当前位置:文档之家› 生物传感器分析解析

生物传感器分析解析

生物传感器分析解析
生物传感器分析解析

阅读报告

生物传感器

教学单位:机电工程学院

专业名称:机械设计制造及其自动化

学号:

学生姓名:

指导教师:

指导单位:机电工程学院

完成时间:

电子科技大学中山学院教务处制发

生物传感器

摘要

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。

生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。

关键词:传感器生物传感器

目录

1 生物传感器 (1)

1.1生物传感器简介 (1)

2 生物传感器的介绍 (2)

2.1组成结构及工作原理 (2)

2.2技术特点 (2)

2.3国内外应用发展情况及应用案例 (3)

2.3.1国内应用发展 (3)

2.3.2国外应用发展 (3)

2.3.3应用案例 (4)

参考文献 (6)

1 生物传感器

1.1生物传感器简介

传感器中包含抗体、抗原、蛋白质、DNA 或者酶等生物活性材料,待测物质进入传感器后,分子识别然后发生生物反应并产生信息,信息被化学换能器或者物理换能器转化为声、光、电等信号,仪器将信号输出,我们就能够得到待测物质的浓度。传感器的主要组成部分是感受器和换能器,再将信号通过自动化仪表技术和微电子技术处理,就能构成各种仪器或者系统。

传统医学检验大多是酶分析法,这种方法步骤繁琐,费用较高,而采用生物传感器的方法,虽然试剂价格昂贵但是可以多次使用;生物传感器有很强的转移性,即只对特定的底物发生反应,不论其浊度和颜色如何 ;再者分析速度较快,一般一分钟就能得到结果 ;误差能够控制在 1%以内,准确度可以保证;相对于酶分析法操作更加简便,可以进行自动化分析 ;生物传感器检验效率更高。上述都是生物传感器的优点。

2 生物传感器的介绍

本章介绍生物传感器

2.1 组成结构及工作原理

①组成结构

生物传感器由分子识别部分(敏感元件)和转换部分(换能器)构成:

以分子识别部分去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。

分子识别部分是生物传感器选择性测定的基础。

把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的

信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化

仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器实现以下三个功能:

?感受:提取出动植物发挥感知作用的生物材料,包括:生物组织、微生物、细胞器、酶、抗体、

抗原、核酸、DNA等。实现生物材料或类生物材料的批量生产,反复利用,降低检测的难度

和成本。

?观察:将生物材料感受到的持续、有规律的信息转换为人们可以理解的信息。

?反应:将信息通过光学、压电、电化学、温度、电磁等方式展示给人们,为人们的决策提供依

据。

②工作原理

生物传感器具有接受器与转换器的功能。对生物

物质敏感并将其浓度转换为电信号进行检测的仪器。

生物体中能够选择性地分辩特定物质的物质有

酶、抗体、组织、细胞等。这些分子识别功能物质通

过识别过程可与被测目标结合成复合物,如抗体和抗

原的结合,酶与基质的结合。

在设计生物传感器时,选择适合于测定对象的识

别功能物质,是极为重要的前提。要考虑到所产生的

复合物的特性。根据分子识别功能物质制备的敏感元

件所引起的化学变化或物理变化,去选择换能器,是

研制高质量生物传感器的另一重要环节。敏感元件中

光、热、化学物质的生成或消耗等会产生相应的变化

量。根据这些变化量,可以选择适当的换能器。

生物化学反应过程产生的信息是多元化的,微电子学和现代传感技术的成果已为检测这些信息提供了丰富的手段。

2.2 技术特点

生物传感器是一种可以获取并处理信息的特殊装置,如人体的感觉器官就是一套完美的传感系统通过眼、耳、皮肤来感知外界的光、声、温度、压力等物理信息,通过鼻、舌感知气味和味道这样的化学刺激。而生物传感器是一类特殊的传感器,它以生物活性单元(如酶、抗体、核酸、细胞等)作为生物敏感单元,对目标测物具有高度选择性的检测器。

⑴采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过

去酶法分析试剂费用高和化学分析繁琐复杂的缺点。

⑵专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响。

⑶分析速度快,可以在一分钟得到结果。

⑷准确度高,一般相对误差可以达到1%

⑸操作系统比较简单,容易实现自动分析

⑹成本低,在连续使用时,每例测定仅需要几分钱人民币。

⑺有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生。在

产控制中能得到许多复杂的物理化学传感器综合作用才能获得的信息。同时它们还指明了增加产物得率的方向。。

2.3 国内外应用发展情况及应用案例

2.3.1国内应用发展

目前,我国在生物传感器研究队伍和技术水平方面都进入了国际先进行列。但由于生物活性单元具有不稳定性和易变性等缺点,使生物传感器的稳定性和重现性较差。而大量的研究工作仅限于对方法学的初步尝试,离实现生物传感器的商品化要求差距较大。如何将大量的方法学研究成果转化成实际应用产品,实现我国从生物传感器研究大国向生物传感器制造强国的转变,是今后我国生物传感器技术发展的重点。

2.3.2国外应用发展

汗液实时检测生物传感器,(美国)

由约书亚·韦德米勒(Joshua Windmiller)和贾瑞德·谭格尼(Jared Tangney)创办的关注汗液数据分析的公司Electrozyme,研制出一款内置生物传感器的腕带产品,它可以与用户的皮肤表面进行接触并能从其汗液中读取化学信息,然后展现出该用户的身体在剧烈运动后会出现怎样的反应。

人工晶体的青光眼传感器(美国)

斯坦福大学的研究团队开发出一种适用于人工晶体的青光眼传感器。该传感器连接外

部智能手机和工作程序,贴在人体内来测量眼球内流体压力,这是一种测试青光眼导致失明的方法。

利用唾液检测血糖的新型传感器(美国)

