当前位置:文档之家› 离散型随机变量的均值说课稿

离散型随机变量的均值说课稿

离散型随机变量的均值说课稿
离散型随机变量的均值说课稿

2.3.1离散型随机变量的均值(期望)

1、教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

2、学情分析

学生对离散型随机变量这一全新概念不是很熟悉,特别是均值(期望)更是陌生,而概念本身具有一定的抽象性学生初次应用概念解决实际问题会比较困难,并且对于离散型随机变量的均值的实际意义很难理解,会存在很大的困惑,

确立教学目标

3、教学目标

知识与技能目标

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

过程与方法目标

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

情感与态度目标

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

4、教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

5、说教法

引导发现法

6、说学法

注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题

7、教学过程

教学设计“说明”

注重情境创设,联系生活实际,关注身边数学。

期望概念的教学是本节课的重点,本节突出概念的建构,通过实例,引导学生分析,并归纳出定义;通过练习,层层递进,加深学生对概念的理解,帮助学生把握概念的本质特征,使学生的思维活起来;通过例题分析,让学生体会学习期望的意义。本节课以现实问题引入,以生活中的实例结束,让学生认识到数学源于生活,又应用于生活,生活中处处有数学。

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

离散型随机变量说课稿

离散型随机变量》说课稿 一、教材分析: 教材版本:人教A版.选修2-3 课题名称:§2.1.1离散型随机变量 地位和作用: 这节内容在选修2-3第二章的开始篇章处,一方面,它承接了必修3的统计概率知识,另一方面,掌握好这节课的研究方法,将有助于后续的离散型随机变量的分布列、离散型随机变量的均值和方差的研究.因此,它在知识体系上起着承上启下的作用. 在概率统计中,随机变量是连接随机现象和实数空间的一座桥梁, 使得可以在实数空间上研究随机现象.而离散型随机变量是一种最简单的随机变量,本节就是通过离散型随机变量展示用实数研究随机现象的方法. 二、课标要求: 其课程目标是想通过本节内容的学习,使学生初步学会利用离散型随机变量思想描述某些随机现象的方法,初步形成用随机观念观察、分析问题的意识。 三、学情分析: 认知分析:学生已经学习了概率,对随机实验有了初步的了解,也掌握了排列组合的方法,这些形成了学生思维的“最近发展区”. 情感分析:学生对新鲜事物充满好奇,会使学生产生一定的兴趣并积极参与研究。但有的学生在合作交流方面,有待加强。 能力分析:本节课主要靠抽象思维来研究随机现象,这对学生来说是一个挑战。随机变量不同于前面学习函数时遇到的变量,它是按一定的概率随机取值的变量,按现有知识和认识水平,不易透彻理解。 四、三维目标: 知识与技能: (1)结合与函数概念比较,初步了解随机变量的本质; (2)学会恰当的用随机变量表示随机事件; 2、过程与方法: (1)通过自主学习和自主检测,让学生对本节课有初步的了解; (2)采取师生探究、交流式教学,在老师的引导过程中,逐步完成教学任务。 情感态度和价值观: (1)使学生进一步感受到生活与数学的零距离”感受生活中大量随机现象都存在着数量规律;

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教 A 版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修 3 概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1 中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、 解决问题的能力

四、目标分析 1知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力; 3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性, 使学生进一步感受到数学与生活的零距离,增强数学应用意识。 五、教学重点与难点 教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。 六、教学过程设计:

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

高二数学离散型随机变量说课稿

高二数学离散型随机变量说课稿 高二数学离散型随机变量说课稿 作为一名人民教师,常常要写一份优秀的说课稿,借助说课稿可以有效提高教学效率。那么说课稿应该怎么写才合适呢?下面是小编精心整理的高二数学离散型随机变量说课稿,仅供参考,大家一起来看看吧。 各位评委,各位老师: 下午好,我的说课内容是人教A版选修2-3第二章随机变量及其分布第一节离散型随机变量及其分布列第一课时,下面我就以下几个方面完成我的说课内容。 一.教材分析 本课是人教A版选修2-3第二章随机变量及其分布第一节离散型随机变量及其分布列第一课时。本章是学生学习概率统计内容后,进一步深入研究离散型随机变量及其分布列,均值,方差等内容,而离散型随机变量是本章第一课时,因此我认为本节是本章的基础,是后续内容研究的核心。 结合教材和大纲,我确定本课教学重点是:随机变量,离散型随机变量的理解及在实际问题中的应用; 结合学生对抽象概念理解较差的学情,我认为本课教学难点是对随机变量和离散型随机变量的认识和理解

