 一盏灯挂在离地板高l 2,天花板下面l 1 处。灯泡爆裂,所有碎片以同样大小 的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。) 四.刚体的平动和定轴转动 1.我们讲过的圆周运动是平动而不是转动 2.角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt 3.有限的角位移是标量,而极小的角位移是矢量 4.同一刚体上两点的相对速度和相对加速度 两点的相对距离不变,相对运动轨迹为圆弧, V A =V B +V AB ,在AB连线上

全国初中应用物理竞赛考试及答案

全国初中应用物理竞赛考试及答案 1 / 15

————————————————————————————————作者:————————————————————————————————日期: 2 / 15

2018年度全国初中应用物理竞赛试卷 注意事项: 1.请在密封线内填写所在地区、学校、姓名和考号。 2.用蓝色或黑色钢笔、圆珠笔书写。 3.本试卷共有六个大题,满分100分。 题号一二三四五六总分分数 复核人 ―、本题共10小题,每小题2分,共20分。以下各小题给出的四个选项中只有一个是正确的,把正确选项前面的字母填在题后的括号内。 1.如图1所示为伦敦四大地标性摩天大楼:“对讲机”、“小黄瓜”、“奶酷刨”、“碎片大厦”。其中座大楼的设计考虑不周,曾经由于玻璃反光将停放在附近的小轿车某些部件“烤”熔化了,你认为这座大楼最可能是() 2.当今,世界性的能源危机断地加深,节约能源义不容辞。下面四种符号中,为中国节能标志的是() 3.在炎热的夏天,当我们吃冰棒的时候,常常看到在冰棒的周围有“白气”冒出,关于这个“白气”,下列说法中正确的是() A.“白气”是冰棒上的冰升华的结果,“白气”应该上升 B.“白气”是冰棒上的冰升华的结果,“白气”应该下降 C.“白气”是空气中的水蒸气液化的结果,“白气”应该上升 D.“白气”是空气中的水蒸气液化的结果,“白气”应该下降

4.如图3所示为双线并绕的螺线管,a、b、c、d为四个接线柱,其中a、b之间连 接一根较细的导线;c、d之间连接一根较粗的导线。如用两端电压恒定的同一个电源供 电,下列连接方式中磁性最强的方法是() A.将bc相连,然后a、d分别接电源两极 B.将cd相连,然后a、b分别接电源两极 C.将a b相连、cd相连,然后分别接电源两极 D.将a d相连、bc相连,然后分别接电源两极 5.5号电池因其体积小、容量适中,因此在小功率电器产品中广泛使用。某种市售5号电池包装上写有“1.5 V 2000 mAH”字祥。对该电池,下列说法中正确的是() A.它能提供的电能约10.8 kJ B.它正常工作时的电流是2 A C.它提供的最大电功率为3 W D.它在电路中是提供电荷的装置 6.在平缓的海滩上经常可以看到如图4所示的情景:不论远处的海 浪沿什么方向冲向海岸,到达岸边时总是大约沿着垂直于岸的方向。发 生这个现象的原因可能是() A.在海岸边,风的方向总是与海岸线垂直 B.在海岸边,风的方向总是与海岸线平行 C.水波在浅水中传播时,水越浅传播得越快 D.水波在浅水中传播时,水越浅传播得越慢 7.小明在宠物店买了淡水热带鱼,为方便带回家,商家将鱼放在装有水的轻薄的塑料袋里。如果小明将装着魚且没有打开的塑料袋直接放入家里的淡水鱼缸中,则图5中最有可能发生的情况是( ) 8.微波在传播过程中,如果遇到金属会被反射,遇到陶瓷或玻璃则几 乎不被吸收的透射,而遇到类似于水、酸等极性分子构成的物质则会被吸 收导致这些物质的温度升高。如图6所示为家用微波炉工作过程的示意图。 根据这些信息,你认为以下关于微波炉的说法不正确 ...的是() A.炉的内壁要使用金属材料 B.炉内盛放食物的容器的材质可以是玻璃或陶瓷 C.炉内转盘的主要作用是为了从不同侧面看到食物被加热的情况 D.微波炉的玻璃门上有一层金属膜或金属网 9.静止、密闭的客车上有一个系在座椅上的氦气球,一个悬挂在车顶的小球。若客车突然启动向左驶出,图7中氦气球与悬挂小球最可能出现的相对位置变化是()

