当前位置:文档之家› 数值分析期末试题

数值分析期末试题

数值分析期末试题
数值分析期末试题

第一套

一、(8分)用列主元素消去法解下列方程组:

X l -X 2 X3 - / ? 5x 1 -4x 2 + 3x 3 = -12 2x 1 +x 2 +x 3 =11

(10分)依据下列数据构造插值多项式: y (0)=1,y (1)= — 2,y (o )=1, y

(1)=—4

三、(12分)分别用梯形公式和辛普生公式构造 式、复化的辛普生公式计算下列积分:

9

IJ XdX

1

n=4

复化的梯形公式、复化的辛普生公式并利用复化的梯形公

、(8

分)用列主元素消去法解下列方程组: 3X 2 4X 3 =1 ‘ X 1 -X 2 +x 3 = 2 -2x 1 +x 2 +2x 3 =3

、(12分)依据下列数据构造插值多项式:y (0)=

y

(0)=0, y (1)=y

(1)= 1,y (2)=1

三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用

四、(10分)证明对任意参数t ,下列龙格—库塔方法是二阶的。

h ZI I X

y r → = y n+2(k 3+k 2) ’ k 1=f(X n ,y rl )

k 2 = f (X n +th,y rl +thkj k^ f (X n (1 -t)h, y n (1 -t)hk 1 五、(14分)用牛顿法构造求 C 公式,并利用牛顿法求 115。保留有效数字五位。

^1 a 0【 a

1 a 六、(10分)方程组AX=B 其中A= ^0 a 1-

讨论a 取何值时 迭代收斂。 试就

AX=B 建立雅可比迭代法和高斯 -赛德尔迭代法,并

七、(10分)试确定常数 A,B,C,a,使得数值积分公式 代数精确度。并求该公式的代数精确度。 f (x)dx : Af (-a) Bf{0} Cf

(a) -2 有尽可能多的

八、{6分}证明:

第二套 其中A 为矩阵,V 为向量.

复化的梯形公式、

复化的辛普生公式及其下表计算下列积分:

?-∕2

SirXdX

四、(12分)证明下列龙格一库塔方法是三阶的

y f r+ = y f r +h

(3k 3 +k 1)

4

*

& = f (χ∏,y ∏)

k 2 = f (X n +h∕3,y n +hk ι∕3) k 3 = f (x ∏ +2h∕3,y ∏ +2hk 2∕3)

2

f(x)dx : Af(Q) Bf (1) Cf (2)

共2页第2页 有尽可能多的代数精确度。

并求该公式的代数精确度。

1

六、(14分)用牛顿法构造求C 公式,验证其收敛性。并求1/ e (保留4位有效数字)

七、{10分}证明:设非负函数N (X )= X 为R n 上任意向量范数,则N (X )是X 分量X 1,X 2,的 连

续函数.

参考答案

一、解:(8分)

设 P(X)= "o (x)y(0)+° 1(x) y(1)+°2(x)y(2)+" o (x) y ' (0)-+(x) y ' (1) (4 分) 解得:

2 2 ■ 2 2 ] * 2

1(X)=X (x-2) 2(x)=(1∕12)x (x -1) ' 1(X)=-X (x-1)(x-2)

(4 分)

P(X)= 1(x) y(1)+ 2(x)y(2)^ 1(x) y ' (1)=1(x) + 2(x)< 1(x)

五、(10分)试确定常数A,B,C 使得数值积分公式

j 3 4 1

-

1 1∕

2 1 3/2]

-

1 1/

2 1

3/2] 1 -1 1 2 T 0 3 4 1 T

0 1 4/3 1/3 '2

1 2 3_

-3∕2

0 1/2_

2

1 一

(4分)

3x 2 4x 3 =1 ’ X 1 —X 2 +X 3 = 2 2x 1 +x 2 +2x 3 =3

增广矩阵:

解得:X 1=2∕3, X 2=-1∕3 X 3=1.∕2

二、解:(12 分)

注:直接待定系数简单,或者用牛顿茶商

=x 2(x-2)2+(1∕12)x 2(x-1)2 +x 2

(x-1)(x-2) (4

分) 、解:

(14分)推证复化的梯形公式 (3分)

推证复化的辛普生公式

(3分)

二/2

JSin XdX

利用复化的梯形公式0 =0.96593

二/2

I b S i∏ XdX

利用复化的辛普生公式=1.000003 四、(12分)证明: h

y

n + — y ^ +^^ (3k

3 + k 1

)

4

*

k ι = f (X n ,y n ) k 2 = f (X n +h∕3,y n +hk ι∕3)

