当前位置:文档之家› 氯乙烯的聚合

氯乙烯的聚合

氯乙烯的聚合
氯乙烯的聚合

氯乙烯的聚合

一、氯乙烯物理性质:

氯乙烯:常温下是一种无色易燃的气体,沸点℃; ,凝固点一℃;,闪点一78℃,自燃点472℃,爆炸极限4%一22%。氯乙烯是致癌物,具中等毒性。二、安全喷淋水系统

聚氯乙烯树脂是由氯乙烯单体聚合而成。国内外聚氯乙烯生产厂曾多次发生聚乙烯单体空间爆炸事故,损失惨重。氯乙烯单体的泄漏,直接威胁着生产的安全。使用安全喷淋水系统,对泄漏的氯乙烯起到一定的稀释作用,并且隔绝空气,降低了环境温度,防止了空间爆炸,从而达到了安全生产的目的。

三、生产工艺流程:

聚氯乙烯生产具有易燃、易爆、腐蚀性强、有毒有害物质多、生产过程连续性强、生产工艺复杂等特点,生产情况复杂、条件多变,稍有疏忽就会发生事故。

悬浮氯乙烯聚合过程的工艺流程如图所示:

先将去离子水加入聚合釜内,并将聚合配方的助剂如分散剂、缓冲剂等加入釜内搅拌,然后加入引发剂,密封聚合釜,抽除釜内空气,必要时用氮气替换,使釜内残留氧含量降至最低,最后加入氯乙烯单体VCM,然后通过反应釜夹套中的过热水加热,将釜温升至预定温度并进行聚合。为了缩短聚合周期,也可以在反应釜脱氧后开始加热釜内物料,达到预定温度时再加入单体并开始聚合。聚合反应大量放热"VCM生成PVC时放热量1532kJ/kg"。这些聚合反应热通过3种方式散热,但是根据反应釜大小,3种途径可以只利用其中一种或两种方式散热:1)釜夹套冷却水;2)釜内冷水管;3)釜顶冷凝器等。要严格操作技术,始终保持预定反应温度,以保证氯乙烯产品质量。如果釜内聚合反应放热不足或失控造成温度过高不下时,釜内饱和蒸汽压也将大大超过反应釜的操作压力甚至设计压力,从而造成聚合釜的物理破坏。对此在制造聚合釜时对温度及压力的设计留有充分的余量,防止物理爆破酿成的灾难性后果。聚合反应的温度、压力的失控事故常常发生在反应的前中期,即VCM聚合为PVC的转化率小于70%时"单体富相存在,才会发生上述温度!压力超高"VCM转化率大于70%时,单体富相消失时,压力稳步降低。

四、聚合反应的主要风险因素

悬浮法聚合氯乙烯生产过程的主要风险是氯乙烯的“暴聚”事故和氯乙烯泄漏事故。聚合反应散热不足,温度过高导致“暴聚”事故。易燃易爆有毒的氯乙烯泄漏可能引发氯乙烯蒸汽云爆炸和火球 (BLEVE)事故。避免导致“暴聚”事故3种安全技术措施:良好的聚合釜反应散热降温;足够的搅拌强度和防止“粘釜“等。

1 聚合反应的“暴聚”事故

氯乙烯聚合时如果温度与压力失控,将导致聚合反应的失控,而导致激烈聚合,产生过高压力与温度,后果严重时,可能产生聚合釜爆炸,称为沸腾液体扩展蒸汽爆炸(BLEVE)"温度与压力失控的原因如下:

1)聚合釜搅拌强度不够或搅拌不均匀;

2)聚合釜夹套、冷水管及冷凝器散热降温不够;

3)物料粘釜或釜壁水垢造成传热不均。

2 氯乙烯泄漏引起火灾、爆炸事故

氯乙烯气体易燃易爆,沸点为℃,闪点为-78℃,燃点是472℃,爆炸极限为%~33%"氯乙烯和空气混合,一定浓度下可形成爆炸气体。在聚合过程中可能造成氯乙烯泄漏的原因有:

1)聚合釜轴封泄漏;

2)反应釜、暴聚时安全阀的泄放或密封不良等;

3)聚合釜人孔、手孔及管口破裂。

泄漏的液态氯乙烯在常压常温的环境下,迅速气化,当扩散浓度达到爆炸极限范围时遇到点火源便可能发生火灾、爆炸事故。

3 氯乙烯的毒害作用

VCM对人有致癌作用,各国对PVC生产作业环境中氯乙烯允许浓度都做了严格规定。美国规定8h平均质量浓度不得超过m3;日本规定空气中VCM平均质量浓度不应高于+mg/m3;英国,加拿大和荷兰规定空气中VCM平均质量浓度不得超过m3;中国规定空气中VCM质量浓度不得超过30mg/m3。氯乙烯泄漏时的急性中毒剂量,大鼠经口LD50为50mg/kg。

为使作业环境符合职业卫生条例规定,避免人员在氯乙烯泄漏的环境下暴露而急性中毒伤害,应注意防止VCM泄漏,聚合反应后将未反应的VCM彻底清除,防止PVC上的VCM残留过量,另外避免人员进釜内清釜。总之,避免泄漏和最大的限度减少人员暴露是防止中毒的重要环节"

4 其他事故伤害

氯乙烯聚合过程中,除上述事故外,设备转动和使用过程中可能造成人员的机械伤害、高处梯台、廊作业时,防护设备缺陷或违章作业,引起人员高处坠落、触电等事故伤害。

四、安全技术措施

氯乙烯聚合生产过程中的安全技术主要是避免氯乙烯聚合反应过程的“暴聚”发生和氯乙烯泄漏发生。因为“暴聚”及泄漏都可以导致聚合釜的重大火灾、爆炸及中毒事故的发生。因此防止“暴聚”及泄漏发生的安全技术措施研究尤为重要。

1 防止“暴聚”的发生

1)聚合反应热的散放

a)聚合釜良好的传热能力可以增加散热,在相当程度上意味着聚合釜的安全情况

b)一般较大的聚合釜需装釜顶冷凝回流器。在使用釜顶冷凝器时要注意向釜中加料时排尽不凝气体,否则会使传热系数下降;还应避免采用挥发性引发剂,防止釜内泡沫进入冷凝器,因结垢使传热系数降低。

c)冷却水可以带走释放的热量。在聚合过程中,视放热情况控制阀门调节水量,在反应出现自动加速时可通过调节补充水量和循环水量的比例降低水温来保证放热增加的要求。

2)搅拌安全技术

a)反应热的散放,釜内物料是否均匀与搅拌情况密切相关;

b)为了使更好的散热和反应稳定,应充分搅拌,搅拌装置具有一定剪切强度和循环次数;

c)搅拌强度与桨叶尺寸和层数有关,因此在选择搅拌装置时要根据散热要求合理选择。

3)防止“粘釜”技术

“粘釜”会导致聚合釜散热能力下降,引发暴聚。解决“粘釜”问题可从以下几个方面考虑:

a)对聚合釜表面及有关构件表面要精细研磨;

b)在聚合配方中加添加剂;

c)在釜内有关构件上涂覆防粘釜涂层;

d)已存在“粘釜”情况下时及时用溶剂清洗或用超高压水实现水力清釜。

2 防止泄漏的发生

氯乙烯泄漏是火灾、爆炸及中毒事故的源头,可从以下3个方面采取安全措施防止泄漏。

1)轴封采用现代液体密封技术。目前国产聚合釜多采用机械密封,效果和寿命不尽理想;同时要严格定期检查维修。

2)防止“暴聚”时安全阀泄压造成的物料排放。“暴聚”排料会使周围空气中VCM浓度很高,可能引起爆炸;一旦温度、压力超高时,必须制定严格措施紧急降温处理,准备足够的中止剂。