初中物理竞赛试题运动学

初中物理竞赛试题精选:运动学1.A、B两辆车以相同速度v0同方向作匀速直线运动,A车在前,B车在后.在两车上有甲、乙两人分别用皮球瞄准对方,同时以相对自身为2v0的初速度水平射出,如不考虑皮球的竖直下落及空气阻力,则() A.甲先被击中B.乙先被击中 C.两人同时被击中D.皮球可以击中乙而不能击中甲 2.如图所示,静止的传送带上有一木块正在匀速下滑,当传送带突然向下开动时,木块图2滑到底部所需时间t与传送带始终静止不动所需时间t0相比是() A.t=t0B.t<t0C.t>t0 D.A、B两种情况都有可能 3.如图所示,A、B为两个大小和材料都相同而转向相反的轮子,它们的转轴互相平行且在同一水平面内。有一把均匀直尺C,它的长度大于两轮转轴距离的2倍。把该直尺静止地搁在两转轮上,使尺的重心在两轮之间而离B轮较近。然后放手,考虑到轮子和尺存在摩擦,则直尺将() A保持静止。B向右运动,直至落下。 C开始时向左运动,以后就不断作左右来回运动。 D开始时向右运动,以后就不断作左右来回运动。 4.在一辆行驶的火车车厢内,有人竖直于车厢地板向上跳起,落回地板时,落地点() A 在起跳点前面;B在起跳点后面; C与起跳点重合;D与火车运动情况有关,无法判断。

5.在水平方向作匀速直线高速飞行的轰炸机上投下一颗炸弹,飞机驾驶员和站在地面上的观察者对炸弹运动轨迹的描述如图12所示。其中有可能正确的是() 图12 6.一列长为s的队伍以速度V沿笔直的公路匀速前进。一个传令兵以较快的速度v 从队末向队首传递文件,又立即以同样速度返回到队末。如果不计递交文件的时间,那么这传令兵往返一次所需时间是 7.甲、乙两车站相距100千米,一辆公共汽车从甲站匀速驶向乙站,速度为40千米/时。当公共汽车从甲站驶出时,第一辆大卡车正好从乙站匀速开往甲站,而且每隔15分钟开出一辆。若卡车的速度都是25千米/时,则公共汽车在路途中遇到的卡车总共有() (A).20辆。(B)15辆。(C)10辆。(D)8辆 8.某高校每天早上都派小汽车准时接刘教授上班。一次,刘教授为了早一点赶到学校,比平时提前半小时出发步行去学校,走了27分钟时遇到来接他的小汽车,他上车后小汽车立即掉头前进。设刘教授步行速度恒定为v,小汽车来回速度大小恒定为u,刘教授上车以及小汽车掉头时间不计,则可判断() A.刘教授将会提前3分钟到校,且v:u=1:10。 B.刘教授将会提前6分钟到校,且v:u=1:10。 C.刘教授将会提前3分钟到校,且v:u=1:9。 D.刘教授将会提前6分钟到校,且v:u=1:9。 9.一氢气球下系一重为G的物体P,在空中做匀速直线运动。如不计空气阻力和风力影响,物体恰能沿MN方向(如图1中箭头指向)斜线上升,图1中OO’为竖直方向, 则在图1中气球和物体P所 处的情况正确的是() 10.某段铁路有长度L的铁

《全国中学生物理竞赛大纲》2020版

《全国中学生物理竞赛大纲2020版》 (2020年4月修订,2020年开始实行) 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2020年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 力学 1.运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量 冲量动量质点与质点组的动量定理动量守恒定律※质心 ※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率

动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学 静止流体中的压强 浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波 声音的响度、音调和音品声音的共鸣乐音和噪声