皿=f (X n +2h∕3,y rl +2hk 2∕3)

k 3=f(x ∏,y ∏)+2h∕3f ',y n )+(2h ⑶2f ''y x)∕2+0(h 2

)

(4 分)

y ∏+ι=y ∏+h∕4(3 k 3+k 1)= y ∏+ h f(x ∏,y ∏)+h 2

f' ∏y∏)∕2+h 3

∕6f ' ∏,y ∏χ +0(h 3

) (8 分) y ∏+ι*=

y ∏+ h y ∏' +?∏'' ∕2∕6hy ∏''' 3

)+0(h y ∏+ι -y ∏+ι*=0(h 3) 则该公式是三阶的 (12分)

五、解:(10分)

解得:A=1∕3, 2

1

f (x )dx : - f (0)

将 1,x,x 2 代入原式得 A+B+C=2 B+2C=2 B=4∕3 C =1∕3 4 1 N 3f ⑵

B+4C=8∕3

(8分) (10

六、证明:

(14 分)1∕x -c=0

f(X k )

X k+1 =X k - f

(X k )=X k (2-CX k ) X k+1-1∕C=-C(X k -1∕c)2

k

2 设 r k =1-cx k r k+1=r∕

反复递推 r k =r O (8 分)

n

n

Σ X i e i Σ y i e i

七、{10分}证明:设X = y y = y

(4分)

n n N(X)-N(y) =∣∣x ∣∣ -Il y lll ≤∣χ-y ∣∣^ (Xi -yg ≤c ∣∣χ-y hτ 0(c =W II ei l )

i=1

i *

若选初值0

<1这时r k 趋近于0,从而叠代收敛 (10

分)

用牛顿法构造求1/ eX =0.3679

( 14

第三套

(10分)利用列主元素消去法解方程: h

y

n 1 = y

n

9

(2k , 3k

2 4k 3

)

k 1 = f(X n 』

n

) h

h ?

k 2 = f (X n -,y n -)

2 2

3 3

k 3 = f(X n -h,y n -h)

4 4

(10 分)求 3 次插值多项式使:P(0)=3, P(1)=5,

P

(O)

=

4

,P(1

)=6,

四、

(20分)确定下面公式中的a,b,使其代数精确度尽量高,并指出其代数精确度的次

f (x )dx

b

f a

[ f (a ) f (b )] a (^a )2

[f (a ) - f (b )]

a

五、(20分)分别利用梯形公式和 SimPSOn 公式推导复化的梯形公式和 SimPSOn 公式,并分别

利用复化的梯形公式和SimPSOn 公式计算积分1 (n=8)

六、 (15分)用二分法求方程f (x )=x 3+4x 2-10在区间[1,1.5]上的根。(1)要得到具有3位有

效数 的近似根,须作几次二分;(2)用二分法求具有3位有效数的近似根。 七、 (10分)设?是R n n 中的任意范数,AR nn ,则有'W A

..(10 分)

2 4 '1

-4 6 -9 2 -1 3

? X 2 T= 5 3d

(15分)证明下面龙格-库塔方法是三阶的:

9

参考答案

五、(10分)利用列主元素消去法解方程:

解:

I b — a

ZB

-(b 3 -a 3

) [a 2 b 2] a(b-a)2

[2a-2b] 得3 2

I

4

-9 2 5

1

1 0 —

5 —

2

2 0 5x 5 11

(―)

4

2 4

2

-4 6 3

(4) —9 2 5 T

'1

—1 3 4一

X 3=-3∕20 -库塔方法是三阶

的: (5分) 10分)

x ι=139∕20, X 2=5∕2, 六、(15分)证明下面龙格 1 2 1 3 、工 y(X n 1) = y(X n )

hy (X n ) h y (X n ) h y () 证: 2 6 (

1 1

2 1

k 2 = f (X n , y n ) ^hf (X n I y n )

(^h) - f ( , 丫())

3 3

2

1 k^ f (X n , y nΛ -hf (X n l

y n ) ^h) f ( , y())

4 4

2

3

■ y(x n+1)- y n+1=o(h )

(15 分)

(5分)

(9分) (13 分)

七、(10 分)求 3 次插值多项式使:P(0)=3, P(1)=5, P (0) = 4 , P (1)=6, 解:设 P 3(x) =P 0 1(x) P 1 2 (X) P 1

1

(x) P 2「2(X )

(2

分)

1

(0) =1, 1(1^0, 1(0) =0, 1 (1) = 0

2

(0) =0, 2(1) =1, 2(0) =0, 2(1) =0

1

(0) =0, 1(1) =0, 1(0) =1, 1 (1)=o 2

(0) =0, 2(1) =0, ?(0^0, 2(1) =1

(6分)

p 3(X)

