当前位置:文档之家› 巧求平面法向量(方程法)

巧求平面法向量(方程法)

巧求平面法向量(方程法)
巧求平面法向量(方程法)

巧求平面法向量

在空间直角坐标系中,平面的一般方程是0d cz by ax =+++(其中系数a,b,c 不同时为零),则向量

)c ,b ,a (n =→

为平面0d cz by ax =+++的法向量。根据这一原理,我们可以按下列方法求平面的法向量。

定理1:若平面α不经过原点.....

,,取平面α内不共线的三点A 、B 、C ,将其分别坐标代入关于z y x ,,的方程1cz by ax =++(等号右边的1也可以是其它任意非零常数),求出系数a,b,c 的一组值,则向量

)c ,b ,a (n =→

为平面α的法向量

定理2:若平面α经过原点....

,取平面α内与原点不共线的两点A 、B ,将其坐标代入关于z y x ,,的方程0cz by ax =++,求出系数a,b,c 的一组值,则向量)c ,b ,a (n =→

为平面α的法向量。

例1:已知如图正四棱柱ABCD -A 1B 1C 1D 1的棱长AA 1=2,AB=1,按图中所建立的坐标系,求平面BDC 1,平面A 1BC 1,平面ABC 1D 1的法向量。

解(1)因为平面BDC 1过原点D,将点B(1,1,0),C 1(0,1,2)代入0cz by ax =++得:0

20a b b c +=??

+=?

所以

2a b

b c

=-??

=-?。不妨设c=1,可得b=-2, a=2。所以)1,2,2(n -=→是平面BDC 1的法向量 (2)因为平面A 1BC 1不过原点D,将点A 1(1,0,2),B (1,1,0)C 1(0,1,2)代入1cz by ax =++得:

21121a c a b b c +=??+=??+=?所以121214a b c ?

=??

?

=?

?

?

=??

所以)4

1

,21,

21(n =→

为平面BDC 1的法向量 (3) 因为平面ABC 1D 1不过原点D,将A 1(1,0,2),B (1,1,0

C 1(0,0,2)代入1代入2ax by cz ++=得

22022221a c a a b b c c +==????

+==????==??

即所以(0,2,1)n →=是平面ABC 1D 1的法向量。

例2(2010·天津)如图,在长方体1111ABCD A BC D -中,

E 、

F 分别是棱BC ,1CC 上的点,2CF AB CE ==,1::1:2:4AB AD AA =

(1) 求异面直线EF 与1A D 所成角的余弦值; (2) 证明AF ⊥平面

1A ED

(3) 求二面角1A ED F --的正弦值。

解:如图所示,建立空间直角坐标系, 点A 为坐标原点,设1AB =,依题意得(0,2,0)D ,

(1,2,1)F ,1(0,0,4)A ,31,,02E ??

???

(1) 解:易得10,,12EF ??= ??? ,1(0,2,4)A D =-

于是1113

cos ,5EF A D EF A D EF A D

==-

. 所以异面直线EF 与1A D 所成角的余弦值为35

(2) 证明:已知 (1,2,1)AF = ,131,,42EA ??=-- ??? ,11,,02ED ??

=- ???

于是AF ·1EA =0,AF ·ED

=0.因此,1AF EA ⊥,

AF ED ⊥,又1EA ED E ?= 所以AF ⊥平面1A ED

(3)解:平面EFD 不过原点,将D 、E 、F 的坐标分别代入4ax by cz ++=,则24

34224

b a b a b

c =???

+=??

++=??,即12

1a b c =??=??=-?所以(1,2,1)

n =-

是平面EFD 的法向量。由(2)可知,AF 为平面1A ED 的一个法向量。于是2cos n,==3

|n|||n AF AF AF ?

,从而sin n,=3AF 所以二面角1A -ED-F

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。 (5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。 (6)若a 与b 共线, b 与c 共线,则a 与c 共线。 (7)若ma mb =,则a b =。

向量公式大全

向量公式大全 『ps.加粗字母表示向量』1.向量加法 羈AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 罿AB-AC=CB 即“共同起点,指向被减”

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3.数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0 『ps.按定义知,如果λa=0,那么λ=0或a=0』实数λ

向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积

定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律 a?b=b?a(交换律) (λa)?b=λ(a?b)(关于数乘法的结合律) (a+b)?c=a?c+b?c(分配律) 向量的数量积的性质 a?a=|a|2 a⊥b〈=〉a?b=0

向量公式汇总

向量公式汇总 平面向量 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)b=λ(ab)=(aλb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。 向量的数量积的坐标表示:ab=xx'+yy'。 向量的数量积的运算律 ab=ba(交换律); (λa)b=λ(ab)(关于数乘法的结合律); (a+b)c=ac+bc(分配律);