本课教学将以学生为主,教师为辅,在教师的引导下学生自主归纳学习的模式完成。 二.教学过程分析 预习题单阅读课本44-45页 结合课本,思考一下问题 问题1:掷一枚骰子的结果有哪些? 问题2:在含有10件次品的100件产品中,任意抽取4件,那么其中含有的次品数可能有哪些? 问题3:掷一枚硬币的结果有哪些? 问题4:你还能举出那些例子? 问题5:随机变量与函数有类似的地方吗? 总结问题,引出定义随着试验结果变化而变化的变量称为随机变量。常用字母X,Y,ξ,η……表示。 1)问题3还可以用其他的数来表示这两个试验的结果吗? (2)问题1如果仅关心“掷出的点数是否为偶数”时,怎样构造随机变量? (1)随机变量与函数都是一种映射,随机变量是把试验结果映为实数,函数是把实数映为实数,随机变量的试验结果范围相当于函数的定义域,随机变量的取

选修2-3教案2.3.1离散型随机变量的均值

§2.3.1 离散型随机变量的均值 教学目标 (1)通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; (2)能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点,难点:取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学过程 一.问题情境 1.情景: 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.这样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不 合格品数分别用12,X X 表示,12,X X 的概率分布如下. 2.问题: 如何比较甲、乙两个工人的技术? 二.学生活动 1. 直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率 比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2. 学生联想到“平均数”,,如何计算甲和乙出的废品的“平均数”? 3. 引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三.建构数学 1.定义 在《数学3(必修)》“统计”一章中,我们曾用公式1122...n n x p x p x p +++计算样本的平均值,其中i p 为取值为i x 的频率值.

其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ. 2.性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数) 四.数学运用 1.例题: 例1.高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X ,求X 的数学期望. 分析:从口袋中摸出5个球相当于抽取5n =个产品,随机变量X 为5个球中的红球的 个数,则X 服从超几何分布(5,10,30)H . 从而 2584807585503800700425 ()012345 1.66672375123751237512375123751237513 E X =? +?+?+?+?+?=≈ 答:X 的数学期望约为1.6667. 说明:一般地,根据超几何分布的定义,可以得到0 ()r n r n M N M n r N r C C M E X n C N --===∑ . 例2.从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品 率为0.05,随机变量X 表示这10件产品中不合格品数,求随机变量X 的数学期望 ()E X . 解:由于批量较大,可以认为随机变量~(10,0.05)X B , 1010()(1),0,1,2, (10) k k k P X k p C p p k -===-=

离散型随机变量的均值教案.docx

关于《离散型随机变量的均值》的说课稿 银川二中(西校区)黄海霞 说课内容:普通高中人教A版(数学选修2-3)第二章第3节第一课时一《离散型随机变量的均值》? 下面,我将分别从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计等六个方面对本节课的设计进行说明. 一、背景分析: 1、学习任务分析 《离散型随机变量的均值》是《随机变量及其分布》第三节第一小节的内容,本节课是第一课时?本节课主要的学习任务是从平均的角度引入离散型随机变量均值的概念,引导学生通过实际问题建立取有限值的离散型随机变量均值的概念,然后推导出离散型随机变量均值的线性性质EaX b = aE X b. 取有限值的离散型随机变量的均值是在学生学习完离散型随机变量及其分布列的概念基础上,进一步研究离散型随机变量取值特征的一个方面.学习本节 课的内容既是随机变量分布的内容的深化,又是后续内容离散型随机变量方差的基础,所以学好本节课是进一步学习离散型随机变量取值特征的其它方面的基础离散型随机变量的均值是刻画离散型随机变量取值的平均水平的一个数字特征,是从一个侧面刻画随机变量取值的特点. 在实际问题中,离散型随机变量的均值具有广泛的应用性?因此我以为本节 课的重点是:取有限值的离散型随机变量均值的概念. 2、学生情况分析 本节课之前,学生已有平均值、概率、离散型随机变量及其分布列,二项分布及其应用等基础知识,具备了学习本节知识的知识储备.本节课是一节概念新授课,教材从学生熟悉的平均值出发,从身边的实际问题中抽象出了取有限值的离散型随机变量均值的概念,这需要一定的概括和抽象能力.鉴于学生的概括、 抽象能力不是太强,因此学生对概念的形成和理解会有一定的困难. 基于以上认识,我以为本节课的教学难点是:离散型随机变量均值概念的形成和理