=3+4X -2X 2+6X 2(X -1)

(10 分)

八、(20分)确定下面公式中的

a,b,使其代数精确度尽量高,并指出其代数精确度的次数

b

.f (x)dx

a

b -a 2

[f(a) f(b)] a(b-a)2[f (a)-f (b)]

解:将1,x , x 2,,x 3

代入

b

f(x)dx

a

b - a

匸f(a) f (b)]a(b -a)[f (a) - f (b)]

(4分)

(10 分)

I44b-a33 2 2 2

(b -a ) [a b ] a(b -a) [3a -3b ]

4

a=b=1∕2 (15 分)

将1,x , x2,,χ3,χ4,χ5代入公式的两端,可得该公式具有4次代数精确度。(20分)

五、(20分)分别利用梯形公式和SimPSOn公式推导复化的梯形公式和SimPSOn公式,并分别利用复化的梯

9

W XdX

形公式和SimPSon公式计算积分ι(n=8)

证:利用梯形公式推导复化的梯形公式(5分)

SimPSOn公式推导复化 SimPSOn公式(10分)

9

! JXdX

解:利用复化的梯形公式1(n=8) =17.22774 ( 15 分)

9

I L XdX

SimPSOn公式计算积分 1 (n=8)=17.32222 ( 20 分)

六、(15分)用二分法求方程 f(x)=x 3+4x2-10在区间[1,1.5]上的根。(1)要得到具有3位有效数的近似根, 须作几次;(2)用二分法求具有 3位有效数的近似根。

解:须作3次(5分)

将[1,1.5] [1,1.25], f(1)<0, f(1.25) <0, ( 8 分)

将[1.25,1.5]二分为[1.25,1?375],[1?375,1?5] f(1.375) >0, ( 10 分)

将[1.25,1.375]二分为[1.25,1.3125],[1.3125,1.375] f(1.3125) <0 ( 12 分)

3 2

[1.3125,1.375]的中点为方程f(x)=x +4x -10的近似根(15分)

七、设卜I是R nn中的任意范数, A R n n,则有:(A)- A

证:设'是的任意特征值,X为相应的向量,(2分)

则Ax = λx,卜II x=IX X l=I AX l 兰Il A llI X l (8分),?” P(A)兰Il A l (10分)

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(

北航2010-2011年研究生数值分析期末模拟试卷1-3

数值分析模拟试卷1 一、填空(共30分,每空3分) 1 设??? ? ??-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数=________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________. 3 设?????≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________. 4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则 ?=1 )(dx x xq k ________,=)(2 x q ________. 5 设???? ??????=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当 其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设4 9,1,41,)(2102 3 === =x x x x x f , (1)试求)(x f 在]4 9,41[上的三次Hermite 插值多项式)(x H 使满足 2,1,0),()(==i x f x H i i ,)()(11x f x H '='. (2)写出余项)()()(x H x f x R -=的表达式. 三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3 2 41+ =+, (1) 证明R x ∈?0均有? ∞ →=x x n x lim (? x 为方程的根); (2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值; (3)此迭代的收敛阶是多少?证明你的结论. 四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

数值分析试题A卷10.1

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746)f x dx f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-= 若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________.

8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。 10、下面M 文件是用来求解什么数学问题的________________________. function [x,k]=dd (x0) for k=1:1000 x=cos (x0); if abs(x-x0)<, break end x0=x; end 二、(15分)已知矛盾方程组Ax=b ,其中11120,1211A b ???? ????==???????????? , (1)用施密特正交化方法求矩阵A 的正交分解,即A=QR 。 (2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。 三、(10分)已知求解线性方程组Ax=b 的分量迭代格式 1 (1) (1) ()1 +1 /, 121,,i n k k k i i ij j ij j ii j j i x b a x a x a i n n -++===-- =-∑∑(),, (1)试导出其矩阵迭代格式及迭代矩阵; (2)若11a A a ?? = ??? ,推导上述迭代格式收敛的充分必要条件。 四、(15分)(1)证明对任何初值0x R ∈,由迭代公式11 1sin ,0,1,2, (2) k k x x k +=+ = 所产生的序列{}0k k x ∞ =都收敛于方程1 1sin 2 x x =+ 的根。 (2)迭代公式11 21sin ,0,1,2, (2) k k k x x x k +=-- =是否收敛。 五、(15分)用最小二乘法确定一条经过原点(0,0)的二次曲线,使之拟合下列数据