布朗大学(Brown University)的科学家开发出一种针对糖尿病患者的新型传感器,这种新型传感器可以利用唾液而不是血液,来检测血糖水平,新的传感器由光源、金属以及一个当暴露于血糖,会改变颜色的特殊酶组成。

新型传感器蛋白分子有望降低血药浓度监测成本(瑞士)

洛桑联邦理工学院的研究人员引入了一种新型的光发射传感器蛋白质,其可以通过改变光的颜色来快速揭示病人血液中的药物含量,该方法非常简便,病人自己都可以轻松进行操作。

2.3.3应用案例

血液分析仪

血液分析仪,临床又称血细胞分析仪、血球分析仪、血液细胞分析仪、血球计数仪。

细胞信号全数字化处理技术,成熟的液路设计,保证检测运行的测量结果的可靠性,先进的浮动界标算法,配合完善的异常血样专家识别系统,对异常样本做出筛选提示独立的血红蛋白测量系统,特有的体积计量管直接定量技术,消除干扰源,提高准确性u 粒子向导技术:细胞粒子以直线运动,产生真实脉冲,确保WBC、RBC、PLT计数准确u 双向立体后旋流技术:避免流体对PLT计数的干扰u 白细胞三分类u 双通道,60测试/小时u 全新高精密度微量血液处理技术u 电阻抗法,氰化高铁血红蛋白法及氰化物的SFT 法u 大屏幕8.4寸TFT触摸屏。

参考文献

[1] 中国百科网:生物传感器应用

[2] 万方数据:我国生物传感器研究现状及发展方向。史建国,李一苇,张先恩(1.山东省科学院生物

研究所,山东省生物传感器重点实验室,山东济南250014;2.中国科学院生物物理研究所,北京100101)

[3] 百度学术

[4] 百度文库

[5] 百度图片

生物传感器的研究现状及应用

生物传感器的研究现状及应用 生物传感器?这个熟悉但又概念模糊的名词最近不断出现在媒体报道上,生物传感器相关的研究项目陆续获得巨额的研究资助,显示出越来越受重视的前景。要掌握生命科学研究的前研信息,争取好的研究课题和资金,你怎能不了解生物传感器? 让我们来看看生物通最近的一些报道: 英国纽卡斯尔大学科学家研发了可用于检测肿瘤蛋白以及耐药性MASA细菌的微型生物传感器。该系统利用一个回旋装置来检测,类似导航系统和气袋的原理。振荡晶片的大小类似于一颗尘埃尺寸,有望可使医生诊断和监测常见类型的肿瘤,获得最佳治疗方案。该装置可以鉴定肿瘤标志物-蛋白以及其它肿瘤细胞产生的丰度不同的生物分子。该小组下一步目标是把检测系统做成一个手持式系统,更加快速方便地检测组织样品。欧共体已经拨款1200万欧元资金给该小组,以使该技术进一步完善。 苏格兰IntermediaryTechnologyInstitutes计划投资1亿2千万英镑发展“生物传感器平台(BiosensorPlatform)”——一种治疗诊断技术。作为将诊断和治疗疾病结合在一起的新兴疗法,能够在诊断的同时,提出适合不同病人的治疗方案,可以降低疾病诊断和医学临床的费用与复杂性,同时具备提供疾病发展和药品疗效成果的能力。目前该技术已被使用在某些乳癌的治疗上,只需在事前做些特殊的测试,即可根据结果决定适合的疗程。这个技术更被医学界视为未来疾病疗程的主流。 来自加州大学洛杉矶分校的研究者使用GeneFluidics开发的新型生物传感器来鉴定引起感染的特定革兰氏阴性菌,该结果表明利用微型电化学传感器芯片已经可以用于人临床样本的细菌检查。GeneFluidics'16-sensor上的芯片包被了UCLA设计的特异的遗传探针。临床样本直接加到芯片上,然后其电化学信号被多通道阅读器获取。根据传感器上信号的变化来判断尿路感染的细菌种类。从样品收集到结果仅需45分钟。比传统方法(需要2天时间)

生物传感器分析解析

阅读报告 生物传感器 教学单位:机电工程学院 专业名称:机械设计制造及其自动化 学号: 学生姓名: 指导教师: 指导单位:机电工程学院 完成时间: 电子科技大学中山学院教务处制发

生物传感器 摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。 关键词:传感器生物传感器

目录 1 生物传感器 (1) 1.1生物传感器简介 (1) 2 生物传感器的介绍 (2) 2.1组成结构及工作原理 (2) 2.2技术特点 (2) 2.3国内外应用发展情况及应用案例 (3) 2.3.1国内应用发展 (3) 2.3.2国外应用发展 (3) 2.3.3应用案例 (4) 参考文献 (6)

生物传感器

生物传感器 信研1402 摘要:生物传感器是一种以生物活性单元为敏感元件,结合化学、物理转换元件,对被分析物具有高度选择性的装置,它具有灵敏度高、检测速度快、操作简便、成本低、可进行连续动态监测等优点。本文在介绍生物传感器发展现状、组成及工作原理以及输入输出信号的基础上,对生物传感器的应用进行了综述。 引言 生物传感器技术是一个非常活跃的工程技术研究领域,它与生物信息学、生物芯片、生物控制论、仿生学、生物计算机等学科一起处在生命科学和信息科学的交叉区域,是发展生物技术必不可少的一种先进的检测与监控装置。 一、生物传感器组成 生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。 生物传感器利用生物活性物质选择性的识别和测定实现测量,主要由两大部分组成(如图1所示):一为功能识别物质(分子识别元件又称生物敏感膜),由其去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分是生物传感器选择性测定的基础;其二是电、光信号转换装置(换能器),由其把被测物所产生的化学反应转换成便于传输的电信号或光信号。 图1.生物传感器组成结构图