3)压力容器管道的防泄漏技术。如果压力管道及容器发生破裂,会造成大量VCM泄漏,并难以现场补救和处理,危险性极大;因此坚持开釜前严格执行检查,定期更换和试压制度等对压力容器管道的安全管理。

3 聚合釜控温措施

控制好聚合釜的温度是极为重要的。一方面,控制反应温度在规定的范围内才能保证产品的质量。另一方面,如果釜温失控,将产生严重后果。聚合反应因釜温上升而更趋激烈,反应放热量增加,随之釜温更加失控,形成恶性循环,导致釜温釜压急升,有发生爆炸的危险。

4 其它防火防爆重要措施

(1)建筑防火防爆

(2)电气防火防爆

(3)防静电、防雷击

(4)设置火灾自动报警系统

五、一起聚台装置爆燃事故的分析

2005年1月18日凌晨。时40分,某氯碱企业年产8万吨聚氯乙烯的聚合装置发生爆燃事故,一座六层楼的车间厂房烧得只剩下框架。9人受伤,直接经济损失30万元。

(一)、基本情况

发生爆燃事故的聚合装置是一台氯乙烯的聚合反应釜。釜内的主要反应物是氯乙烯单体(VCM ),其分子式: C2H3Cl,分子量:;沸点:一℃; 25℃时,蒸汽压: ;氯乙烯气体相对空气的密度:。

氯乙烯属有毒、易燃物。其毒性程度按照HGJ43一91的分类规定:当用于确定压力容器(如:聚合反应釜)的致密性、密封性技术要求时,定为极度危害化学介质;最高允许浓度< mg/m3。

氯乙烯与空气组成的混合气团,爆炸极限:% ~31%(V/V );自燃点:415℃;闪点:一78℃,;所在场所严禁烟火。

聚合反应釜釜内工作压办 MPa(聚合压力由反应产物聚氯乙烯的型号一平均聚合度而定)。

釜盖上装有安全泄压装置:防爆膜。

釜体外面有夹套,内通热水或冷水,调控釜内反应的聚合温度(聚合温度决定了反应产物聚氯乙烯的型号一平均聚合度)。

氯乙烯的聚合反应是一种放热反应{nC2H3CL引发剂一((CH2CHCL)n一+热量}。釜上搅拌机的连续搅拌,把釜内的反应物氯乙烯均匀地分散在水中,进行可控的自由基均聚反应。通过调控聚合温度生成相应型号(平均聚合度)的聚氯乙烯产物。

(二)、事故经过

2005年1月18日凌晨0时40分,该厂外线电源电压发生波动,突然失压。3台反应釜瞬间停了动力电。搅拌机停止转动,夹套断水。

当时3台反应釜的工况:A釜正在借助夹套热水升温; B釜已运行了2个多小时,正在借助夹套冷水对放热的聚合反应降温;C釜反应已经结束,正在等待出料。

由于当时值班电工在恢复备用电操作中违规,没能送上备用电。B釜的聚合反应因为搅拌机较长时间停转,造成反应物下沉釜底。釜底反应物氯乙烯密度的

增加大大加剧了反应。加上夹套断水聚合反应放出的热积聚釜内,加快了使原本正在进行的均聚反应变成无法控制的爆聚反应的速度。

按照工艺规程:聚合釜停了动力电后,计算机应在10秒内自动向反应着的B 釜加人聚合反应终止剂,中止反应。但是,该厂在1998年2月,有关人员没有按照规定申报,擅自取消了计算机自动加人的功能,改为人工加人。而当这次事故中要进行人工加入终止剂时,却发现用以加入终止剂的氮气钢瓶瓶内压力已经严重不足。不得不跑到20米外,搬运两瓶新氮气钢瓶换上。

就在这段换瓶的时间里,B釜内终于发生爆聚反应,反应产生的大量热使温度飙升,压力从剧增到。一声巨响釜内氯乙烯气体冲破釜盖上的安全防爆膜排出釜外,与大气组成易燃、易爆的混合气团,弥漫沉降在厂房周围和底部。

“屋漏又遭连夜雨”,排空管在带压的氯乙烯气体冲击下意外倾倒,撞在附近钢构件上,产生了火花,引发了混合气团的爆燃事故。

(三)、事故原因

1、直接原因

①B釜内易燃易爆的有毒反应物氯乙烯单体(VCM ),聚合时发生了爆聚。爆聚产生的巨大能量造成釜内的升温、升压,过高压力的氯乙烯气引发了釜上安全防爆膜的爆破。

②氯乙烯气体从排空管喷射而出,与釜外大气混合形成了爆炸性气团,沉降弥漫在厂房底部和周围。

③泄放氯乙烯气体的排空管,经不住带压气流喷射而出的冲力意外倾倒,砸在附近的钢构件上,撞出了火花。

上述三项物的不安全状态的不期而遇,满足了釜外爆燃的三要素,爆燃事故难免.

2、间接原因

①安全责任制不到位。如:1998年2月有关人员未经申报,竟然擅自修改了控制聚合装置运行的计算机功能取消了自动加人,改为人工加人。可怕的是直到这次事故发生前都没有在日常检查中发现。

②安全管理的力度不够。对安全设施的巡查有死角,未能保证安全设施的完好备用。如:平时巡查,未能发现压送终止剂的备用氮瓶压力已不足及排气管不

够牢固等隐患。

③职工素质差,不具备应对事故的应急处理能力。对本职工作所需的安全生产知识缺乏培训,缺乏事故预防和应急处理能力的岗位练兵。如:值班电工没能及时送上备用电以及当班班长没能及时加入终止剂,也没有想到启用聚合装置上其它几道安全设施等。

④为了确保不间断地向聚合装置供电,避免停电造成聚合反应失控产生事故,聚合装置安装有两路外线电源。由于在两路外线电源之间,没有安装安全联锁装置。给人工送上备用电操作的失误埋下了隐患。

⑥值班电工违反手动送备用电的安全操作规程,没有先断开已失压的一路外线电源,就急急忙忙合上另一路外线电源,结果未能及时恢复送电。

⑥事故前,有人未经许可,擅自改动了计算机自动加入聚合反应终止剂的功能。变为了人工加人。失去了阻止釜内发生爆聚事故的最佳时机。

⑦停电事故出现后,压送聚合反应终止剂人釜的常备氮瓶,却因平时的压力泄漏,瓶压已下降到不能把聚合反应终止剂压人釜内的状况。而可供更换的新氮瓶远在20米外。拆卸旧瓶,搬来新瓶和装上所花费的时间长,为釜内可控的自由基的均聚反应变成不可控的爆聚反应提供了足够的时间。

⑧平时,管理人员安全巡查中,疏忽了对氮瓶瓶压和排气管的检查。(四)、事故教训和整改建议

1、事故教训

从上面所作的原因分析可以认定这起聚合装置爆燃事故为人为的重大责任事故。

2,整改建议

①扎扎实实落实安全生产责任制。责任状指标必须清楚,项目尽可能量化。落实项目、指标要具体到人,做到个个肩上有责任,人人头上有指标。重点在各级主要管理责任者的责任指标。特别是公司、车间一级的第一责任人。

②制定或进一步完善聚合装置安全事故应急救援预案;组织职工(包括班长、专职安全管理人员和车间甚至公司第一负责人)进行预案的培训和加强日常演练的力度,增强职工事故预防和应急处理的能力,提高职工素质。