初中物理竞赛试题精选运动学

初中物理竞赛试题精选:运动学 1. A、B两辆车以相同速度v0同方向作匀速直线运动,A车在前,B车在后.在两车上有甲、乙两人分别用皮球瞄准对方,同时以相对自身为2v0的初速度水平射出,如不考虑皮球的竖直下落及空气阻力,则( ) A.甲先被击中 B.乙先被击中 C.两人同时被击中 D.皮球可以击中乙而不能击中甲 2. 如图所示,静止的传送带上有一木块正在匀速下滑,当传送带突然向 下开动时,木块图2滑到底部所需时间t与传送带始终静止不动所需时间 t0相比是( ) A.t=t0 B.t<t0 C.t>t0 D.A、B两种情况都有可能 3. 如图所示,A 、B 为两个大小和材料都相同而转向相反的轮子,它 们的转轴互相平行且在同一水平面内。有一把均匀直尺C ,它的长度 大于两轮转轴距离的2倍。把该直尺静止地搁在两转轮上,使尺的重 心在两轮之间而离B 轮较近。然后放手,考虑到轮子和尺存在摩擦, 则直尺将( ) A 保持静止。 B 向右运动,直至落下。 C 开始时向左运动,以后就不断作左右来回运动。 D 开始时向右运动,以后就不断作左右来回运动。 4. 在一辆行驶的火车车厢内,有人竖直于车厢地板向上跳起,落回地板时,落地点( ) A 在起跳点前面; B 在起跳点后面; C 与起跳点重合; D 与火车运动情况有关,无法判断。 5. 在水平方向作匀速直线高速飞行的轰炸机上投下一颗炸弹,飞机驾驶员和站在地面上的观察者对炸弹运动轨迹的描述如图12所示。其中有可能正确的是 ( ) 图12 6. 一列长为s 的队伍以速度V 沿笔直的公路匀速前进。一个传令兵以较快的速度v 从队末向队首传递文件,又立即以同样速度返回到队末。如果不计递交文件的时间,那么这传令兵往返一次所需时间是 。; ; ; 22222)D (2)C (2)B (2)A (V v sv V v s V v s V s -++ 7. 甲、乙两车站相距100千米,一辆公共汽车从甲站匀速驶向乙站,速度为40千米/时。当公共汽车从甲站驶出时,第一辆大卡车正好从乙站匀速开往甲站,而且每隔15分钟开出一辆。若卡车的速度都是25千米/时,则公共汽车在路途中遇到的卡车总共有( ) (A).20辆。 (B)15辆。 (C)10辆。 (D)8辆 8. 某高校每天早上都派小汽车准时接刘教授上班。一次,刘教授为了早一点赶到学校,比平时提前半小时出发步行去学校,走了27分钟时遇到来接他的小汽车,他上车后小汽车立即掉头前进。设刘教授步行速度恒定为v ,小汽车来回速度大小恒定为u , 刘教授上车以及小汽

第五届全国高中应用物理知识竞赛(北京赛区)决赛试题答案与评分标准(考后修改卷)[1]