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析期末试卷

数值分析2006 — 2007学年第学期考试 课程名称:计算方法 A 卷 考试方式:开卷[] 闭卷[V ] 半开卷[] IV 类 充要条件是a 满足 二、(18分)已知函数表如下 1?设 f(0) = 0, f (1) =16 , f( 2) =46,则 f [0,1]= ,f[0,1,2]二 2 ?设 AJ <2 -3 -1 ,则X ,A := A 1 1 j — 3 ?计算积分 xdx ,取4位有效数字。用梯形公式求得的近似值为 "0.5 (辛普森)公式求得的近似值为 ,用 Spsn 4?设f (x )二xe x -3,求方程f (x ) =0近似根的牛顿迭代公式是 ,它的收 敛阶是 5 ?要使求积公式 1 1 [f (x)dx 拓一(0) + A , f (x 1)具有2次代数精度,则 捲= _________________ , 0 4 6 ?求解线性方程组 x 1 ax 2 = 4 , 12_3 (其中a 为实数)的高斯一赛德尔迭代格式收敛的 10 11 12 13 In x 2.3026 2.3979 2.4849 2.5649

三、(20分)构造如下插值型求积公式,确定其中的待定系数,使其代数精度尽可能高, 并指出所得公式的代数精度。 2 f (x)dx : A o f (0) A f (1) A2f(2) o

X 2 4 6 8 y 2 11 28 40 五、(14分)为求方程X ’ -X 2 -1 =0在X o =1.5附近的一个根,将方程改写为下列等价 形式,并建立相应的迭代公式: 试问上述两种迭代公式在 x 0 =1.5附近都收敛吗?为什么?说明理由。 (1)X =1 ?丄,迭代公式 X 1 X k 1 = 1 - X k (2) X 2二1 ,迭代公式 X —1 2 (X k ); X k 1

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

2012数值分析试卷答案

昆明理工大学2012级硕士研究生试卷 科目: 数值分析 考试时间: 出题教师: 集体 考生姓名: 专业: 学号: 考试要求:考试时间150分钟;填空题答案依顺序依次写在答题纸上,填在试卷卷面上的不予计分;可带计算器。 一、 填空题(每空2分,共40分) 1.设*0.231x =是真值0.228x =的近似值,则*x 有 位有效数字,*x 的相对误差限 为 。 2.设 133)(47+++=x x x x f ,则=]2,,2,2[710 f ,=]2,,2,2[810 f 。 3. 过点)0,2(),0,1(-和)3,1(的二次拉格朗日插值函数为 )(2x L = , 并计 算=)0(2L 。 4.设 32()3245f x x x x =+-+在[]1,1-上的最佳二次逼近多项式为 , 最佳二次平方逼近多项式为 。 5.高斯求积公式 )()()(1101 0x f A x f A dx x f x +≈? 的系数0A = , 1A = ,节点0x = , 1x = 。 6.方程组 b Ax =,,U L D A --=建立迭代公式f Bx x k k +=+)()1(,写出雅可比迭代法和 高斯-赛德尔迭代法的迭代矩阵, =Jacobi B ,=-Seidel Gauss B 。 7.0 0100A ??? =? ???,其条件数2()Cond A = 。 8.设?? ? ???=2113A ,计算矩阵A 的范数,1||||A = , 2||||A = 。

9.求方程 ()x f x =根的牛顿迭代格式是 。 10.对矩阵??? ? ? ??=513252321A 作LU 分解,其L=________________, U= __________________。 二、计算题(每题10分,共50分) 1. 求一个次数不高于4次的多项式P (x ), 使它满足:1)1(,0)0(,0)0('===p p p ,1)1(,'=p ,1)2(=p 并写出其余项表达式(要求有推导过程)。 2. 若用复合梯形公式计算积分 dx e x ? 1 ,问区间[0, 1]应分成多少等分才能使截断误差不超过 5102 1 -?? 若改用复合辛普森公式,要达到同样的精度区间[0, 1]应该分成多少等份? 由下表数据,用复合辛普森公式计算该积分的近似值。 3. 线性方程组b Ax =,其中???? ??????=18.04.08.014.04.04.01A ,T b ]3,2,1[=,(1)建立雅可比迭代法和 高斯-赛德尔迭代法的分量形式。(2)问雅可比迭代法和高斯-赛德尔迭代法都收敛吗 ? 4. 已知如下实验数据4,,1,0),,( =i y x i i , 用最小二乘法求形如x a a y 10+=的经验公式,并 计算最小二乘法的误差。 5. 用改进的欧拉公式(预估-校正方法),解初值问题0)0(,10022=+=y y x dx ,取步长,1.0=h 计算到2.0=x (保留到小数点后四位) 。 三、证明题(共10分) 1. 如果 A 是对称正定矩阵,则A 可唯一地写成T LL A =,其中L 是具有正对角元的下三角 阵。

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

文本预览
相关文档 最新文档