③牢固树立生产车间第一负责人就是安全生产第一负责人的观念。认真履行

安全检查、监督管理安全生产的职责。做到安全巡查不漏项、无死角,认真仔细、一丝不苟。做好每次巡查的书面记录。确实保证每一项安全设施的完好备用,及时消除发现的安全隐患。

④对安全设施实行定期的安全检查。要求根据安全设施影响生产安全的程度,把间隔期分别定为每月、每周或者每班,并作好每次检查的书面记录。必要时,遵照安全生产法第三十条的规定,由取得专业资质的检测、检验机构进行,取得安全使用证或者安全标志,方可投入使用。

⑤对电气安全运行人员进行全面培训,严格考核。合格者方可上岗。

⑥建立公司专职安全管理部门对检查记录进行定期检查制度,把检查结果作为责任制考核的依据。

⑦从提高装置的本质安全着手,在二路外线电源之间,安装安全联锁装置,限期上马。

⑧再次强调遵守安全生产规章制度和严肃劳动纪律的重要性。尤其是安全措施的更改,必须经过总工程师的审批同意方可实施。任何人不得擅自改动安全措施。

氯乙烯聚合和聚氯乙烯改性分析

氯乙烯聚合和聚氯乙烯改性分析 氯乙烯聚合和聚氯乙烯改性分析 摘要:氯乙烯的聚合分为悬浮聚合、微悬浮聚合及乳液聚合,以悬浮聚合为主,一般来说共聚物是具有不同的化学组成分布和不通的分子量分布的一种高分子聚合物。高分子作为改性剂(聚合物改性剂)是共混物的一种应用,共混物是共和聚混物的简称。PVC改性有聚合改性、共混改性和复合改性,聚氯乙烯改性后可以生产更多产品,更好的满足人民的生活需求。 关键词:氯乙烯聚氯乙烯悬浮聚合乳液聚合微悬浮聚合聚合改性共混改性 聚氯乙烯(PVC)是五大通用塑料之一,其相关的制品从硬到软,应用很广泛。四十多年来,我国聚氯乙烯工业的发展是参展国外工艺的基础上,广泛进行工业设备既工艺的革新,现今的生产能力已经超过百万吨了,成了我国产量最大的塑料品种之一。随着市场需求的不断增大,为了提高聚氯乙烯的性能,到20世纪20年代末,在该领域中出现了两大方面的突破:一种就是增塑,是在1933年发明添加增塑剂,另一种就是聚合,对聚氯乙烯起到改性作用,以期在生产加工的过程中能起到最有效的作用。 一、氯乙烯聚合 1.悬浮聚合 氯乙烯-醋酸乙烯共聚物简写(VC/VAC)。氯乙烯-醋酸乙烯共聚物主要有三大用途,一个是用于塑料地砖,一个是用于密文唱片,再一个就是在涂料中的应用。氯乙烯-醋酸乙烯共聚物(VC/VAC)的悬浮聚合方法,基本上是和PVC悬浮聚合的方式有着共通的效果,只不过就是多了一种单体。一般说来,在共聚物中,VAC的成分含量越高,共聚物的分子量反而就会越低,制造过程也就越困难。其中,制造过程中的困难主要表现在两个方面:第一,就是聚合过程中悬浮液的稳定性比较难控制好,再一个就是聚合终止时,未反应单体的回收工作比较难以有效地实施。与此同时,在悬浮聚合的技术标准,以及聚合

PVDC(聚偏氯乙烯)薄膜

PVDC(聚偏氯乙烯)薄膜 百为PVC市场网编辑2007-1-16【大中小】评论:0条【收藏】【留言】 摘要: PVDC对氧、水均具有良好的阻隔性,不足的是其成膜性及单独成膜强度差,成本高延伸阅读 ·5月份国内PVC市场展望 ·PVC下游如何迎接即将到来的传统旺季 ·PVC市场操作人士心态真好吗? ·PVC一周行情综述 ·PVC缘苑上游一周动态综述 ·PVC一周行情综述 ·PVC上游一周动态综述 一、PVDC的特性 PVDC即聚偏二氯乙烯,其树脂呈淡黄色、粉末状,其制品除塑料的一般性能外,还具有自熄性、耐油性、保味性以及优异的防潮、防霉等性能,同时具有优良的印刷和热封性能(在120-158℃)。PVDC对氧、水均具有良好的阻隔性,不足的是其成膜性及单独成膜强度差,成本高。尽管如此,从综合阻隔性能上看,PVDC仍是当今世界上塑料包装中最好的一种包装材料。它既不同于聚乙烯醇随着吸湿增加而使阻气性急剧下降,也不同于尼龙膜由于吸水性使阻湿性能变差。它是一种阻湿、阻气皆优的高阻隔性能材料,因此,受到发达国家食品和医药包装业的高度重视。 PVDC燃烧特性:

很难燃烧,火焰呈黄色、端部绿色,离火即灭,燃烧时软化,类似蔗糖,当它碳化时膨胀。裂解时放出单体和氯化氢成为一股强酸性白烟,有特殊气味。 目前市售的PVDC树脂有两大类。成型级PVDC是粉末状的二氯乙烯同氯乙烯的共聚物,加入稳定剂、增塑剂等塑料助剂后可以挤出、注塑、搪塑等成型。涂布级的PVDC是偏二氯乙烯同丙烯酸酯单体的共聚物。共聚过程是乳液聚合。PVDC乳液涂布的薄膜也叫K涂膜。 实验证明,在224小时内,温度为 30."8℃,相对湿度为90%的条件下,在每平方米的面积上,PVDC膜的透氧率低于 26."4ml,而尼龙为 40."3ml左右,乙烯为3875~13020ml。从这组数字的比较中可以看出,PVDC的阻隔性能是普通包装材料的几倍、几十倍甚至几百倍。 因此,用这种材料包装食品,对食品的色、香、味均有优良的保护作用。同时,对于食品的防潮十分有效,可成倍地延长食品保存期,大大减少食品因季节变化等多种因素造成的变质。 在不同的塑料基材上涂覆PVDC可以用于不同的场合,如在BOPP双面或单面涂布PVDC主要用于烟膜;在BOPET单面或双面涂布PVDC可进行印刷复合,主要用于食品、饮料、化妆品、电子产品的包装;在BOPA(聚酰胺)上涂布PVDC,可以印刷和复合,主要用于食品包装;在纸和PE上涂布PVDC可热封印刷,主要用于食品、日化用品等。 二、PVDC国内外生产及应用情况 目前,国际上只有美国DOW、德国BAS F、日本吴羽、旭化成等几家大公司能稳定持续生产PVDC。国内浙江巨化股份有限公司 2000年8月投资