生物传感器识别和检测待测物的一般反应过程为:首先,待测物分子与识别元素接触;然后,识别元素把待测物分子从样品中分离出来;接着,转换器将识别反应相应的信号转换成可分析的化学或物理信号;最后,使用现代分析仪器对输出的信号进行相应的转换,将输出信号转化为可识别的信号。 二、工作原理 生物传感器工作方式分为两种:直接转换为电信号和间接转换为电信号型,间接型是将化学信号、光信号或者热信号等其他信号转换为电信号。 图2.生物传感器工作原理图 三、生物传感器的分类 根据识别元素的不同,生物传感器可分为酶免疫传感器、细胞传感器、微生物传感器、传感器等,,根据输出信号产生的方式生物传感器可分为生物亲和型传感器或催化型生物传感器等。也可依据分子的类型进行分类生物传感器的命名与其分类一一对应,为清晰描述一个传感器的性质,也可将同一传感器在不同领域的分类叠加,如以蛋白质为分子,酶为识别元素,电化学为表征手段的生物传感器可称为蛋白质酶电化学传感器或是酶电化学蛋白质传感器。根据所用换能器和监测物理量、化学量和生物量可分为电化学生物传感器光学生物传感器。 光化学生物传感器是基于待测物能够引起传感器表面某种特定指示剂光吸

SPR生物传感器研究综述

SPR生物传感器研究综述 刘小林 (宜春学院,江西宜春336000) 摘 要:SPR生物传感器已广泛应用于易变反应物与传感器表面固定结合配体之间特定定性与定量分析1 文章综述了这种新技术的研究和应用进展情况,传感器的组成和工作原理,传感器表面和固定,应用于实验 的步骤,实验结果与未来发展趋势1 关键词:SPR生物传感器;固定技术;生物大分子 中图分类号:Q6 文献标识码:A 文章编号:1671-380X(2006)04-0120-04 Rev i ews on the Study of Surface Pl a s m on Resonance B i osen sors L I U Xiao-lin (Yichun College1J iangxi Y ichun336000China) Abstract:Surface p las mon res onance bi osens ors have become increasingly popular for the qualitative and quantitative characterizati on of the s pecific binding of a mobile reactant t o a binding partner i m mobilized on the sens or surface1This A rticle revie ws the study devel2 opments of this ne w technique,including sens or surface and i m mobilizati on,an app lied experi m ental p r ocedure,experi m ental results and future pers pectives1 Key words:Surface Plas mon Res onance B i osens or;I m mobilizati on Technique;B i ol ogicalMacr omolecule 1990年,随着SPR生物传感器(Surface p las mon res o2 nance bi osens ors)的传播,可视的光波生物传感器随即被广泛应用并逐渐成为生物大分子间相互作用的定性和定量的检测工具1对照于其他方法,这种生物传感器能察觉到在流动时期结合到被固定在生物传感器表面的特殊反应1SPR 生物传感器部分地引起关注是因为被测的物理量是折射率变化,因此,没有chr omophoric组或被标记的生物大分子是必须要的1另外,SPR生物传感器在结合的过程中提供即时的消息,也适用于μM到sub---n M宽物质间的相互作用1 目前,很多大分子间的相互作用在SPR生物传感器上的应用被公开地应用于多个领域1包括细胞粘附因子,T 细胞抗原受体和MHC-编码分子,受体—配体的相互作用,抗体抗原的相互作用,病毒研究,蛋白质—DNA和DNA--DNA间的相互作用,脂类泡状体或平面双层间的相互作用及与膜结合的单程转录复合物的合成等1除了由B iacore、Upp sala、s weden(B I A core)、I ntersents I nstru ments BV、Amersfoort、Netherlands(I B I S)制造的工业上应用的SPR生物传感器和几种用于装备实验室的SPR生物传感器外,目前只有两种渐消失的光波导耦合方式生物传感器在工业上被应用,这两种生物传感器(Kretsch mann结构为基础的棱镜型和衍射光栅型生物传感器)是以反射原理和光栅配体原理为基础,它们在描述可视物质的相互作用的性能上与SPR生物传感器类似1 用渐消失的光波生物传感器得到的可靠的数据描述化学结合动力学和平衡点,比较于简单的结合定性分析,这是一种费时费力的工作1即便是反应都遵守简单的准一级动力学规律,需要克服的困难却有:(1)固定技术必须按本来的结构结合自由反应物,必须反应均匀,必须达到方位1表面不允许有较多的非特异性结合1(2)相对地小折射率的指标增加的大多数生物大分子必须有限制的集中于传感器表面的结合位点上1(3)自由反应物能有效地运输到反应的传感器表面等问题比混合反应物的问题难解决得多1结果,测量的结合过程曲线受到限制自由反应物的质量转移,和到达传感器表面和在传感器表面上毗邻结合位点的障碍,这些测量的结合过程曲线也同样受到固定反应物不同亚群结合过程重叠和非特异性结合的影响1最近几年,最重大的进展是实验技术的发展使这些问题可以得到解决或降低其影响,在计划上控制实验,在分析程序和诊断上的发展,在结果的描述上都有改进1 SPR生物传感器的基本构造是一个由很薄的金属薄膜(通常是金的或银的)组成的棱镜,这个结构最早由Kretsch mann和Raether提出,光在棱镜内部的全部反射往往激发金属薄膜上的非放射性表面胞质团1这种胞质团是使金属薄膜表面产生等离子膜共振1 1 生物传感器的组成和工作原理 第28卷 第4期2006年8月 宜春学院学报(自然科学) Journal of Yichun University(s ocial science) Aug128,No14 Aug12006 收稿日期:2006-04-17 作者简介:刘小林(1966-),男,江西高安市人,副教授,在读博士研究生,研究方向:农学与生物技术1

生物传感器综述

生物传感器综述

————————————————————————————————作者: ————————————————————————————————日期: ?