离散型随机变量的分布列综合题精选(附答案)

离散型随机变量的分布列综合题精选(附答案) 1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从 盒中抽取两张都是“世博会会徽”卡的概率是 18 5 ,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及ξξ,D E 的值。 解:(I )设“世博会会徽”卡有n 张, 由,18 5292 =C C n 得n=5, 故“海宝”卡有4张,抽奖者获奖的概率为6 1 2924=C C …………5分 (II )) 1 ,4(~B ξ的分布列为)4,3,2,1,0()5()1()(44===-k C k P k k k ξ 0.9 )61(4,364=-?==? =∴ξξD E …………12分 2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。 假设每个运动员完成每个系列中的K 和D 两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K 和D 两个动作的情况如下表: 表1:甲系列 表2:乙系列 动作 K 动作 D 动作 得分 90 50 20 0 概率 10 910 110910 1 动作 K 动作 D 动作 得分 100 80 40 10 概率 4 3 4 1 4 341

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

《离散型随机变量》教案3

《离散型随机变量》教案3 教学内容: 人教版数学高中选修2—3《离散型随机变量》 教学目标: 理解取值有限的离散型随机变量 教学重点: 理解取值有限的离散型随机变量 教学过程 一、复习引入: 1.随机事件及其概率:在每次试验的结果中,如果某事件一定发生,则称为必然事件,记为U;相反,如果某事件一定不发生,则称为不可能事件,记为φ. 随机试验 为了研究随机现象的统计规律性,我们把各种科学实验和对事物的观测统称为试验.如果试验具有下述特点: (1)试验可以在相同条件下重复进行; (2)每次试验的所有可能结果都是明确可知的,并且不止一个; (3)每次试验之前不能预知将会出现哪一个结果,则称这种试验为随机试验简称试验。 2.样本空间: 样本点 在相同的条件下重复地进行试验,虽然每次试验的结果中所有可能发生的事件是可以明确知道的,并且其中必有且仅有一个事件发生,但是在试验之前却无法预知究意哪一个事件将在试验的结果中发生.试验的结果中每一个可能发生的事件叫做试验的样本点,通常用字母ω表示. 样本空间: 试验的所有样本点ω1,ω2,ω3,…构成的集合叫做样本空间,通常用字母Ω表示,于是,我们有Ω={ω1,ω2,ω3,… } 3.古典概型的特征: 古典概型的随机试验具有下面两个特征: (1)有限性.只有有限多个不同的基本事件; (2)等可能性.每个基本事件出现的可能性相等. 概率的古典定义