氯乙烯的聚合

氯乙烯的聚合 一、氯乙烯物理性质: 氯乙烯:常温下是一种无色易燃的气体,沸点℃; ,凝固点一℃;,闪点一78℃,自燃点472℃,爆炸极限4%一22%。氯乙烯是致癌物,具中等毒性。 二、安全喷淋水系统 聚氯乙烯树脂是由氯乙烯单体聚合而成。国内外聚氯乙烯生产厂曾多次发生聚乙烯单体空间爆炸事故,损失惨重。氯乙烯单体的泄漏,直接威胁着生产的安全。使用安全喷淋水系统,对泄漏的氯乙烯起到一定的稀释作用,并且隔绝空气,降低了环境温度,防止了空间爆炸,从而达到了安全生产的目的。 三、生产工艺流程: 聚氯乙烯生产具有易燃、易爆、腐蚀性强、有毒有害物质多、生产过程连续性强、生产工艺复杂等特点,生产情况复杂、条件多变,稍有疏忽就会发生事故。 悬浮氯乙烯聚合过程的工艺流程如图所示: 先将去离子水加入聚合釜内,并将聚合配方的助剂如分散剂、缓冲剂等加入釜内搅拌,然后加入引发剂,密封聚合釜,抽除釜内空气,必要时用氮气替换,使釜内残留氧含量降至最低,最后加入氯乙烯单体VCM,然后通过反应釜夹套中的过热水加热,将釜温升至预定温度并进行聚合。为了缩短聚合周期,也可以在反应釜脱氧后开始加热釜内物料,达到预定温度时再加入单体并开始聚合。聚合反应大量放热"VCM生成PVC时放热量1532kJ/kg"。这些聚合反应热通过3种方式散热,但是根据反应釜大小,3种途径可以只利用其中一种或两种方式散热:1)釜夹套冷却水;2)釜内冷水管;3)釜顶冷凝器等。要严格操作技术,始终保持预定反应温度,以保证氯乙烯产品质量。如果釜内聚合反应放热不足或失控造成温度过高不下时,釜内饱和蒸汽压也将大大超过反应釜的操作压力甚至设计压力,从而造成 聚合釜的物理破坏。对此在制造聚合釜时对温度及压力的设计留有充分的余量,防止物理爆破酿成的灾难性后果。聚合反应的温度、压力的失控事故常常发生在反应的前中期,即VCM聚合为PVC的转化率小于70%时"单体富相存在,才会发生上述温度!压力超高"VCM转化率大于70%时,单体富相消失时,压力稳步降低。

YBB60362012偏二氯乙烯单体测定法

YBB60362012 偏二氯乙烯单体测定法 Pianerlüyixi Danti Cedingfa Tests for Determination of Ethylene Dichloride 本法适用于聚偏二氯乙烯产品中残留偏二氯乙烯单体的测定。 本法以气—固平衡为基础,在密封容器内,在一定的温度下,试样中残留的偏二氯乙烯迅速地向空间扩散,达到平衡后,取定量顶空气体注入色谱仪中分析,以保留时间定性,峰面积定量。 本法照气相色谱法(中国药典2010年版二部附录ⅤE)测定。 色谱条件与系统适用性试验 1、填充柱(推荐):固定相为涂有2.5%邻苯二甲酸二辛酯和2.5%有机皂土34[Bentone34][二 甲基双十八烷基铵皂土]的102硅藻土担体的填充柱。 测定条件(推荐):柱温70℃,进样口温度130℃,检测温度130℃,氮气25ml/min,氢气30ml/min,空气400ml/min 检测器:火焰离子化检测器(FID) 理论板数:不得低于500 2、毛细管柱(推荐):固定液为聚乙二醇(如HP-INNOWax 0.53mm×1μm×30m) 测定条件(推荐):柱温80℃,进样口温度180℃,检测器温度190℃,氮气5ml/min,氢气40ml/min、空气450ml/min、分流比5:1。 检测器:火焰离子化检测器(FID) 理论板数:不得低于5000 待测物质与相邻色谱峰的分离度应大于1.5 测定所得待测物峰面积的相对标准偏差不大于10% 供试品的制备 将供试品剪成细小颗粒,取1.0g,精密称定,放入20ml顶空瓶中,压盖密闭。 测定法 除另有规定外,测定方法一般采用第一法;当第一法测定结果不符合规定时,应采用第二法进行复验或测定。 第一法(外标法) 对照溶液的制备精密量取偏二氯乙烯标准物质适量,用标准物质用的稀释溶剂稀释,配制成适宜浓度的对照溶液,取适量注入20ml顶空瓶中(通常对照溶液的色谱峰面积与供试品中对应的色谱峰面积比值不超过2倍),立即压盖密闭。 取对照溶液和供试品,分别置于80℃±1℃的条件下平衡30分钟(如手动进样,进样器预热至相同温度)。取1ml瓶内气体注入气相色谱仪中,记录色谱图,测量对照溶液和供试品偏二氯乙烯的峰面积,计算。 第二法(标准曲线法) 标准曲线对照溶液的制备精密量取偏二氯乙烯标准物质适量,用标准物质用的稀释溶剂稀释,配制成浓度为0.2mg/ml的对照溶液。用微量注射器吸取5μl、10μl、15μl、20μl、25μl的对

氯乙烯安全技术规章

氯乙烯安全技术规程 1 主题内容与适用范围 本标准规定了聚氯乙烯生产中氯乙烯合成、净制、压缩、精馏、灌装、聚合、浆料处理、离心、干燥、包装及其装置的设计、生产和管理方面的安全要求。 本标准适用于乙炔法生产氯乙烯和氯乙烯聚合物的企 业。与聚氯乙烯生产有关的部门,亦应参照使用。 2 引用标准 GB 7231 工业管路的基本识别色和识别符号 GB J16 建筑设计防火规范 GB J57 建筑防雷设计规范 TJ 36 工业企业设计卫生标准 3 术语 3.1 动火作业work with flame 指在氯乙烯制备和聚氯乙烯生产厂(车间)内,一切能产生明火、火花、强烈热辐射和安设非防爆型电气设备及探伤的 各种作业。

3.2 清釜作业cleaning caldron work 指在聚合釜内进行清除粘釜物和防粘釜涂布的作业。 4 基本规定 4.1 通用要求 4.1.1 新建、扩建、改建和技术改造的氯乙烯制备和聚氯乙烯生产厂(车间),安全设施必须与主体工程同时设计、同 时施工、同时投产。 4.1.2 氯乙烯防护应选择先进的生产工艺方法或从生产装置上采取措施,使工厂(车间)的卫生和环境条件符合TJ 36 的规定。 4.1.3 氯乙烯属于Ⅰ级(极度危害)物质,直接接触氯乙烯生产、贮运、回收和使用的作业人员,必须进行专业培训和安全生产技术教育。经考试取得岗位安全合格证后,方可上岗 操作。 4.1.4 氯乙烯制备和聚氯乙烯生产厂部、车间、工段必须配备专职或兼职的安全管理人员,他们应熟练掌握工艺过程、设备性能和安全技术,并能指挥事故处理。 4.1.5 按时对设备、管道进行巡回检查,及时消除跑、 冒、滴、漏。