生物传感器课程论文 论文题目:生物传感器技术在环境分析 与检测方面的应用研究进展专业: 分析化学 姓名:雷杰 学号:12015130529 指导教师:晋晓勇 时间:2015年10月23日

生物传感器技术在环境分析与检测方面的应用研究进展 摘要:生物传感器作为一类新兴传感器,它是以生物分子敏感元件,将化学信号、热信号、光信号转换成电信号或者直接产生电信号予以放大输出,从而得到检测结果。文章综述了生物传感器在环境监测,包括水环境、大气环境等领域的应用和最新进展,并展望了环境监测生物传感器的发展前景及发展方向。 关键词:生物传感器技术;环境分析检测;

0.前言 生物传感器这门课属于分析化学和生物化学的一门交叉学科,它涉及到生物化学、电化学等多个基础学科。就目前生物传感器研究的历史阶段,它仍然处于十分活跃的研究阶段,生物传感器的研究逐渐变得专业化、微型化、集成化、也有一些生物相容的生物传感器,生物可控和智能化的传感器制成[1]。基于生物传感器的基本结构和性能,从它的选择性,稳定性,灵敏度和传感器系统的集成化发展的特点和趋势,科研人员主要研究生物传感器在医疗、食品工业和环境监测等方面,它的发展对生产生活都有极大影响,尤其是生物传感器专一性好、易操作、设备简单、可现场检测、便携式、测量快速准确、适用范围广,从而深受研究者的青睐。本文主要概述了近三年来生物传感器在环境分析与检测方面的应用研究,从而对以后生物传感器技术的研究有所帮助与借鉴。 1.生物传感器技术 1.1生物传感器的组成及工作原理 生物传感器主要是由生物识别和信号分析两部分组成。生物识别部分是由具有分子识别能力的生物敏感识别元件构成,包括细胞、生物素、酶、抗体及核酸。信号分析部分通常叫换能器。它们的工作原理一般是根据物质电化学、光学、质量、热量、磁性等,物理化学性质将被分析物与生物识别元件之间反应的信号转变成易检测、量化的另一种信号,比如电信号、焚光信号等,再经过信号读取设备的转换过程,最终得到可以对分析物进行定性或定量检测的数据[2]。 生物传感器识别和检测待测物的工作原理:首先,待测物分子与识别元素接触;然后,识别元素把待测物分子从样品中分离出来;接着,转换器将识别反应相应的信号转换成可分析的化学或物理信号;最后,使用现代分析仪器对输出的信号进行相应的转换,将输出信号转化为可识别的信号。生物传感器的各个部分包括分析装置、仪器和系统也由此构成。生物传感器中的识别元素决定了传感器的特异性,是生物定性识别的决定因素;识别元素与待测分子的亲合力,以及换能器和检测仪表的精密度,在很大程度上决定了传感器的灵敏度和响应速度。

生物传感器作业第一次

1.什么是生物传感器?主要由哪几部分组成,分别有什么功能. 答: 生物传感器:用生物质作为敏感元件的一种传感器。 主要部件:生物敏感膜(或称作分子识别原件)和换能器 生物敏感膜是生物传感器的关键元件,直接决定传感器的功能和质量 换能器的作用是将各种生物的、化学的和物理的信息转化成电信号 2.什么是酶联免疫测定法?描述其两种检测方法,可画图说明.并举一两个例子。答: 所谓酶联免疫测定法是指用酶促反应的放大作用来显示初级免疫学反应。主要有: 一、夹心法,多用于检测大分子物质,其操作步骤如下: (1)将特异性抗体与固相载体连接,形成固相抗体:洗涤除去未结合的抗体及杂质。 (2)加受检标本:使之与固相抗体接触反应一段时间,让标本中的抗原与同相载体上的抗体结合,形成固相抗原复合物。洗涤除去其他未结合的物质。(3)加酶标抗体:使同相免疫复合物上的抗原与酶标抗体结合。彻底洗涤未结合的酶标抗体。此时固相载体上带有的酶量与标本中受检物质的量正相关。(4)加底物:酶催化底物成为有色产物。根据颜色反应的程度进行该抗原的定性或定量。 举例:(1)应用双抗体夹心法可检测人体中的免疫球蛋白D的含量;(2)应用双抗体夹心法检测患者血清中的抗环瓜氨酸肽抗体的含量。 二、竞争法,多用于小分子或半抗原的检测,操作步骤如下: (1)将特异抗体与固相载体连接,形成固相抗体,洗涤。

(2)待测管中加受检标本和一定量酶标抗原的混合溶液,使之与固相抗体反应。如受检标本中无抗原,则酶标抗原能顺利地与固相抗体结合。如受检标本中含有抗原,则与酶标抗原以同样的机会与固相抗体结合,竞争性地占去了酶标抗原与固相载体结合的机会,使酶标抗原与固相载体的结合量减少。参考管中只加酶标抗原,保温后,酶标抗原与同相抗体的结合可达最充分的量。洗涤。 (3)加底物显色:参考管中由于结合的酶标抗原最多,故颜色最深,参考管颜色深度与待测管颜色深度之差,代表受检标本抗原的量。待测管颜色越淡,表于标本中抗原含量越多。 图示如下: 举例:(1)利用竞争法检测乙型肝炎病毒核心抗体的影响因素;(2)利用竞争法检测蓝舌病抗体的含量。 3. DNA的三级结构? 答: 一级结构:脱氧核苷酸在长链上的排列顺序 二级结构:双螺旋链(碱基配对原则) 三级结构:超螺旋结构 4.生物敏感元件的固定化方法有哪几种?分别有什么特点.酶和DNA分别常用哪几种固定方法. 答: (1)生物敏感元件常用固定方法有:夹心法、包埋法、吸附法、共价结合法、交联法、微胶囊法 (2)各方法的特点: 夹心法:操作简单,不需要化学处理,固定生物量大,响应速度快,重现性好,