第五届全国高中应用物理知识竞赛(北京赛区)决赛 试题答案与评分参考标准 1.(9分) 光线在水与空气的界面上一般要同时发生反射和折射。反射光和折射光的能量之和等于入射光的能量。反射光与折射光的能量分配与入射角有关,入射角越大,反射光的能量越强而折射光的能量越弱。 (3分) 人站在水边观察,近处水下物体的光线射到界面上,入射角较小,反射光弱而折射光强,因此有较多的能量射出水面而进入人眼中。 (2分) 而水面下远处物体的光线,能射到人眼处的光线都是入射角很大的光线,它们的大部分能量都反射回水下而只有很少部分射出水面,从而进入人眼睛的光很弱而不被觉察。 (2分) 反之对岸物体的光线射到水面处能到达人眼睛的光线,入射角很大,大部分入射光的能量都经水面反射,人能清楚地看到对岸是景物经水面反射而生成的倒像。 (2分) 注:答水面下物体的光线发生全反射,因此水面上的人看不到的,不能得分。 2.(9分) (1)由题意可知,这个装置有电流通过,电流从电池正极经导线D 、磁铁(其本身是导体)、钉子、电池负极、电池内部、回到正极形成回路。 (1分) (2)电流在磁体中的部分为由导线和磁铁侧壁接触处指向轴心的径向电流。而磁铁自身的磁场在其内部大体沿(圆柱体)轴向。因而径向电流受到垂直于电流方向的安培力。 (3分) (3)这个安培力产生力矩使磁铁(连带铁钉)产生转动。 (3分) (4)当将磁铁的两个端面对调后,磁场方向相反,而电流方向不变,则安培力方向反向,从而磁铁(及钉子)的转动方向也反过来了。 (2分) 3.(9分) 由题意,火箭在越过塔架的过程中做匀加速直线运动。 加速度大小是 2 2 2 2 2.0m/s m/s 10 10022=?= =t h a (3分) 设喷气推力大小为F ,则 ma mg F =- (3分) 解得 )8.90.2(104803+??=+=mg ma F N=5.7×106 N (3分)

全国高中物理竞赛初赛试题及标准答案

2014第31届全国中学生物理竞赛预赛试题及参考答案与评分标准 一、选择题.本题共5小题,每小题6分,在每小题给出的4个选 项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分. 1.一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于 A.αB.α1/3 C.α3D.3α 2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为lcm3的较重的合金块,杆上有表示液体密度数值的刻度.当秤砣放在Q点处时秤杆恰好平衡,如图所示,当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度.下列说法中错误的是 A.密度秤的零点刻度在Q点 B.秤杆上密度读数较大的刻度在较小的刻度的左边 C.密度秤的刻度都在Q点的右侧 D.密度秤的刻度都在Q点的左侧 3.一列简谐横波在均匀的介质中沿z轴正向传播,两质点P1和P2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24 m/s,则该波的频率可能为 A.50Hz B.60Hz C.400Hz D.410Hz 4.电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式,电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用钢、铝和硅制成的形状、大小和横截面积均相同的三种环;当电流突然接通时,它们所受到的推力分别为F1、F2和F3.若环的重力可忽略,下列说法正确的是 A.F1>F2>F3B.F2>F3 >F1 C.F3 >F2> F1D.F1=F2=F3 5.质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰.假设B球的质量m B可选取为不同的值,则 A.当m B=m A时,碰后B球的速度最大 B.当m B=m A时,碰后B球的动能最大 C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大

全国高中物理应用知识竞赛试题

注意事项: 1.请在密封线内填写所在地区、学校、姓名和考号。 2.用蓝色或黑色钢笔、圆珠笔书写。 3.答卷过程中可以使用普通型计算器。 4.本试卷共有三个大题,总分为150分。 5.答卷时间:2018年4月7日(星期六)上午9:30?11:30。 得分 评卷人 2018年度全国高中应用物理竞赛试卷 题号 一 二 三 总分 1 2 3 4 1 2 3 4 分数 复核人 选项中,有的小题只有一个选项正确,有的小题有多个选项正确。请把符合题目要求的选项的序号填入题后的( )内。全选对的得5分,选不全的得3分,有选错或不选的得分。 1.如图1所示,消防队员在进行训练时有一项爬绳练习,如果队 员用双手握住竖直的绳索匀速攀上和匀速下滑时,绳索对他 的摩擦力分别为F 上和F 下,那么关于F 上和F 下的下列说法中 正确的是() A .F 上向上F 下向下,F 上与F 下等大 B .F 上向下F 下向上,F 上大于F 下 C .F 上向上F 下向上,F 上与F 下等大 D .F 上向上F 下向下,F 上大于F 下 2.由乎地磁场的作用,可有效地减少来自宇宙射线中的高能带电粒子对地球的“侵袭”。 若宇宙射线中一颗带负电的粒子从太空沿指向地心方向射向地面,则哲它在接近地球附近时的实际运动方向可能是() A.竖直向下 B.偏西斜向下 C.偏东斜向下 D.偏北斜向下 3.电铃的结构原理如图2所示,如果在使角过程中发现这个、 电铃小锤敲击铃的频率过,现要将敲击频率调高一些,则 下列措施中一定可行的是() A.适当提高电的电压 B.增大小锤的质量 C.换用更软一点的簧片 D.将电源改用交流电来供电 4.由青岛大学学生自主设计研发的墙壁清洁机器人,利用8只“爪 子”上的吸盘吸附在接触面上,通过这8只“爪子”的交替伸