常用的一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三 个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为 (),,i j k ,令三个矢量的分量记为()()1 2 3 1 2 3 ,,,,,a a a a b b b b 及()1 2 3 ,,c c c c 则有 ()() 123 123 1 2 3123 123 123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ( ) a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):() ()()a b c a b c a c b ??=-?+? (1-209) 将矢量作重新排列又有:()()() a b c b a c b a c ?=??+? (1-210) 3.算子( a ? ) ? 是哈密顿算子,它是一个矢量算子。( a ? )则是一个标量算子,将它作用于标量φ ,即 ()a φ?是φ在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向 d r 的变化率的 d r 倍,即 d φ 。 () ()d dr dr φφφ=?=? 若将 () dr ?作用于矢量v ,则 ()dr v ?就是v 再位移方向 d r 变化率的 d r 倍,既为速度矢量 的全微分() dv d r v =? 应 用 三 重 矢 量 积 公 式 ( 1-209 ) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+??

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 平面的法向量 仁定义:如果a _ :,那么向量a 叫做平面二的法向量。平面.:> 的法向量共有两大类(从方向上分) ,无 数条。 2、平面法向量的求法 斗 ■ 4 方法一(内积法):在给定的空间直角坐标系中, 设平面「的法向量n =(x,y,1)[或n =(x,1,z),或n =(1yZ ], 在平面:内任找两个不共线的向量 a,b 。由n _ :?,得n a = 0且n b = 0,由此得到关于 x, y 的方程组,解此 i 方程组即可得到n 。 方法二:任何一个 x, y, z 的一次次方程的图形是平面;反之,任何一个平面的方程是 Ax By Cz ^0 (代B,C 不同时为0),称为平面的一般方程。其法向量 n -(A, B,C);若平面与3个坐 标轴的交点为R(a,0,0), P 2(0,b,0), P 3(0,0, c),如图所示,则平面方程为?上 ]--1,称此方程为平面的截距 a b c 式方程,把它化为一般式即可求出它的法向量。 方法三(外积法):设 ,.为空间中两个不平行的非零向量,其外积 a b 为一长度等于|a||b|sinr , ( 9为 ..,.两者交角,且Ou :::二),而与..,.皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 .. 例 1、 已知,al(2,1,0),b'(-1,2,1), T T —f —f 试求(1): a^b ; (2): b 汉a. T T T T Key: (1) a b =(1,-2,5);⑵ b a =(-1,2,5) 例2、如图1-1,在棱长为2的正方体 ABCD -A 1B 1C 1D 1中, 7 T T T 的方向转为 匸的方向时,大拇指所指的方向规定为a b 的方向 ^( x i ,y i ,z i ),^(x 2, r 「 T T 丫2二2),则:a b = Z 2 X 1乙 X 2 Z 2 X 1 X 2 y 1 y 2 (注:1、二阶行列式 =ad —cb ; d 2、适合右手定 则。 x, y, z 的一次方程。

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

整理法向量的快速求法

法向量的快速求法 在数学考试过程中,大部分同学往往因为时间不够而没法做完一份完整的试卷,有些同学也因为时间不够,计算速度加快而出现计算错误等原因导致失分,所以能够简便而快速的算出结果是很多同学梦寐以求的。用向量方法做立几题,必须会的一种功夫是求平面的法向量。不少理科同学为经常算错平面的法向量而苦恼,下面介绍一种快速求平面的法向量方法。 新教材对平面几何的要求,重点在于求平面的法向量,常见的待定系数法解方程组,运算量大,学困生容易算错,最简单快捷的方法是行列式法。 结论:向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2)是平面α内的两个不共线向量,则向量n =(y 1z 2-y 2z 1,-(x 1z 2-x 2z 1),x 1y 2-x 2y 1)是平面α的一个法向量. 如果用二阶行列式表示,则 n =( 1122y z y z ,-1 122x z x z ,1 12 2 x y x y ) ,这更便 于记忆和计算. 结论证明(用矩阵与变换知识可以证明,此处略去),但你可以验证 n 一定满足 m a m b ??=?? ?=???111222 0x x y y z z x x y y z z ++=??++=?; 而且∵a 、b 不共线,∴n 一定不是0. 怎样用该结论求平面的法向量呢?举例说明. 例、向量a =(1,2,3),b =(4,5,6)是平面 α内的两个不共线向量,求平面α的法向量 解:设平面α的法向量为n =(x ,y ,z ), 则0 n a n b ??=???=???2304560x y z x y z ++=?? ++=? 令z =1,得n =(1,-2,1). 注意: ① 一定按上述格式书写,否则易被扣分. ② n 的计算可以在草稿纸上完成,过程参照 右边“草稿纸上演算过程”. a =(1,2, b =(4,5,交叉相乘的差就是求y 时,a 、b 的纵坐标就不参与运算,a =(1,2,b =(4,5,6) 交叉相乘的差的时,a 、b 的竖坐标就不参与运算,a =(1,2,b =(4,5,6) 交叉相乘的差就是 ∴n =(-3,6