生物传感器及其在农药残留中的应用

专业文献综述 题目: 生物传感器及其在农药残留中的应用姓名: 李枞 学院: 植物保护 专业: 农药学 班级: 5 学号: 2011102159 指导教师: 杨红职称: 教授 2012 年05月01日

生物传感器及其在农药残留中的应用 摘要:生物传感器是一种新型的分析工具,在农药残留的检测中具有极其重要的应用价值。本文介绍了生物传感器的定义、原理、分类和特点,并对生物传感器分析农药残留物的应用、研究进展和发展趋势进行了探讨。 关键词:生物传感器;农药残留物;应用;研究进展 The Application of Biosensor in the Determination of Pesticide Residues Abstract:Biosensor is a new analysis tool.It has very important applied value in the pesticide residues analyse.This article describes the definition,theory,classification and characteristics of biological sensors in detail,and discussed the applications,research development and development trends of biosensor analysis of pesticide residues. Key word:biosensor;pesticide residues;application;research development 前言 自上世纪80年代以来,国际上农药残留分析新技术的研究非常活跃,不断有新方法、新技术涌现,以满足现场快速检测样品量的迅速增加,对分析的灵敏度、特异性和快捷性提出了更苛刻的要求。生物传感器法就是其中日渐成熟的一种。生物传感器具有体积小、成本低、灵敏度高、选择性及抗干扰能力强、响应快等优点。近年来,随生物技术的日臻完善、微电子学技术的迅速发展以及实际应用领域的迫切要求,作为一种多学科交叉的高技术、作为一种强有力的分析工具,它已成功地应用于医学、国防、环境、食品工业及农业等领域。该文主要对生物传感器在农药残留分析中的应用进行了概述。 1生物传感器 生物传感器实际上是一种特殊的化学传感器,是用生物活性物质( 如酶、抗体、抗原、细胞等) 作识别元件,配以适当的物理或化学信号转换器所构成的分析工具。 1. 1 生物传感器的工作原理 生物传感器以生物化学和传感技术为基础,其工作原理可用图1表示:待测物质经扩散作用进入分子识别元件,经分子识别,与分子识别元件特异性结合,发生生物化学反应,产生的生物学信息通过信号转换器转化为可以定量处理的光信号或电信号,再经仪表的放大和输出,即可达到分析检测的目的。 图1

基于石墨烯的光学生物传感器的研究进展_高原

DOI :10.3724/SP.J.1096.2013.20747基于石墨烯的光学生物传感器的研究进展 高原 1李艳2苏星光*2(电子科学与工程学院集成光电子国家重点实验室1,吉林大学化学学院2,长春130012)摘要近年来,随着石墨烯研究热潮的兴起,将石墨烯用于生物及化学检测的工作也日益增多。本文着重介绍了基于石墨烯及氧化石墨烯(GO )的光学生物传感器,特别是基于石墨烯的荧光共振能量转移(FRET ) 传感器以及比色法传感器的设计思想和传感特性。 关键词石墨烯;氧化石墨烯;生物传感器;荧光共振能量转移;评述 2012-07-17收稿;2012-09-30接受 本文系国家自然科学基金(Nos.2127506, 21075050)资助项目*E-mail :suxg@jlu.edu.cn 1引言 石墨烯是一种由纯碳原子的六元环平面结构构成的二维材料 [1],是零维的富勒烯、一维的碳纳米管(CNTs )以及三维石墨结构的构筑基元[2]。它具有非常大的理论比表面积、很高的杨氏模量[3]、超高的光学透过率、优良的导热性[4]和导电性,并能够通过电子转移实现荧光猝灭。目前,人们已将基于石 墨烯的材料广泛应用于诸多领域,如吸附剂 [5]、催化剂[6]、药物载体[7]等。石墨烯具有的奇特性质,使 得其能够满足高灵敏性传感器设计的需求,并已用于构建光学[8]、电化学[9]及场效应传感器[10,11]、细胞标记[12]及实时监测[13]等。本文介绍了基于石墨烯材料的光学生物传感器的研究进展,重点评述了基于石墨烯基的荧光共振能量转移(FRET )以及比色法传感器。 2基于石墨烯的荧光共振能量转移传感器 荧光共振能量转移(FRET )是能量由供体荧光团经无辐射途径转移给受体荧光团,并引起供体荧 光猝灭和受体荧光增强的光学现象, 是测量活体及体外纳米尺度距离及变化的有效手段。近年来,人们致力于开发基于石墨烯材料的FRET 传感器, 将其用于生物及化学检测。FRET 传感器主要由3部分构成:供体、受体(猝灭剂)及供受体之间的桥联媒介。在基于石墨烯的FRET 传感器中,石墨烯及其衍生物既可以作为供体,又可作为受体。一方面,石墨烯由于其结构特点,能够同时猝灭发射波长或结构不同的多种荧光团的荧光,是一种通用的猝灭剂;另一方面,石墨烯及其衍生物经过一定的化学处理,可以产生荧光信号,可作为荧光供体。基于石墨烯的FRET 生物传感器依托于一些生物分子构建的桥联基, 用于调节供体荧光团和受体之间的距离,从而引起荧光的变化。其中,DNA 、蛋白质、多肽等生物分子均 可以作为桥联基。 2.1以石墨烯作为猝灭剂 在报道的基于石墨烯材料的FRET 传感器中,以石墨烯材料作为猝灭剂的居多。氧化石墨烯(GO )是石墨烯的一种重要衍生物,是化学还原法制备石墨烯的前驱体,在石墨烯片层结构的边缘和表面带有 多种含氧基团, 如羧基、羟基、环氧基等。正是由于这些含氧基团的存在,使其较石墨烯具有更好的水溶性,可以应用于生物体系中。石墨烯及GO 由于其大面积的共轭结构,可以作为能量受体猝灭多种有机染料及量子点的荧光,是一种广适性的荧光猝灭剂。与传统的猝灭剂相比,石墨烯材料具有更高的猝灭 效率,使FRET 传感器具有背景低、信噪比高、可多重检测的显著特点 [14 16]。2.1.1基于DNA 联接研究表明,石墨烯能区分多种DNA 分子结构,包括ssDNA ,dsDNA 以及茎环 结构等[17,18]。石墨烯及GO 由于其结构特点,对带有裸露的环状结构的化合物具有强烈的吸附能力。第41卷 2013年2月分析化学(FENXI HUAXUE )特约来稿Chinese Journal of Analytical Chemistry 第2期174 180