高中物理竞赛辅导讲义-1.4运动学综合题

1.4运动学综合题 例1、如图所示,绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,当绳变为竖直方向时,圆 筒转动角速度为ω,(此时绳未松弛),试求此刻圆筒与绳分离处A 的速度以及圆筒与斜面切点C的速度 例2、如图所示,湖中有一小岛A,A与直湖岸的距离为d,湖岸边有一点B,B沿湖岸方向与A点的距离为l.一人自B点出发,要到达A 点.已知他在岸上行走的速度为v1,在水中游泳的速度为v2,且v1>v2,要求他由B至A所用的时问最短,问此人应当如何选择其运动路线?

例3、一根不可伸长的细轻绳,穿上一粒质量为m的珠 子(视为质点),绳的下端固定在A点,上端系在轻质 小环上,小环可沿固定的水平细杆滑动(小环的质量及 与细杆摩擦皆可忽略不计),细杆与A在同一竖直平面 内.开始时,珠子紧靠小环,绳被拉直,如图所示,已 知,绳长为l,A点到杆的距离为h,绳能承受的最大 T,珠子下滑过程中到达最低点前绳子被拉断, 张力为 d 求细绳被拉断时珠子的位置和速度的大小(珠子与绳子 之间无摩擦) 例4、在某铅垂面上有一光滑的直角三角形细管轨道,光滑小球从顶点A沿斜边轨道自静止出发自由滑到端点C所需时间恰好等于小球从A由静止出发自由地经B滑到C所需时间,如图所示.设AB为铅直轨道,转弯处速度大小不变,转弯时间忽略不计,在此直角三角形范围内可构建一系列如图中虚线所示的光滑轨道,每一轨道由若干铅直和水平的部分连接而成,各转弯处性质都和B点相同,各轨道均从A点出发到C点终止,且不越出△ABC的边界.试求小球在各条轨道中,从静止出发自由地由A到C所需时间的上限与下限之比值.

全国高中物理竞赛难题

四、(20分)某些非电磁量的测量是可以通过一些相应的装 置转化为电磁量来测量的。一平板电容器的两个极扳竖直放 置在光滑的水平平台上,极板的面积为S ,极板间的距离为 d 。极板1固定不动,与周围绝缘;极板2接地,且可在水 平平台上滑动并始终与极板1保持平行。极板2的两个侧边 与劲度系数为k 、自然长度为L 的两个完全相同的弹簧相连, 两弹簧的另一端固定.图预17-4-1是这一装置的俯视图.先将电容器充电至电压U 后即与电源断开,再在极板2的右侧的整个表面上施以均匀的向左的待测压强p ;使两极板之间的距离发生微小的变化,如图预17-4-2所示。测得此时电容器的电压改变量为U ?。设作用在电容器极板2上的静电作用力不致引起弹簧的可测量到的形变,试求待测压强p 。 五、(20分)如图预17-5-1所示,在正方形导线回路所围的区域 1234A A A A 内分布有方向垂直于回路平面向里的匀强磁场,磁感应强 度B 随时间以恒定的变化率增大,回路中的感应电流为 1.0mA I =.已知12A A 、34A A 两边的电阻皆为零;41A A 边的电阻 1 3.0k R =Ω,23A A 边的电阻27.0k R =Ω。 1.试求12A A 两点间的电压12U 、23A A 两点间的电压23U 、34 A A 两点间的电压34U 、41A A 两点间的电压41U 。 2.若一内阻可视为无限大的电压表V 位于正方形导线回路所在的平面内,其正负端与连线 位置分别如图预17-5-2、图预17-5-3和图预17-5-4所示,求三种情况下电压表的读数1U 、 2U 、3U 。 六、(20分)绝热容器A 经一阀门与另一容积比A 的容积大得很多的绝热容器B 相连。开始时阀门关闭,两容器中盛有同种理想气体,温度均为30℃,B 中气体的压强为A 中的2倍。现将阀门缓慢打开,直至压强相等时关闭。问此时容器A 中气体的温度为多少?假设在打开到关闭