在古典概型中,如果基本事件的总数为n,事件A所包含的基本事件个数为r (),则定义事件A的概率为.即 二、讲解新课: 1、随机变量的概念 随机变量是概率论的重要概念,把随机试验的结果数量化可使我们对随机试验有更清晰的了解,还可借助更多的数学知识对其进行深入研究. 有的试验结果本身已具数值意义,如产品抽样检查时的废品数,而有些虽本无数值意义但可用某种方式与数值联系,如抛硬币时规定出现徽花时用1表示,出现字时用0表示.这些数值因试验结果的不确定而带有随机性,因此也就称为随机变量. 2、随机变量的定义: 如果对于试验的样本空间中的每一个样本点,变量都有一个确定的实数值与 之对应,则变量是样本点的实函数,记作.我们称这样的变量为随机变量. 3、若随机变量只能取有限个数值或可列无穷多个数值 则称为离散随机变量,在高中阶段我们只研究随机变量取有限个数值的情形 三、例子 例1.随机变量为抛掷两枚硬币时徽花向上的硬币数,求的可能取值 解:的可能取值为0,1,2. 例2.某射手有五发子弹,射一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求随机变量的可能取值 例3.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果 (1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ; (2)某单位的某部电话在单位时间内收到的呼叫次数η 解:(1) ξ可取3,4,5 ξ=3,表示取出的3个球的编号为1,2,3; ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4; ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

离散型随机变量的均值

2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值 1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点) 2.掌握两点分布、二项分布的均值.(重点) 3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点) [基础·初探] 教材整理1离散型随机变量的均值 阅读教材P60~P61例1,完成下列问题. 1.定义:若离散型随机变量X的分布列为: 则称E(=x1p1+x2p2+…+x i p i+…+x n p n为随机变量 2.意义:它反映了离散型随机变量取值的平均水平. 3.性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b. 1.下列说法正确的有________.(填序号) ①随机变量X的数学期望E(X)是个变量,其随X的变化而变化; ②随机变量的均值反映样本的平均水平;

③若随机变量X 的数学期望E (X )=2,则E (2X )=4; ④随机变量X 的均值E (X )= x 1+x 2+…+x n n . 【解析】 ①错误,随机变量的数学期望E (X )是个常量,是随机变量X 本身固有的一个数字特征.②错误,随机变量的均值反映随机变量取值的平均水平.③正确,由均值的性质可知.④错误,因为E (X )=x 1p 1+x 2p 2+…+x n p n . 【答案】 ③ 2.已知离散型随机变量X 的分布列为: 则X 的数学期望E (【解析】 E (X )=1×35+2×310+3×110=3 2. 【答案】 3 2 3.设E (X )=10,则E (3X +5)=________. 【解析】 E (3X +5)=3E (X )+5=3×10+5=35. 【答案】 35 教材整理2 两点分布与二项分布的均值 阅读教材P 62~P 63,完成下列问题. 1.两点分布和二项分布的均值 (1)若X 服从两点分布,则E (X )=p ; (2)若X ~B (n ,p ),则E (X )=np . 2.随机变量的均值与样本平均值的关系 随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值. 1.若随机变量X 服从二项分布B ? ? ???4,13,则E (X )的值为________. 【导学号:29472067】

随机事件的概率说课稿

《随机事件的概率》说课稿 尊敬的各位老师,大家好! 今天我说课的课题是人教A版数学必修三第三章第一节的第一课时《随机事件的概率》。下面我就从教材分析、学情分析、目标定位、教法和学法、教学过程、板书设计与教学反思等七个方面来谈谈我对教材的理解和教学的设计,敬请各位老师批评指正。 一、教材分析 教材的地位和作用:由于学生在初中阶段已经接触过随机事件、不可能事件、必然事件的概念,高中数学必修三第二章刚刚学习了统计内容,了解了频数、频率等概念,因此本节课是对已学内容的深化和延伸;同时,本节课对于后面学习的古典概型、几何概型以及选修2-3离散型随机变量的分布列等内容又是一个铺垫,具有承上启下的地位。 二、学情分析 1、知识方面:学生在初中阶段学习了概率初步,本教材第二章刚刚学习了频率的内容,所以学生具备了一定的认知结构; 2、能力方面:必修三是在高一下学期学习的,对于高一下学期的学生,他们具备了一定的观察、归纳、概括能力; 3、情感方面:多数学生态度积极,能主动参与教学活动,但少数学生的主动性还需要营造一定的学习氛围加以带动。 三、目标定位 根据本节教学内容的特点,考虑到学生已有的认知结构和心里特征,我确定了如下三维教学目标: 1、知识与技能:((1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系。(4)利用概率知识正确理解现实生活中的实际问题。 2、过程与方法:发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。 3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识。 教学重点:事件的分类;概率的定义以及和频率的区别与联系; 教学难点:用概率的知识解释现实生活中的具体问题。