最新电化学生物传感器

电化学生物传感器 生物分子的分析检测对获取生命过程中的化学与生物信息、了解生物分子及其结构与功能的关系、阐述生命活动的机理以及对疾病的有效诊断与治疗都具有十分重要的意义。如何高效、快速、灵敏地检测这些生物分子,是当前生命科学领域中面临的一个十分重要的问题。解决这些问题的关键就在于发展各种新型的分析检测技术。生物传感器的出现为有效地解决这些问题提供了新的工具,为生命科学及其相关领域的研究提供了许多新的方法 1电化学生物传感器的基本结构及工作原理 1.1 基本结构 通常情况下,生物传感器由两个主要部分组成即生物识别元件和信号转换器。生物识别元件是指具有分子识别能力,能与待测物质发生特异性反应的生物活性物质,如酶、抗原、抗体、核酸、细胞、组织等。信号转换器主要功能是将生物识别作用转换为可以检测的信号,目前常用的有电化学、光学、热和质量分析几种方法[1]。其中,电化学方法就是一种最为理想的检测方法。 图1 电化学生物传感器的基本结构 1.2 工作原理 电化学生物传感器采用固体电极作基础电极,将生物敏感分子固定在电极表面,然后通过生物分子间的特异性识别作用,生物敏感分子能选择性地识别目标分子并将目标分子捕获到电极表面,基础电极作为信号传导器将电极表面发生的识别反应信号导出,变成可以测量的电信号,从面实现对分析目标物进行定量或定性分析的目的。 2电化学生物传感器的分类

由各种生物分子(抗体、DNA、酶、微生物或全细胞)与电化学转换器(电流型、电位型、电容型和电导型)组合可构成多种类型的电化学生物传感器,根据固定在电极表面的生物敏感分子的不同,电化学生物传感器可分为电化学免疫传感器、电化学DNA传感器、电化学酶传感器、电化学微生物传感器和电化学组织细胞传感器等。 2.1 电化学免疫传感器 电化学免疫传感器是一种将免疫技术与电化学检测相结合的标记免疫分析方法。它是以抗原.抗体特异性反应为基础,将抗原/抗体反应达到平衡状态后的生物反应信号转换成可测量的电信号并通过基础电极将其导出。当采用电化学检测方法测量时,其信号大小与目标分析物在一定浓度范围内成线性关系,从而实现对目标检测物的分析测定。 根据抗原-抗体间的免疫反应的类型,电化学免疫传感器可分为两种:竞争法和夹心法。竞争法的分析原理是基于标记抗原和非标记抗原共同竞争与抗体的反应[2]。而夹心法则是将捕获抗体、抗原和检测抗体结合在一起,形成一种捕获抗体/抗原/检测抗体的夹心式复合物,也称“三明治”式结合物[3]。 图2 竞争法 图3 夹心法 2.2 DNA生物传感器 DNA生物传感器主要检测的是核酸的杂交反应。电化学DNA传感器的工作原理如图所示,即将单链DNA(ssDNA)探针,固定在电极上,在适当的温度、pH、离子

生物传感器的原理及应用

生物传感器的原理及应用 摘要: 随着信息技术与生物工程技术的发展,生物传感器得到了极为迅速的发展,当今各发达国家都把生物传感器列为21世纪的关键技术,给予高度的重视。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和军事等领域广泛应用。 关键词:生物传感器;原理;应用;发展 Abstract: As information technology and biological engineering technology, bio-sensors has been very rapid development,today's developed countries regard the biosensor technology as the key to the 21st century, given a high priority. Biosensors are widely used in traditional medicine not only to promote the development of medicine, but also in space life science, food industry, environmental monitoring and widely used in military and other fields. Keyword s: biosensor; principle; application; development

目录 一. 引言 (4) 二. 生物传感器的原理 (4) 三. 生物传感器的应用 (5) 3.1.生物传感器在医学领域的应用 (5) 3.1.1. 基于中医针灸针的传感针 (5) 3.1.2.生物芯片 (5) 3.1.3.生物传感器的临床应用 (5) 3.2.生物传感器在非传统医学领域的应用 (6) 3.2.1.在空间生命科学发展中的应用 (6) 3.2.2.在环境监测中的应用 (6) 3.2.3.在食品工程中的应用 (6) 3.2.4.在军事领域的应用 (6) 四. 生物传感器的未来 (7) 五. 结束语 (7) 六. 参考文献 (7)

生物传感器的应用现状及发展前景

生物传感器的应用现状及发展前景 摘要:到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、、、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(法则)转换成可用信号的器件或装置,通常由和转换元件组成”。 随着的到来,世界开始进入。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有、、、、、、、以及等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、、、抗体、抗原等)与换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。 生物传感器的分类: ⑴按照感受器生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、、DNA传感器等等。

葡萄糖生物传感器的进展过程及研究成果[文献综述]