全国高中物理竞赛历年试题与详解答案汇编

全国高中物理竞赛历年试题与详解答案汇编 ———广东省鹤山市纪元中学 2014年5月

全国中学生物理竞赛提要 编者按:按照中国物理学会全国中学生物理竞赛委员会第九次全体会议的建议,由中国物理学会全国中学生物理竞赛委员会常务委员会根据《全国中学生物理竞赛章程》中关于命题原则的规定,结合我国目前中学生的实际情况,制定了《全国中学生物理竞赛内容提要》,作为今后物理竞赛预赛和决赛命题的依据,它包括理论基础、实验基础、其他方面等部分。其中理论基础的绝大部分内容和国家教委制订的(全日制中学物理教学大纲》中的附录,即 1983年教育部发布的《高中物理教学纲要(草案)》的内容相同。主要差别有两点:一是少数地方做了几点增补,二是去掉了教学纲要中的说明部分。此外,在编排的次序上做了一些变动,内容表述上做了一些简化。1991年2月20日经全国中学生物理竞赛委员会常务委员会扩大会议讨论通过并开始试行。1991年9月11日在南宁由全国中学生物理竞赛委员会第10次全体会议正式通过,开始实施。 一、理论基础 力学 1、运动学 参照系。质点运动的位移和路程,速度,加速度。相对速度。 矢量和标量。矢量的合成和分解。 匀速及匀速直线运动及其图象。运动的合成。抛体运动。圆周运动。 刚体的平动和绕定轴的转动。 2、牛顿运动定律 力学中常见的几种力 牛顿第一、二、三运动定律。惯性参照系的概念。 摩擦力。 弹性力。胡克定律。 万有引力定律。均匀球壳对壳内和壳外质点的引力公式(不要求导出)。开普勒定律。行星和人造卫星的运动。 3、物体的平衡 共点力作用下物体的平衡。力矩。刚体的平衡。重心。 物体平衡的种类。 4、动量 冲量。动量。动量定理。 动量守恒定律。 反冲运动及火箭。 5、机械能 功和功率。动能和动能定理。 重力势能。引力势能。质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。弹簧的弹性势能。 功能原理。机械能守恒定律。 碰撞。 6、流体静力学 静止流体中的压强。 浮力。 7、振动 简揩振动。振幅。频率和周期。位相。

高中物理竞赛辅导运动学

高中物理竞赛辅导运动学 §2.1质点运动学的差不多概念 2.1.1、参照物和参照系 要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,那个被选的物体叫做参照物。为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标 系。 通常选用直角坐标系O –xyz ,有时也采纳极坐标系。平面直角坐标系一样有三种,一种是两轴沿水平竖直方向,另 一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向〔我们常把这种坐标称为自然坐标〕。 2.1.2、位矢 位移和路程 在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时刻的函数 x=X 〔t 〕 y=Y 〔t 〕 z=Z 〔t 〕 这确实是质点的运动方程。 质点的位置也可用从坐标原点O 指向质点P 〔x 、y 、z 〕的有向线段r 来表示。如图2-1-1所示, 也是描述质点在空间中位置的物理量。的长度为质点到原点之间的距离,的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足 1cos cos cos 222=++γβα 当质点运动时,其位矢的大小和方向也随时刻而变,可表示为r =r (t)。在直角坐标系中,设分不为、、沿方向x 、y 、z 和单位矢量,那么r 可表示为 t z t y t x t )()()()(++= 位矢与坐标原点的选择有关。 研究质点的运动,不仅要明白它的位置,还必须明白它 的位置的变化情形,假如质点从空间一点),,(1111z y x P 运动到另一点),,(2222z y x P ,相应的位矢由r 1 变到r 2,其改 变量为? z z y y x x r r )()()(12121212-+-+-=-=? 称为质点的位移,如图2-1-2所示,位移是矢量,它是 从初始位置指向终止位置的一个有向线段。它描写在一定时刻内质点位置变动的大小和方向。它与坐标原点的选择无关。 2.1.3、速度 平均速度 质点在一段时刻内通过的位移和所用的时刻之比叫做这段时刻内的平均速度 ) 2z y 图2-1-1