氯乙烯聚合工艺过程的危险源辨识

氯乙烯聚合工艺过程的危险源辨识 张悦景国勋 摘要:氯乙烯聚合生产过程中有很多危险因素,这些因素可以引起事故,导致工艺停止生产、装备损坏、甚至重大人员伤亡,造成不可估量的损失和巨大的影响。运用系统安全理论和方法,在氯乙烯聚合生产过程中对主要危险源,生产过程和危险作业单元进行危险源辨识,在蒙德法基础上提出每一个工艺单元都应当进行危险源辨识,从而确定最需要进一步分析和评估的生产单元,通过不同的评价方法得到更加精确的评价结果,这对化工企业的危害识别和风险评估具有重大的借鉴意义。 关键词:危险源辨识氯乙烯聚合蒙德评价方法简介 、, 、- 前言 随着中国现代化建设,以及国家经济发展迅速的,各种生产工艺需要越来越多的聚氯乙烯,从而促进聚氯化生产快速增长,氯乙烯的聚合生产已经成为安全生产中的高危行业。在这个过程中有许多潜在的风险因素,其中包括主要控制聚合反应引起的闪燃、聚合反应失控或火灾,爆炸和氯乙烯泄漏引起的中毒。一旦发生意外,这可能导致生产停止,设备损坏,巨大的经济损失,重大人员伤亡,甚至产生社会和环境的的影响。因此,如果应用危险源辨识,可以提示氯乙烯聚合,甚至整个化工行业的安全生产的发展,有针对性地确定危险因素,在 VC 聚合生产过程中具有重大的理论研究价值和应用前景。 有人提出,应在化工生产中进行重大危险源辨识,在本文中,根据生产装置的工艺单元的特点,通过材料、生产技术和手工操作,并指出每个生产单元应在蒙德评价方法的基础上定性的分析,以确定需要进一步的分析和评价的重点单元。 1. 悬浮法制作 PVC 精制的氯乙烯单体在一定的配方下在聚合釜中和引发剂,分散剂和水通过搅拌发生反应,偶氮化合物或过氧化物为引发剂,纤维素醚和聚乙烯醇被用着分散剂,水做分散和传热介质,成为悬浮悬浮聚合 PVC树脂。把悬浮液分离后离心、洗涤、脱水、空气干燥、流体干燥、筛分和包装。 2. 生产工艺流程 聚合过程采用70.5立方米的锅炉,利用分布式控制系统(DCS进行恒温操作和自动控制。通过一定的程序把纯净水, VCM和各种添加剂加入到聚合釜中,在一定的温度和压力条 件下氯乙烯发生聚合反应,产生聚氯乙烯,然后把PVC浆输送到储罐中,并在汽提塔中把 VC从PVC颗粒中分离出来,然后干燥,包装入库。由压缩机压缩和冷凝回收未反应的VC单

氯乙烯的危害及防治

氯乙烯的危害及防治 氯乙烯是无色易液化的气体,与空气形成可爆炸性混合物,难溶于水,溶于乙醇、乙醚、丙酮和二氯乙烷,易聚合。 氯乙烯是应用最广泛的树脂聚氯乙烯(PVC)的单体,用于制备聚氯乙烯、偏二氯乙烯,也用于作冷冻剂等。 事故案例 黑龙江省电化厂聚氯乙烯车间有工人112人,其中聚合釜清釜工有15人。1983年春该车间全体员工进行职业性体验,发现4名清釜工患有指端溶骨症。血清钙明显增高。手指发麻,手尖酸痛。X线手片显示:有手指末端粗隆尺侧边缘膨大,骨质疏松或呈切迹,或呈囊样变,或出现斜行骨折线,或点状溶解。清釜工的指端溶骨症引起了职业医学界和聚氯乙烯制造厂的高度重视。 职业危害 1、接触机会:在氯乙烯和聚氯乙烯的生产过程中,都有接触氯乙烯的可能,尤其是生产聚氯乙烯的聚合釜的清理,清釜工的慢性氯乙烯中毒可能性最大。应用聚氯乙烯树脂或含有氯乙烯的共聚物熔融后制作各种塑料制品时,释放出氯乙烯单体,有时作业环境空气中的氯乙烯浓度很高,极易引起中毒。 2、中毒临床表现:急性中毒。轻度中毒时,病人出现眩晕、头痛、恶心、胸闷、嗜睡、步态蹒跚等;严重中毒者,神志不清,或呈昏睡状,甚至昏迷、抽搐,更严重者会造成死亡。 慢性中毒主要表现为神经衰弱综合征、肝脏损伤、消化功能障碍、肢端溶骨症、皮肤损伤等。本品为致癌物,可致肝血管肉瘤。 神经系统:表现为眩晕、头痛、乏力、失眠或嗜睡、多梦、易惊醒、记忆力减退、烦躁不安等。有时呈头重感、定向障碍、性情改变、四肢酸痛、手掌多汗,手指、舌和眼睑震颤等。 消化系统:食欲不振、恶心、呃逆、腹胀、便秘等。肝肿大,肝功能异常。 皮肤改变:有皮肤干燥、皲裂、丘疹、粉刺,或有手掌角化、指甲变薄等改变。 肢端溶骨症:聚氯乙烯制造的清釜工多见。表现为手指发麻,指尖有刺痛或酸痛感。手部x线拍片显示,末节指骨的一个或多个粗隆边缘有半月形缺损,甚

聚偏二氯乙烯.ppt

聚偏二氯乙烯Poly(vinylidene chloride)

概述 ?聚偏二氯乙烯于1938年发现于法国,1939年美国(DOW)化学公司发 现聚偏二氯乙烯共聚物性能较好,并于次年投产,其品牌号叫赛纶 (saran)。在第二次世界大战中用作军需品,战后又制成纤维和涂料。 ?聚偏二氯乙烯可加工成单层薄膜,也可用其他材料(例如:纸,铝箔, 其他塑料)复合,在大多数情况下可溶于溶剂后作为涂覆材料。薄膜上涂有薄薄一层聚偏二氯乙烯涂层后就可大大改善其防潮,隔氧,密封性能。 ?用密度较大,有特殊气味的低沸点液体----偏二氯乙烯合成的偏二氯乙烯 合成聚偏二氯乙烯均聚物,其熔点范围很窄,质硬,软化点与分解温度接近,不易加工。常用的聚偏二氯乙烯是偏二氯乙烯(含量5%--25%)的共聚物

制造 聚偏二氯乙烯的生产方法与聚乙烯均聚物生产方法相似。一般以过氧化苯甲酰为引发剂,在40℃左右聚合的中途加入偏二氯乙烯共聚。若做纤维使用,一般含偏二氯乙烯80%--95%;若制作成薄膜使用,一般含偏氯乙烯75%--85%,生产方法采用悬浮法和乳胶法;含偏二氯乙烯75%以下的涂料粘合剂和塑料多采用乳液法聚合。 偏二氯乙烯是无色液体,有轻微氯仿气味。相对密度为1.21,熔点-122.5℃,沸点为31.5℃,其性质与氯乙烯接近,所以聚偏二氯乙烯共聚物的性质与聚氯乙烯的性质相同。

特点 ? ?共聚物:一种浅棕色透明薄膜,密度大,机械强度优 良、柔韧,但过软,不太适合于机操作。由于表面有 你粘连性,自动化包装要加入滑爽剂。 ?聚偏二氯乙烯:①柔软且具有极低的透气、透水性能, 可防止异味过重,保鲜,保香性能好,适于长期保存 食品;②耐强酸,强碱、化学药品、耐油脂性能优良。 ③自熄性。④自粘性。⑤收缩性大。⑥柔软易粘结, 操作性不良。⑦薄膜结晶性强,易开裂、穿孔。⑧耐老化性差。⑨在紫外光易分解出氯化氢,其单体也有毒性

乙烯制氯乙烯

化工过程课程设计 课题名称:乙烯制氯乙烯的工艺流程实例设计 班级: 姓名: 学号: 时间: 化工过程课程设计 (1) 1 氯乙烯概述 (1) 2氯乙烯的应用 (2) 3 氯乙烯的生产 (3) 3.1乙烯氧氯化法 (3) 3.2乙炔法 (4) 3.3乙烯直接氯化法 (4) 3.4乙烯氯化裂解法 (4) 3.5乙烯氯化平衡法 (4) 3.6混合烯炔法 (4) 4 乙烯氧氯化法具体工艺流程 (5) 4.2 反应催化剂 (5) 4.3 反应机理 (6) 4.4 动力学方程 (6) 4.6 反应器的形式 (7) 4.8 工艺流程图 (9) 4.9 总流程框图 (10) 5 参考文献 (10) 1 氯乙烯概述 氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。为无色、易液化气体,沸点-13.9℃,临界温度142℃,临界压力5.22MPa。氯乙烯是有毒物质,肝癌与长期吸入和接触氯乙烯有关。它与空气形成爆炸混合物,爆炸极限4%~22%(体积),在压力下更易爆炸,贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。