平面向量公式

平面向量公式 1.向量三要素:起点,方向,长度 2.向量的长度=向量的模 3.零向量:? ??方向任意长度为 .20.1 4.相等向量:?? ?长度相等 方向相同 .2.1 5.向量的表示:AB ()始点指向终点 6.向量的线性加减运算法则: ()()???? ?=-=+终点指向始点 始点指向终点, CB AC AB AC BC AB ,21 7.实数与向量的积: ()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=? 5.a b b a ?=? 6.()()b a b a ??=?λλ 7.()c b c a c b a ?+?=?+ 注;()()c b a c b a ≠? 8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得: a b λ= 9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1?? ? ? ?+ =y x a ?y x a 22 +=

()2已知;A ()y x 11+,B () y x 22+?() ( )() ?? ???+=--=--y y x x y y x x AB AB 1212.2,.12 2 1212 ()3已知;()y x a 11,= ,()y x b 22,= () ()?? ???+?=?±±=±?和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212 121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=01 2 2 1 =?-?y x y x (横纵交错乘积之差为0) ()5已知;已知;()y x a 11,=⊥ ()y x b 2 2 ,= 02 1 2 1 =?+??y y x x (对应坐标乘积之和为0) 10.数量积b a ?等于a 的长度a 与b 在a 的方向上的投影θcos ?b 的乘积: θcos ??=?b a b a ()的夹角与为b a θ 变形?b a b a ?= θcos 11.线段的定比分点: 设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p 2 1,上 的任意两点;即有: p p p p 21λ=?? ? ???外在点内 在点p p p p p p 212 100λλ (其中p 为定比分点;λ为定比。) (1).线段的定比分点“定比”λ=p p p p 2 1 (终点 分点分点 始点→→)

高中数学平面向量公式

1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。 3、|a?b|≠|a|?|b| 4、由|a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ①当且仅当a、b反向时,左边取等号; ②当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ①当且仅当a、b同向时,左边取等号; ②当且仅当a、b反向时,右边取等号。 4、定比分点

向量公式大全83635

向量公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b

(完整版)高考平面向量公式(教师)

第七辑 平面向量专题 一,基本概念 1,向量的概念:有大小有方向的量称为向量。 2,向量的表示:几何表示为有向线段(如图);字母表示为a 或者AB 。 3,向量的大小:即是向量的长度(或称模) 4,零向量:长度为0的向量称为零向量,记为,零向量方向是任意的。 5,单位向量:长度为一个单位的向量称为单位向量,一般用、 1= 1= 6,平行向量(也称共线向量):方向相同或相反的向量称为平行向量,规定零向量与任意向量平行。若平行于,则表示为∥。 7,相等向量:方向相同,大小相等的向量称为相等向量。若a 与b 相等,记为a =b 8,相反向量:大小相等,方向相反的向量称为相反向量。若a 与b 是相反向量,则表示为=-;向量-= 二,几何运算 1,向量加法: (1)平行四边形法则(起点相同),可理解为力的合成,如图所示: (2)三角形法则(首尾相接),可理解为:位移的合成,如图所示, (3)两个向量和仍是一个向量; (4)向量加法满足交换律、结合律:a b b a +=+,)()(c b a c b a ++=++ (5)加法几种情况(加法不等式): = << = 2,减法: (1)两向量起点相同,方向是从减数指向被减数,如图=- (2)两向量差依旧是一个向量; (3)减法本质是加法的逆运算:CB CA AB CB AC AB =+?=- 3,加法、减法联系: (1)加法和减法分别是平行四边行两条对角线,AC AD AB =+,=- (2=,则四边形ABCD 为矩形 B A a C B A ? a b a b a b b a +