全国中学生物理竞赛真题汇编(光学)

全国中学生物理竞赛真题汇编---光学 1.(19Y5)五、(20分)图预19-5中,三棱镜的顶角α为60?,在三棱镜两侧对称位置上放置焦距均为 30.0cm f = 的两个完全相同的凸透镜L 1和 L 2.若在L 1的前焦面上 距主光轴下方14.3cm y =处放一单色点光源S ,已知 其像S '与S 对该光学系统是左右对称的.试求该三棱 镜的折射率. 2.(21Y6)六、(15分)有一种高脚酒杯,如图所示。杯内底面为一凸起的球面,球心在顶点O 下方玻璃中的C 点,球面的半径R =1.50cm ,O 到杯口平面的距离为8.0cm 。在杯脚底中心处P 点紧贴一张画片,P 点距O 点6.3cm 。这种酒杯未斟酒时,若在杯口处向杯底方向观看,看不出画片上的景物,但如果斟了酒,再在杯口处向杯底方向观看,将看到画片上的景物。已知玻璃的折射率n 1=1.56,酒的折射率n 2=1.34。试通过分析计算与论证解释这一现象。 3.(22Y3)三、(18分)内表面只反射而不吸收光的圆筒内有一半径为尺的黑球,距球心为2R 处有一点光源S ,球心p 和光源s.皆在圆筒轴线上,如图所示.若使点光源向右半边发出的光最后全被黑球吸收,则筒的内半径r 最大为多少? 4.(16F2)(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。 1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件? 2. 根据所得结果,分别画出各种可能条件下的光路示意图。 5.(17F2) 如图1所示,在真空中有一个折射率为n(n>n0,n0为真空的折射率),半径为r的质地均匀的小球,频率为ν的细激光束在真空中沿直线BC传播,直线BC 与小球球心O 的距离为l(l<r),光束于小球体表面的点C经折射进入小球(小球成为光传播的介质),并于小球表面的点D 又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 图1