氯乙烯三维图形 2 氯乙烯的应用 氯乙烯的主要应用是在工业上进行均聚或共聚以生产高聚物。目前世界上用于制造聚氯乙烯树脂的氯乙烯单体(VCM)量约占总产量的96%,而美国则高达98%,氯乙烯的聚合物广泛用于工业,农业,建筑业以及人们的日常生活之中。例如:硬聚氯乙烯具有强度高、质量轻、耐磨性能好等特点,广泛用于工业给水、排水、排污、排气和排放腐蚀性流体等用管道、管件以及农业灌溉系统、电缆电线管道等,其总量约占聚氯乙烯(PVC ,prly vnyl chloride)消耗量的1/3;目前世界上塑料销量的20%以上用于建筑,而建筑用塑料中有40%是氯乙烯的聚合物,如塑料地板,不仅可以制成色彩鲜艳的各种图案,而且可将图案制成表面有浮雕感的多种型材;聚氯乙烯塑料制成的门、窗框具有较好的隔热、隔冷、隔音性能和耐腐蚀性、耐潮湿、耐霉烂等特点,而且由于表面光滑,不需要油漆、维修方便、比其他材料门框便宜,因而在国内得到了广泛的应用和发展。聚氯乙烯料壁具有色泽鲜艳、花纹有立体感、防潮、防霉、防燃、便于清洗等优点,用于房屋建筑内墙装饰,美观大方,价格便宜。美国、日本、瑞典等国有50%以上的内墙用壁纸装饰。软聚氯乙烯具有坚韧、耐绕曲、有弹性耐寒性高等特点,所以常用作电线电缆的绝缘包皮,用以代替铅皮、橡胶、纸张;还广泛用于软管、垫片及各种零件、人造革和日常用品的生产。聚氯乙烯糊是将聚氯乙烯微粒分散在液体悬浮介质中,形成高黏度糊状混合物,用于制造人造革、纸质黏胶制品,涂于织物、纸张、金属防腐用的涂装材料、微孔塑料、浇铸成型品等表面。泡沫聚氯乙烯抗压强度高、有弹性、不吸水、不氧化,常用作衣物衬里、衬垫、防火壁、绝缘材料及隔音材料等。聚氯乙烯还广泛应用于汽车仪表表皮、门板表面、座椅、车顶内衬、侧面车板等。

氯乙烯MSDS

氯乙烯 一标识 中文名氯乙稀;乙稀基氯 英文名薄chloroethylene;vinyl chloride 分子式C2 H3CI 相对分子质量60.50 CAS号75—01—4 危险类别第2.1类易燃气体 化学类别卤代稀 二主要组成与性状 主要成分含量纯度≥99.99% 外观与性状无色具有醚样的气味。 主要用途用作塑料原料及用于有机全成,也用作冷冻剂等。 三健康危害 侵入途径吸入。 健康危害急性毒性表现为麻醉作用;长期接触可引起氯乙稀病。 急性中毒:轻度中毒时病人出现眩晕、胸闷、嗜睡、步态蹒跚等;严重中毒可发生昏迷、抽搐,甚至造成死亡。皮肤接触氯乙稀液体可致红斑、水肿或坏死。 慢性蝇毒:表现为神经衰弱综合症、肝肿大、肝功能异常、消化功能障碍、雷诺氏现象及肢端溶骨症。皮肤可出现干燥、皲裂、脱屑湿疹等。本品为致癌物,可致肝血管肉瘤。 四急救措施 皮肤接触立即脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。就医。 眼睛接触提起眼睑,用流动清水或生理盐水冲洗。就医。吸入迅速脱离现场至空气新鲜处。保持呼吸道通畅,如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入 五燃爆特性与消防 燃烧性易燃闪点(℃)无意义 爆炸下限(%) 3.6 引燃温度(℃)415 爆炸上限(%)31.0 最小点火能(mJ)无资料 最大爆炸压力(MPa)0.666 危险特性易燃,与空气混合能形成爆炸性混合物。遇热源和明火有燃烧爆炸的危险。燃烧或无抑制剂时可发生剧烈聚合。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 灭火方法切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳。 六泄漏应急处理 迅速撤离泄漏污染区人员至上风外,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。用工业覆盖层或吸附/吸收剂盖住泄漏点附近的下水道等地方,防止气体进入。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,如有可能,将残余气或漏出气用排风机送至水洗塔或与搭相连的通风橱内。漏气容器要妥善处理,修复、检验后再用。 七储运注意事项 易燃压缩气体。储存于阴凉、通风仓间内。仓内温不宜超过30℃。远离火种、热源。防止阳光直射。应与氧气、压缩空气、氧化剂等分开存放。储存间内的照明、通风等设施应采用防爆型,开关设在仓外,配备相应品种和数量的消防器材。罐储时要有防火防爆技术措施。露天贮罐夏委要有降温措施。禁止使用易产生火花的机械设备和工具。验收时要注意品名,注意验瓶日期,先进仓的先发用。搬运时轻装轻卸,防止钢瓶及附件破损。运输按规定路线行驶,勿在居民区和人口稠密停留。 八防护措施 车间卫生标准 中国MAC(mg/m3)30 前苏联MAC(mg/m3)5/1(分子代表一次最 高容许浓度值;分母代表工作班平均 最高容许浓度值。) 美国TVL—TW A ACGIH5ppm,13mg/m3 美国TLV—STEL 未制定标准

聚偏二氯乙烯乳液制备工艺与性能的研究

一、聚偏二氯乙烯概述 1. 聚偏二氯乙烯性质 PVDC,学名“聚偏二氟乙烯”,化学结构式为,是一种无毒,无味,粉末状,应用较为广泛的高阻隔性材料。PVDC单位分子中含有两个氯原子,阴电性较强,并且与其他链中氢原子结合紧密。此外,它的分子结构具有很好的对称性。这些特征使其分子间的间隙很小,结晶度高,分子与分子可以较好地凝聚在一起,阻止水、氧气等小分子物质的渗透作用,阻隔性能优异[1]。 不仅如此,PVDC涂覆膜可以直接在食物包装材料上应用,并可以保味保香,防潮防霉,同时它的印刷性能优良,耐油耐腐蚀性能好[2] 。 但是由于PVDC在其软化温度下稳定性较差。高温条件下,其中存在的金属离子会加速其分解老化,因此PVDC均聚物的实际应用价值很低。而产品级的PVDC主要以共聚物的形式存在,如VDC/VC、VDC/AN和VDC/MMA等共聚物,它们被广泛的应用于涂料,容器和包装领域[3]。而根据报道PVDC树脂或胶乳作为包装材料使用已经超过50年了[4]。 2. 聚偏二氯乙烯的应用 PVDC的用途十分广泛,民用方面,可以用作食品药品的包装膜,五金制品的涂覆膜,军用方面,可用在机械零件,军用器材等各种对于防腐防锈蚀防氧化等阻隔性能要求高的产品外包装[2]。其应用领域为: (1)制备冷藏用单模高阻隔性并具有自粘性的家用保鲜膜; (2)制备高阻隔性的单膜,应用于高温杀菌处理后的肠用膜; (3)制备高收缩性的多层复合膜,用作冷鲜产品包装袋; (4)制备PVDC乳胶,涂覆在包装用塑料材料上,应用于复合基材、药物包覆膜等。并可应用于建材,防止植被生长破坏其强度; (5)PVDC材质透明,密度较大,可以通过纺丝工艺制备成高强度的丝线如钓鱼线,渔网等;耐腐蚀能好,可做成化肥包装袋、化油器中的过滤网;不透水不透气阻隔性高,可以作为液体盛放袋;耐候性好,可以制人工草坪[5]。