文献综述 葡萄糖生物传感器的进展过程及研究成果 摘要:总结了葡萄糖生物传感器研究的发展过程;阐述了第一代经典葡萄糖酶电极、第二代传递介体传感器及第三代直接传感器的原理和特性,并介绍了其它类型的葡萄糖传感器技术及产品,部分产品在医学上的应用。最后,总结和展望了葡萄糖生物传感器研究及应用的发展趋势。 关键词:葡萄糖;生物传感器;医学领域;进展 引言:葡萄糖传感器是生物传感器领域研究最多、商品化最早的生物传感器。葡萄糖生物传感器的发展基于两个方面的技术基础:第一,葡萄糖是动物和植物体内碳水化合物的主要组成部分,葡萄糖的定量测定在生物化学、临床化学和食品分析中都占有很重要的位置,其分析方法的研究一直引起人们的关注。特别是临床检验中对血糖分析技术的需求,促进了葡萄糖酶分析方法建立;第二,1954年,Clark建立了氧电极分析方法。1956年又对极谱式氧电极进行了重大改进,使使活体组织氧分压的无损测量成为可能,并首次提出了氧电极与酶的电化学反应理论。根据Clark电极理论,自20世纪60年代开始,各国科学家纷纷开始葡萄糖传感器的研究。经过近半个世纪的努力,葡萄糖传感器的研究和应用已有了很大的发展,在食品分析、发酵控制、临床检验等方面发挥着重要的作用[1]。 1 经典葡萄糖酶电极 1962年,Clark和Lyon发表了第一篇关于酶电极的论文[2]。1967年Updik和Hicks首次研制出以铂电极为基体的葡萄糖氧化酶(GOD)电极。用于定量检测血清中的葡萄糖含量[3]。这标志着第一代生物传感器的诞生。 该方法中葡萄糖氧化酶固定在透析膜和氧穿透膜中间,形成一个“三明治”的结构,

再将此结构附着在铂电极的表面。在施加一定电位的条件下,通过检测氧气的减少量来确定葡萄糖的含量。由于大气中氧气分压的变化,会导致溶液中溶解氧浓度的变化,从而影响测定的准确性[4]。 为了避免氧干扰,1970年,Clark对其设计的装置进行改进后,可以较准确地测定 H 2O 2 的产生量,从而间接测定葡萄糖的含量[5]。此后,许多研究者采用过氧化氢电极作 为基础电极,其优点是,葡萄糖浓度与产生的H 2O 2 有当量关系,不受血液中氧浓度变化 的影响。 早期的H 2O 2 电极属于开放型,即铂电极直接与样品溶液接触,干扰比较大。现在的 商品化都是隔膜型(Clark)型,即通过一层选择性气透膜(聚乙烯膜获tefion膜)将电极与外溶液隔开。这样在用于生物样品测定时,可以阻止抗坏血酸、谷胱甘肽、尿素等许多还原性物质的干扰。同时,葡萄糖氧化酶的固定化技术也逐步发展和完善,这些研究包括聚乙烯碳酸酯膜和多孔膜包埋法、重氮化法、牛血清蛋白(BSA)-多聚甲醛膜法、牛血清白蛋白-戊二醛交联法等。1972年,Guilbault在铂电极上覆盖一层掺有葡萄糖氧化酶的选择性膜,保存10个月后相应电极上响应的稳定电流只减少了0.1%,从而制得具有较高稳定性和测量准确性的葡萄糖生物传感器[6]。这一技术被美国Yellow Spring Instrument(YSI)公司采用,于1975年首次研制出全球第一个商业用途的葡萄糖传感器。 目前,葡萄糖酶电极测定仪已经有各种型号商品,并在许多国家普遍应用。我国第一台葡萄糖生物传感器于1986年研制成功,商品化产品主要有SBA葡萄糖生物传感器[7]。该传感器选用固定化葡萄糖氧化酶与过氧化氢电极构成酶电极葡萄糖生物传感分析仪,每次进样两25uL,进样后20s可测出样品中葡萄糖含量,在10~1000mg/L范围内具良好的线性关系,连续测定20次的变异系数小于2%。 2 介体葡萄糖酶电极 在葡萄糖氧化酶电极中引入化学介体(chemical mediator)取代O 2/H 2 O 2 ,作用是把 葡萄糖氧化酶氧化,使之再生后循环使用,而电子传递介体本身被还原,又在电极上被 氧化。利用电子传递介体后,既不涉及O 2,也不涉及H 2 O 2 ,而是利用具有较低氧化电位的 传递介体在电极上产生的氧化电流,在测定葡萄糖时,可以避免其他电活性物质的干扰,提高了测定的灵敏度和准确性。 Cass等[8]将GOD固定在石墨电极(graphite electrode)上,以水不溶性二茂铁

生物传感器原理及应用

Chapter 1生物传感器 (Biosensors) ? 1.1 Generalization(概述)? 1.2 Principle (基本原理)? 1.3 Classification(分类)? 1.4 Application(应用)

1.2 生物传感器工作原理 被测对象生物敏 感膜 (分子 识别感 受器) 电 信 号 换 能 器 物理、化学反应 化学物质 力 热 光 声 . . . 图16-1 生物传感器原理图

BIOSENSORS 1.2 生物传感器原理 无论是基于电化学、光学、热学或压电 晶体等不同类型的生物传感器,其探头均由 两个主要部分组成,一是感应器,它是由对 被测定的物质(底物)具有高选择性分子识 别功能的膜构成。二是转换器,它能把膜上 进行的生化反应中消耗或生成的化学物质, 或产生的光、热等转变成电信号,最后把所 得的电信号经过电子技术的处理后,在仪器 上显示或记录下来。

换能器(T r a n s d u c e r )感受器(R e c e p t o r )= 分析物(Analyte ) 溶液(Solution )选择性膜(Thin selective membrane ) 识别元件(Recognition )生物传感器工作机理 测量信号(Measurable Signal ) BIOSENSORS