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列 1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: (2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ② 11 =∑=n i i p 2.两个特殊分布列 (1)两点分布列 如果随机变量X 的分布列是 P (X =1)为成功概率. (2)超几何分布列 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为 P (X =k )=n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布 列 如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布. (3)公式P (X =k )=C k M C n - k N -M C n N 的推导 由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有n N C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有k n M N k M C C --个基本事件,由古典概 型的概率公式可知P (X =k )=C k M C n - k N -M C n N . [知识点拨]1.离散型随机变量分布列表格形式的结构特征 分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点 (1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.

2. 1.1离散型随机变量(教案)

2. 1.1离散型随机变量 教学目标: 知识目标:1.理解随机变量的意义; 2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量 的例子; 3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 能力目标:发展抽象、概括能力,提高实际解决问题的能力. 情感目标:学会合作探讨,体验成功,提高学习数学的兴趣. 教学重点:随机变量、离散型随机变量、连续型随机变量的意义 教学难点:随机变量、离散型随机变量、连续型随机变量的意义 授课类型:新授课 教具:多媒体、实物投影仪 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常 用字母X , Y,ξ,η,…表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数X 是一个离散型随机

离散型随机变量的教学设计

“离散型随机变量”的教学设计 一、内容和内容解析 “随机变量及其分布”一章的主要内容就是要通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的概型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。 “离散型随机变量”是这一章的开门课。因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。于是,本节课的第一个教学任务就是要做好章头图的教学。教材的章头图从实例和图形两个方面展示了本章要学习的内容,一个是离散型随机变量的产生背景和分布列的条形图,另一个是正态分布的背景和正态分布密度曲线。教学时要充分地运用章头图的这两个背景,通过问题的形式,帮助学生明确本章要学习的主要内容和意义。 对于一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率。对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中。而高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的第二个教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。 二、目标和目标解析 1.了解本章学习的内容和意义。具体要求为: (1)通过章头图中给出的射击运动的情景,帮会学生了解,在射击运动中,每次射击的成绩是一个非常典型的随机事件。在这个离散型的随机事件中,如何刻画每个运用员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选拔运动员参加比赛获胜的概率大?这些问题的解决需要离散型随机变量的概率分布、均值、方差等有关知识; (2)通过章头图中给出的高尔顿板游戏情景,帮助学生了解在这样一个连续型的随机事件的游戏活动中,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?这些问题与本章将要学习的正态分布有关; (3)在上述两个情景的基础上,通过问题的形式,帮助学生提出本章要研究的问题和基本思想:随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,它们就会呈现出一些共性;如果把随机试验的结果数量化,用随机变量表示试验结果,就可以用数学工具来研究这些随机现象。这样不仅阐述了本章的主要内容,而且激发了学生的学习兴趣,使他们明确本章的学习目标以及研究本章内容的数学思想方法。 2.理解随机变量和离散型随机变量的描述性定义,以及随机变量与函数的关系,能够把一个随机试验的结果用随机变量表示,能够根据所关心的问题定义一个随机变量。具体要求是: (1)在对具体问题的分析过程中,帮助学生理解用随机变量表示随机试验结果的意义和作用:为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量,掌握随机变量的描述性概念,了解随机变量与函数的关系,构造随机变量应当注意的问题(如随机变量应该有实际意义、应该尽量简单,以便于研究),以及用随机变量表示随机事件的方法等;

离散型随机变量及其分布列练习题和答案

高二理科数学测试题(9-28) 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) ()A 33710(1)C p p - ()B 33 310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概 率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) ()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是 15 4,刮三级以上风的概率为152,既 刮风又下雨的概率为10 1,则在下雨天里,刮风的概率为( ) A. 225 8 B.2 1 C.8 3 D.4 3 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ). A.15 B.25 C.35 D.45 6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(?C B.83)85()83(29911?C C.29911)83()85(?C D. 29911)85()83(?C

相关主题
文本预览
相关文档 最新文档