4,实数与向量的积: (1)实数λ与向量a 的积依然是个向量,记作a λ,它的长度与方向判断如下: 当0>λ时,a λ与a 方向相同;当0<λ时,a λ与a 方向相反;当0=λ时,0=a λ;当0=a 时,0=a λ ;=λ(2)实数与向量相乘满足:)()(λμμλ= μλμλ+=+)( λλλ+=+)( 5,向量共线: (1)向量与非零向量共线的充要条件是:有且只有一个实数λ,使得λ= (2)如图,平面内C B A ,,三点共线的重要条件是存在三个不为零的实数q n m ,,, 使得=++n m q ,且0=++q n m ,反之也成立。 (3)AC AB λ=,则OC OA OB λλ+-=)1((证明略) 6,向量的数量积 (1 )数量积公式:= ?=?θθcos cos (2)向量夹角θ:同起点两向量所夹的角,范围是[] 0180,0∈θ (3)零向量与任一向量的数量积为0,即00=?a (4 )数量积与夹角关系:b a ≤?≤ 00=θ 00900<<θ 090=θ 0018090<<θ 0180=θ =? 0>?> 0=? >?>0 =?(5 = θcos 称为b 在a = θcos a 在b 的方向上的投影 (6)重要结论:直角三角形ABC 中,2 =? (7)向量数量积的运算律: 2a = e =(向量e 为与a 方向相同的单位向量) ?=? )()()(λλλ?=?=? =?+)(?+? 2222)(+?+=+ 2222)(+?-=- 2 2)()(-=-?+ b a b a b a b a b a

答平面向量的所有公式

答:平面向量的所有公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos 〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点

平面法向量的一种简单求法和在求角

平面法向量的一种简单求法和在求角、距离中的应用 云南李学元 一、法向量的定义: 与平面垂直的向量叫平面的法向量 (根据定义可知:平面的法向量有多个,方向有两种:向上或向下)二、向量的数量积 a·b=∣a︳︳b∣cos cos= 若a=(x1,y1,z1)b=(x2,y2,z2),则a·b= ∣a︳= 三、向量积:a×b a×b的结果仍然是一个向量(使两个向量的起点相同) 方向:右手手指指向a的方向,自然弯向b,则大拇指所指的方向就是向量a×b的方向(即:a×b垂直平面) 大小:等于a,b为邻边的平行四边形的面积。 如图所示: (由此我们可以通过求两个向量的向量积求平面的法向量)

a×b的坐标计算 设a=(x1, y1, z1) b=(x2 , y2, z2) 则:a×b =(︳y1y z1z︱,-︱x1x z1z︱,︱x1x y1y︱)其中:二阶行列式︱a b c d︱=ad-bc 习惯上:作a×b时,把a写在上,把b写在下 作b×a时,把b写在上,把a写在下 练习:已知a=(2,1,0) b =(-1,2,1) (1)求a×b。(2)求b×a 解:a×b= b×a= 注:根据上述分析要求一个平面的法向量,只要在平面内找出两个同起点的向量作向量积即可。

例:如图所示,正方体ABCD-A1B1C1D1中,棱长为2,E、F分别是DD1、DC的中点。求平面AEF的一个法向量 解:以D ∴A( E( F( ∴AF=( AE=( ∴平面AEF的法向量n=( ) 四、法向量在求角中的应用。 1、用法向量求线面角。如图 Θ=1 2 π- Θ=- 1 2 π 两种情况下都有:sinΘ=︱cos︱因为

平面向量公式

平面向量 向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度.零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质: ①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212 ,a b x x y y +=++. 向量减法运算: b a C B A

⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同; 当0λ<时,a λ的方向与a 的方向相反; 当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠共线. 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当 12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. (当1=λ时,为中点公式。) 平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??=.②当a 与b 同向时,a b a b ?=;当a

平面向量的所有公式

平面向量的所有公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos 〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。

常用的一些矢量运算公式

常用的一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为(),,i j k ,令三个矢量的分量记为 ()() 123123,,,,,a a a a b b b b 及 () 123,,c c c c 则有 ( )() 123123123123 123 123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说 不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):( )()()a b c a b c a c b ??=-?+? (1-209)

将矢量作重新排列又有:()()( )a b c b a c b a c ?=??+? (1-210) 3.算子(a ? ) ?是哈密顿算子,它是一个矢量算子。(a ? )则是 一个标量算子,将它作用于标量φ,即()a φ?是φ 在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向d r 的变化率的d r 倍,即d φ。 () ()d dr dr φφφ=?=? 若将()dr ?作用于矢量v ,则()dr v ?就是v 再位移方向d r 变化率的d r 倍,既为速度矢量的全微分()dv dr v =? 应用三重矢量积公式(1-209) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+?? 应用三重矢量积公式(1-210)又有 ()()() 00()()()()a b a b a b a b a b b a b a ??=??+??=???+?+???+?? 将以上两式结合(相减)后可得 () {() }1 ()()()()()2 a b a b a b b a a b b a a b ?= ??-???-???-???-??+?? 一个重要的特例,令 a b v ==,因 () v v ???=则有 21 ()() 2v v v v v ?=?-??? 4.算子? 的应用 令φ是标量,a 是矢量,;a b 为并矢量,则有