全国高中应用物理知识竞赛

第一届(“求学”杯)全国高中应用物理知识竞赛试题 一、本题共10小题,每小题5分,共50分。 1、2008年北京奥运会场馆周围80%~90%的路灯将利用太阳能发电技术,奥运会90%的洗浴热水将采用全玻真空太阳能集热技术。太阳能的产生是由于太阳内部所发生的一系列核反应形成的,其主要的核反应过程可表示为() A.41 1H→4 2 He+ 2β+B.14 7 N+4 2 He→17 8 O+1 1 H C.235 92U+1 n→141 56 Ba+92 36 Kr+31 n D.238 92 U→234 90 Th+4 2 He 2、人从高处跳到低处时,为了安全,一般都是前脚掌先着地.并在着地的过程中曲腿下蹲。这是为了() A.减小人脚所受的冲量 B.使人的动量变化量变得更小 C.延长人体速度变化所经历的时间,从而减小地面对人脚的作用力 D.增大人对地的压强,使人站立得更稳,起到安全作用 3、对于如下几种现象的分析,下列说法中正确的是() A.通常情况下人用力将乒乓球和与乒乓球大小相似的小石块抛出,小石块飞行的距离要远得多,其主要原因是抛出后的乒乓球比石块所受空气阻力大 B.用打气筒给自行车打气时,压缩空气要用力,这说明此时空气分子间的作用力是斥力 C.把笔尖紧压在化妆用玻璃镜面上,看到笔尖与它在镜中的像的距离约为4mm ,则玻璃的厚度约为4mm D.打开香水瓶后,在较远的地方也能闻到香味,这表明香水分子在不停地运动 4、有一种手电筒和台式电子钟都是使用l节干电池作电源。将新电池装在手电筒中,经过较长时间的使用,当手电筒的小灯泡只能发出微弱的光而不能正常使用时,把电池取出来,用电压表测其两端电压,电压表示数基本等于1.5V 。把这节旧电池装在台式电子钟上却仍能使电子钟正常工作。根据上述现象,可判断下列说法中正确的是() A.这个电池的电动势比新电池的电动势小很多 B.这个电池的内阻比新电池的内阻大很多 C.台式电子钟的额定电压一定比手电筒小灯泡的额定电压小 D.台式电子钟正常工作时的电流一定比手电筒正常工作时的电流小 5、如图1所示,表演“飞车走壁”的杂技演员骑着 摩托车飞驶在圆台形筒壁内,圆台筒固定不动,其轴线沿 竖直方向。演员驾驶摩托车先后在M和N两处紧贴着内 壁分别在图中虚线所示的水平面内做匀速圆周运动,如果 此时不计车轮与墙壁的摩擦力,则() A.M处的线速度一定大于N处的线速度 B.M处的角速度一定小于N处的角速度 C.M处的运动周期一定等于N处的运动周期 D.M处对筒壁的压力一定大于N处对筒壁的压力 6、春天在广场上有许多人放 风筝。会放风筝的人,可使风筝静 止在空中。图2中的四幅图中, MN代表风筝截面,OL代表风筝 线,风向水平。在图2所示的四种 情况中,风筝可能处于静止状态的是()

高中物理竞赛运动学。

运动学 1如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D ,BC 段水平,当以恒定水平速度V 拉绳上的自由端时,A 沿水平面前进,求当跨过B 的两段绳子的夹角为α时,A 的运动 速度。 (V A =α cos 1+V ) 2. 缠在轴上的线被绕过滑轮B 后,以恒定速度v0 拉出。这时线轴沿水平平面无滑动滚动。求线轴中心点O 的速度随线与水平方向的夹角 α 的变化关系。线轴的内、外半径分别为r 和R 。 3.均匀光滑细棒AB 长l ,以速度v 搁在半径为r 的固定圆环上作匀速平动,试求在图13位置时,杆与环的交点M 的速度和加速度. 图13 4一个半径为 R 的半圆柱体沿水平方向向右做加速度为 a 的匀加速运动。在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动(如图)。当半圆柱体的速度为 v 时,杆与半圆柱体接触点 P 与柱心的连线与竖直方向的夹角为θ,求此时竖直杆运动的速度和加速度。

5 A ,B ,C 三个芭蕾舞演员同时从边长为l 的三角形顶点A ,B ,C 出发,以相同的速率v 运动;运动中始终保持A 朝着B ,B 朝着C ,C 朝着A .试问经多少时间三人相聚?每个演员跑了多少路径? 6.三只小虫A 、B 、C 沿水平面爬行,A 、B 的速度都能达到v =1cm/s 。开始时,这些虫子位于一个等边三角形的三个顶点上。C 应具有什么样的速度,才能在A 、B 任意移动的情况下使三小虫仍保持正三角形? 7 在掷铅球时,铅球出手时距地面的高度为h ,若出手时的速度为V 0,求以何角度掷球时,水平射程最远?最远射程为多少? (α=gh v v 22sin 2001 +-、 x=g gh v v 2200+) 7、模型飞机以相对空气v = 39km/h 的速度绕一个边长2km 的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间? 9如图所示,合页构件由两菱形组成,边长分别为2L 和 L ,若顶点A以匀加速度a水平向右运动,当 BC 垂直于 OC 时,A 点速度恰为 v ,求此时节点B 和节点 C 的加速度各为多大?

相关主题
文本预览
相关文档 最新文档