(1)将化学变化转变成电信号 酶传感器为例,酶催化特定底物发生化学反应,从而使特定生成物的量有所增减。用能把这类物质的量的改变转换为电信号的装置和固定化酶耦合,即组成酶传感器.常用转换装置有氧电极、过氧化氢。

DNA生物传感器综述

医学仪器与传感器课程论文题目:电化学DNA传感器综述 院(系):生物科学与工程学院 专业:生物医学工程 学生姓名:胡加团 学号:201030760111 提交日期:2013.05.31

电化学DNA传感器综述 【摘要】近年来,随着传感器技术的发展,生物传感器已经成为获取生物信息不可或缺的技术,而生物传感器由于灵敏度和选择性、优化检测方法的研究也越来越受到大家的关注。其中电化学DNA传感器更是被广泛的运用于基因诊断、环境监测、药物研究的研究。本文介绍了生物传感器的简要原理以及电化学生物传感器的原理及组成,以及发展前景等。 【关键字】电化学DNA传感器、生物传感器、指示剂 一、生物传感器原理及构成 生物传感器指由生物活性材料(酶、蛋白质、DNA、抗体、抗原、细胞、生物组织等)作为敏感基元构成分子识别系统,对被测物惊醒高选择性的识别,通过各种化学或物理转换器捕捉目标与敏感基元之间的作用,并将作用程度用离散或者连续的信号表达出来,从而得出被测物的种类和含量的装置。简单来说,生物传感器就是利用生物活性物质选择性的识别和测定各种生物化学物质的传感器。 生物传感器主要由敏感的生物元件,换能器以及检测元件三个部分构成,其工作原理是当被测物扩散进入固定的生物敏感膜,经分子识别,发生生物学反应,产生的信息继而被相关的化学转换器或物理转换器转变成可定量和处理的信号,再经检测处理电路放大并输出,从而得知待测物的浓度。如图1所示 图1.生物传感器原理 生物传感器主要有三种分类方式,按照其感受器中所采用的生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、酶传感器、DNA 传感器等;按照传感器器件检测的原理分类,可分为:热敏生物传感器、场效应管生物传感器、压电生物传感器、光学生物传感器、声波道生物传感器、酶电极生物传感器、介体生物传感器等;按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型两种。其主要分类如图2所示。

生物传感器的应用现状及发展前景

生物传感器的应用现状 及发展前景 https://www.doczj.com/doc/947554628.html,work Information Technology Company.2020YEAR

生物传感器的应用现状及发展前景 摘要:信息时代到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、化工、医学、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。国家标准 GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。 随着新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到

生物传感器的应用及发展趋势

生物传感器的应用及发展趋势 摘要: 生物传感器是一类特殊的化学传感器,是以生物体成分(如酶,抗原,抗体,激素等)或生物体本身(细胞,微生物,组织等)作为生物体敏感元件,对被测目标物具有高度选择性的检测器件。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和军事等领域广泛应用。 关键词:生物传感器种类;原理;应用;趋势 一.生物传感器基本结构和工作原理 生物传感器由分子识别部分(敏感元件)和转换部分(换能器)构成,以分子识别部 分去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分 是生物传感器选择性测定的基础。生物传感器通过物理,化学型信号转换器捕捉目标物 与敏感元件之间的反应,并将反应的程度用离散或连续的电信号表达出来,从而得出 被测量。 生物体中能够选择性地分辨特定特质的物质有酶、抗体、组织、细胞等。这些分子识 别功能物质通过识别过程可与被测目标结合成复合物,如抗体和抗原的结合、酶与基质的 结合。在设计生物传感器时,选择适合于测定对象的识别功能物质,是极为重要的前提; 要考虑到所产生的复合物的特性。根据分子识别功能物质制备的敏感元件所引起的化学变 化或物理变化,去选择换能器,是研制高质量生物传感器的另一重要环节。敏感元件中光、热、化学物质的生成或消耗会产生相应的变化量。根据这些变化量,可以选择适光的换能器。 二.生物传感器的分类及应用 1.酶生物传感器 酶传感器是生物传感器的一种,是利用生化反应所产生的或消耗的物质的量,通过电化学 装置转换成电信号,进而选择性地测定出某种成分的器件。酶生物传感器应用于检测血糖 含量,检测氨基酸含量,测定血脂,测定青霉素和浓度,测定尿素,测定血液中的酶含量 酶传感器中应用的新技术:纳米技术 固定化酶时引入纳米颗粒能够增加酶的催化活性,提高电极的响应电流值。首先,纳米颗 粒增强在载体表面上的固定作用;其次是定向作用,分子在定向之后,其功能会有所改善;第三,由于金、铂纳米颗粒具有良好的导电性和宏观隧道效应,可以作为固定化酶之间、 固定化酶与电极之间有效的电子媒介体,从而使得氧化还原中心与铂电极间通过金属颗粒 进行电子转移成为可能,酶与电极间可以近似看作是一种导线来联系的。这样就有效地提 高了传感器的电流响应灵敏度。孟宪伟等首次研究了二氧化硅和金或铂组成的复合纳米颗 粒对葡萄糖生物传感器电流响应的影响,其效果明显优于这=种纳米颗粒单独使用时对葡萄糖生物传感器的增强作用。其原因是纳米粒子具有吸附浓缩效应、吸附定向和量子尺寸颗 粒效应,复合纳米颗粒比单独一种纳米颗粒更易于形成连续势场,降低电子在电极和固定 化酶间的迁移阻力,提高电子迁移率,有效地加速了酶的再生过程,因此复合纳米颗粒可 以显著增强传感器的电流响应。 2.免疫传感器 免疫传感器应用于检测食品中的毒素和细菌,检测DNA 光纤,检测残留的农药,毒品和滥 用药物的检测。

相关主题
文本预览
相关文档 最新文档