平面向量公式及易错点

平面向量公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记

平面法向量的求法

平面法向量的求法 教学目的:掌握快速计算法向量的方法,为空间角的求解、距离的计算服务; 教学重点:熟练应用速算方法求出法向量 教学难点:平面内不共线两向量的坐标中不含0,求此面的法向量 教学过程: 1、定义:如果α⊥→a ,那么向量→ a 叫做平面α的法向量。 2、法向量坐标的求法 (1)方程法 例1:(2010浙江理数)如图, 在矩形ABCD 中,点,E F 分别在线段,AB AD 上,243 AE EB AF FD ====.沿直线EF 将 AEF ?翻折成EF A '?,使平面'A EF BEF ⊥平面. (Ⅰ)求二面角'A FD C --的余弦值; 【评析】 (2)含0速算法 如果空间直角坐标系中的点在坐标轴上,那么就有两个坐标为0,点在坐标平面上,就会有一个坐标为0,同理,如果向量与坐标轴平行,则向量就有两个坐标为0,向量与坐标平面平行,向量就有一个坐标为0,有的学生在实践中发现,两个向量的六个坐标中,只要出现0,就可以快速求得法向量,有点“十字相乘法”快速分解二次三项式的味道,而且正确率高,在考试中作用明显。

例2、(08陕西卷理科第19题)三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠= ,1A A ⊥平面ABC ,1A A = AB =,2AC =,111AC =. (Ⅱ)求二面角1A CC B --的大小. 【评析】 【探究】已知的一个法向量为则面ABC c C b B a A ),,0,0(),0,,0(),0,0,( (3)公式法:已知平面α的两个非零不共线向量),,,(),,,(222111z y x b z y x a == =的一个法向量则面α 练习:已知平面α的两个非零不共线向量),3,6,2(),4,3,1(== =n 的一个法向量则面α 【评析】 3、应用练习: 如图,已知正三棱柱111ABC A B C -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.设二面角C AF E --的大小为θ,求tan θ的最小值.

完备版版高中数学4平面向量知识点与典型例题总结师.doc

《数学》必会基础题型——《平面向量》 【基本概念与公式】 【任何时候写向量时都要带箭头】 1. 向量:既有大小又有方向的量。记作: uuur r AB 或 a 。 uuur r 2. 向量的模 :向量的大小(或长度) ,记作: | AB |或 | a |。 r r 3. 单位向量 :长度为 1 的向量。若 e 是单位向量,则 | e | 1。 r r 4. 零向量:长度为 0 的向量。记作: 0 。【 0 方向是任意的,且与任意向量平行】 5. 平行向量(共线向量):方向相同或相反的向量。 6. 相等向量 :长度和方向都相同的向量。 uuur uuur 7. 相反向量 :长度相等,方向相反的向量。 AB BA 。 8. 三角形法则: uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur AB BC AC ; AB BC CD DE AE ; AB AC CB (指向被减数) 9. 平行四边形法则 : r r r rr r 以 a,b 为临边的平行四边形的两条对角线分别为 a b , a b 。 r r r r r r r r 10. 共线定理 : a b a / / b 。当0 时, a 与 b 同向; 当 0 时, a 与b 反向。 11. 基底:任意不共线的两个向量称为一组基底。 12. r r x 2 y 2 r 2 r r r r r 向量的模: 若 a ( x, y) ,则 | a | , a | a |2 , | a b | (a b ) 2 r r r r r r 13. cos r a b r 数量积与夹角公式: a b | a | |b | cos ; | a | | b | 14. r r r r r r r r 平行与垂直: a / /b a b x 1 y 2 x 2 y 1 ; a b a b 0 x 1x 2 y 1 y 2 0 题型 1. 基本概念判断正误 : ( 1)共线向量就是在同一条直线上的向量。 ( 2)若两个向量不相等,则它们的终点不可能是同一点。 ( 3)与已知向量共线的单位向量是唯一的。 uuur uuur ( 4)四边形 ABCD 是平行四边形的条件是 AB CD 。 uuur uuur ( 5)若 AB CD ,则 A 、B 、C 、D 四点构成平行四边形。 ( 6)因为向量就是有向线段,所以数轴是向量。 r r r r r r ( 7)若 a 与 b 共线, b 与 c 共线,则 a 与 c 共线。 r r r r ( 8)若 ma mb ,则 a b 。 1

相关主题
文本预览
相关文档 最新文档