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理 1生产方法 按其所用原料可大致分为下列几种: ⑴乙烯法 此法系以乙烯为原科,可通过三种不同途径进行,其中两种是先以乙烯氯化制成二氯乙烷:C2H4 + Cl2 → C2H4Cl2 然后从二氯乙烷出发,通过不同方法脱掉氯化氢来制取氯乙烯;另一种则直接从乙烯高温氯化来制取氯乙烯。现分述如下: ①二氯乙烷在碱的醇溶液中脱氯化氢(也称为皂化法) C2H4Cl2+ NaOH → C2H3Cl + NaCl + H2O 此法是生产氯乙烯最古老的方法。为了加快反应的进行,必须使反应在碱的醇溶液小进行。这个方法有严重的缺点:即生产过程间歇,并且要消耗大量的醇和碱,此外在生产二氯乙烷时所用的氯,最后成为氯化钠形式耗费了,所以只在小型的工业生产中采用。 ②二氯乙烷高温裂解 C2H4Cl2→ C2H3Cl + HCl 这个过程是将二氯乙烷蒸气加热到600℃以上时进行的,与此同时,还发生脱掉第二个氯化氢生成乙炔的反应,结果使氯乙烯产率降低。为了提高产率,必须使用催化剂。所用的催化剂为活性炭、硅胶、铝胶等,反应在480~520℃下进行,氯乙烯产率可达85%。 ③乙烯直接高温氯化 这一方法不走二氯乙烷的途径,直接按下式进行: C2H4 +Cl2→ C2H3Cl + HCl 由上式可以看出这一反应是取代反应,但实际上乙烯与氯在300℃以下主要是加成反应,生成二氯乙烷。要想使生成氯乙烯的取代反应成为唯一的反应,则必须使温度在450℃以上,而要避免在低温时的加成过程,可以采用将原科单独加温的方法来解决,但在高温下反应激烈,反应热难以移出,容易发生爆炸

氯乙烯

氯乙烯msds 中文名称氯乙烯英文名称:chloroethylene; vinyl chloride 分子式:C2H3Cl;CH2CHCl CAS: 75-01-4 RTECS:KU9625000 危编号:21037 理化性质外观及性状:无色具有醚增气味的气体。 熔点:-159.8℃溶解性:微溶于水,溶于乙醇、乙醚、 丙酮等多数有机溶剂。 沸点:13.4℃相对密度:空气2.15 水0.91 闪点:-78℃/开杯爆炸极限: 3.6%-30.0% 自燃点:蒸气压:346.53kPa/25℃ 燃烧爆炸危险危险特性:易燃,与空气混合能形成爆炸性混合物。遇热源和明火有燃烧爆 炸的危险。燃烧或无抑制剂时可发生剧烈聚合。其蒸气比空气重, 能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳、氯化氢。稳定性:稳定 禁忌物:强氧化剂。 避免接触的条件:受热。 灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。 喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾 状水、泡沫、二氧化碳。 毒害性及健康危害职业接触毒物危害程度分级: 毒性资料LD50:500mg/kg(大鼠经口)。LC50: 职业接触限值MAC:30 mg/m3PC-TWA: mg/m3PC-STEL: mg/m3 侵入途径:吸入。 健康危害:急性毒性表现为麻醉作用;长期接触可引起氯乙烯病。急性中毒: 轻度中毒时病人出现眩晕、胸闷、嗜睡、步态蹒跚等;严重中毒 可发生昏迷、抽搐,甚至造成死亡。皮肤接触氯乙烯液体可致红 斑、水肿或坏死。慢性中毒:表现为神经衰弱综合征、肝肿大肝 功能异常、消化功能障碍、雷诺氏现象及肢端溶骨症。皮肤可出 现干燥、皲裂、脱屑、湿疹等。本品为致癌物,可致肝血管肉瘤。 氯乙烯是一种刺激物,短时接触低浓度,能刺激眼和皮肤,与其 液体接触后由于快速蒸发能引起冻伤。对人体有麻醉作用,能抑 制中枢神经系统,引起与轻度酒精中毒相似的症状。吸入量在0.5% 以上时,可引起头晕、头痛、恶心、呕吐、心神不安、不辨方向, 暴露于含量达20%~40%的浓度时,可使人产生急性中毒。 急救措施皮肤接触:立即脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。就医。眼接触:提起眼睑,用流动清水或生理盐水冲洗。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给

氧氯制取氯乙烯

一、概述 1.氯乙烯的性质和用途 氯乙烯在常温常压下是一种无色的有乙醚香味的气体,沸点-13.9℃,临界温度142℃,临界压力为5.12MPa,尽管它的沸点低,但稍加压力,就可得到液体的氯乙烯。氯乙烯易燃,闪点小于-17.8℃,与空气容易形成爆炸混合物,其爆炸范围为4~21.7%(体积)。氯乙烯易溶于丙酮、乙醇、二氯乙烷等有机溶剂,微溶于水,在水中的溶解度是0.001g/L。 氯乙烯具有麻醉作用,在20~40%的浓度下,会使人立即致死,在10%的浓度下,—小时内呼吸管内急动而逐渐缓慢,最后微弱以致停止呼吸。慢性中毒会使人有晕眩感觉,同时对肺部有刺激,因此,氯乙烯在空气中的允许浓度为500ppm。 氯乙烯是分子内包含氯原子的不饱和化合物。由于双键的存在,氯乙烯能发生一系列化学反应,工业应用最重要的化学反应是其均聚与共聚反应。 氯乙烯是聚氯乙烯的单体,在引发剂的作用下,易聚合成聚氯乙烯。氯乙烯也可以和其它不饱和化合物共聚,生成高聚物,这些高聚物在工业上和日用品生产上具有广泛的用途。因此,氯乙烯的生产在有机化工生产中占有重要的地位。 2.氯乙烯的生产方法 氯乙烯首先在工业上实现生产是在20世纪30年代,当时是使用电石水解成,乙炔和氯化氢进行加成反应得到的。其化学反应方程式为: CaC2 + 2H2O → Ca(OH)2 + C2H2 C2H2 + HCl CH2CHCl 50年代前,电石是由焦炭与生石灰在电炉中加热生成: CaO+3C CaC2 + CO 随着氮乙烯需求量的增加,人们致力于寻找生产氯乙烯更廉价的原料来源。在50年代初期,乙烯成为生产氯乙烯更经济、更合理的原料。实现了由乙烯和氯气生产氯乙烯的工业生产路线。该工艺包括乙烯直接氯化生产二氯乙烷及二氯乙烷裂解生产氯乙烯。 随后,人们注意到二氯乙烷裂解过程,除生成氯乙烯外还生成氯化氢。由此,工业界想到由氢化氢可以连同乙炔生产工艺一起生产氯乙烯。 CH 2=CH2十C12→ CH2C1—CH 2C1 CH 2C1—CH 2C1→ CH2=CHC1十HC1 十HCl → CH2=CHC1 50年代后期,开发出乙烯氧氯化工艺以适应不断增长的对氯乙烯的需求。 在这个过程中,乙烯、氧气和氯化氢反应生成二氯乙烷,和直接氯化过程结合在一起,两者所生成的二氯乙烷一并进行裂解得到氯乙烯,这种生产方法称为平衡法。 至今世界上虽仍有少量的氯乙烯来自于电石乙炔及乙炔—乙烯混合法,而绝大部分氯乙烯是通过基于乙烯和氯气的平衡过程生产。平衡氧氯化生产工艺仍是已工业化的、生产氯乙烯单体最先进的技术,在世界范围内,93%的聚氯乙烯树脂都采用由平衡氧氯化法生产的氯乙烯单体聚合而成。该法具有反应器能力大、生产效率高、生产成本低、单体杂质含量少和可连续操作等特点。 二、反应原理 乙烯氧氯化法生产氯乙烯,包括三步反应:

《食品包装用聚偏二氯乙烯(PVDC)片状肠衣膜》(征求意

《食品包装用聚偏二氯乙烯(PVDC)片状肠衣膜》(征求意见稿)编制说明 一、任务来源: 根据国家标准化管理委员会《关于下达2017年第一批国家标准制修订计划的通知》(国标委综合[2017]55号)的要求,推荐性国家标准《食品包装用聚偏二氯乙烯(PVDC)片状肠衣膜》(计划编号:20170415-T-469)由全国包装标准化技术委员会(SAC/TC49)归口,由河南省漯河市双汇实业集团有限责任公司等单位负责制定。 二、标准修订的原则和依据 标准要体现先进性、代表性和普遍适用性,进一步完善各项尺寸数据的规定; 做到和现行相关国家和行业标准的协调一致。 三、标准修订内容情况 1、条款“1 范围” 本标准适用以聚偏二氯乙烯树脂为主要原料,采用吹塑法制成的食品包装用聚偏二氯乙烯(PVDC)片状肠衣膜(以下简称肠衣膜)。 删除了“并分切的”、“用于灌装肠类食品”。 2、条款“3 分类” 肠衣膜分为印刷肠衣膜与非印刷肠衣膜,印刷肠衣膜分为里印肠衣膜与表层里印肠衣膜。 将“里印复合肠衣膜”调整为“表层里印肠衣膜”。 3、条款“4.1.4” 接头处双面用与薄膜颜色有区别的胶带连接,接头应平整、牢固。去掉“上下胶带重叠”内容。 4、条款“4.1.5 ”

肠衣膜卷表面应平整,允许有轻微的活褶,不应有明显的暴筋、翘边。经分切的肠衣膜端面应平整,膜卷张力适当,无脱卷现象,膜卷中心线和芯管中心线之间的偏差不大于4 mm。增加“经分切的肠衣膜”内容。 5、条款“4.3.2” 肠衣膜的长度和宽度由供需双方商定,长度不允许有负偏差,经分切的膜卷宽度偏差见表2。宽度偏差增加“经分切的膜卷”限定条件。 6、条款“4.4” 增加了“特殊产品的热收缩率、氧气透过量由供需双方商定”要求。 7、条款“4.5 卫生指标” 应符合GB 4806.7及食品安全相关规定。与新版食品安全国家标准保持一致 8、条款“4.6” 删除该条款,按照GB 9685-2016中溶剂特定迁移量/残留量要求执行。 9、条款“5.1” 从肠衣膜的膜卷上去掉外层,取足够数量的肠衣膜作为检验试样。 具体取样量根据对应检测标准要求。 10、条款“5.5.4” 按GB/T 26253条件2或GB/T 1037条件A规定进行,GB/T 26253为仲裁方法。 增加GB/T 26253检测方法,并将此方法作为仲裁法。 11、条款“5.5.5” 按GB/T 19789或GB/T 1038规定进行,温度(23±2)℃,GB/T 19789为仲裁方法。 增加GB/T 19789检测方法,并将此方法作为仲裁法。 12、条款“6.1” 肠衣膜的验收以批为单位,分切的肠衣膜同一品种、同一工艺、同一天生产的为一批。不分切的肠衣膜同一品种、同一工艺、同一旬生产的为

氯乙烯合成工艺设计

前言 氯乙烯单体(VCM)几乎全部(98%以上)都用来生产聚氯乙烯(PVC)。余下的则用于生产聚氯乙烯氯化物和氯化溶剂。传统工艺的电石法精馏氯乙烯质量已不能满足PVC 树脂的生产要求,受其工艺流程及精馏塔塔型的限制,原氯乙烯精馏装置规模小,产品质量较差,尾气放空量大,造成氯乙烯、乙炔流失量大,导致生产成本较高,环境污染严重。 最初的氯乙烯生产全部以乙炔为原料。60年代后期,随着乙烯装置大型化及乙烯氧氯化技术的成熟,乙烯法在经济和环保等方面占有明显的优势,在世界范围内乙炔法迅速被乙烯法取代。迄今为止,全世界氯乙烯装置93%以上采用乙烯法,在工业发达国家如日本,以全部淘汰了乙炔法,仅在我国及其它发展中国家仍占有相当比重。目前国内比较先进而又经济可行的成熟工艺技术是电石乙炔法 本设计用美国ChemStations公司开发的流程模拟软件ChemCAD软件对电石乙炔法制备VCM进行了工艺模拟设计与计算,计算主要包括物料衡算和热量衡算,用计算所得到的相关数据对此工艺中所涉及到的设备进行选型,主要包括塔的选型、换热器的选型、泵的选型等,然后用PDSOFT三维软件对车间设备进行布置,为工业生产提供参考。 1

1 总论 1.1 概述 1.1.1 意义与作用 氯乙烯(简称VCM),是无色的、易液化的气体。易聚合,也能与丁二烯、乙烯、丙烯、丙烯睛、酷酸乙烯、丙烯酸醋和马来酸醋等共聚。主要用于制备PVC,也用于制备偏二氯乙烯、冷冻剂等。氯乙烯单体几乎全部(98%以上)都用来生产聚氯乙烯。余下的则用于生产聚氯乙烯氯化物和氯化溶剂。通过对二氯乙烷(EDC)裂解后脱除HCL,以及干燥精制可获得制造PVC级的VCM。由于资源结构的特点,世界上只有我国的氯碱行业有电石法生产PVC,其他国家都是通过乙烯法生产PVC,即乙烯直接氯化、氧氯化生产EDC,进而裂解生产VCM制造PVC。其中96%VCM均用于生产PVC。 聚氯乙烯(简称PVC)是五大热塑性合成树脂之一,以其价廉物美的特点,占合成树脂总消费量的29%左右,仅次于聚乙烯居第二位。由于PVC树脂具有优良的耐化学腐蚀性、电绝缘性、阻燃性、质轻、强度高且易加工、成本又低,因而PVC制品广泛用于工业、农业、建筑、电子电器及人们生活中的各个领域。PVC硬质制品可代替金属制成各种工业型材、门窗、管道、阀门、绝缘板及防腐材料等,还可作收音机、电话、蓄电池外壳及家俱、玩具等。PVC软质品可制成薄膜做雨披、台布、包装材料及农用薄膜,还可制成人造革、电线、电缆的绝缘层。另外,PVC树脂作为氯碱工业最大的有机耗氯产品,对氯碱工业的碱、氯平衡和发展起到重要的作用。PVC主要用于建筑业,制造管材、门窗和墙板等。作为第一大用户,建筑业约占聚氯乙烯消费总量的76%。其它方面的用量相对较少。包装薄膜和容器约占消费总量的6%,电气配件、电线电缆包皮约占消费总量的4%,涂料和粘合剂约占消费总量的4%,其他约占消费总量的10%。 1.1.2 氯乙烯生产的国内外现状及发展前景 (1)国外发展概况 氯乙烯(VCM)的合成始于1835年,由法国化学家Regnault用氢氧化钾的乙醇溶液将二氯乙烷脱氯化氢制得,并于1838年观察到了它的聚合体,这次的发现被认为是PVC 的开端。1902年,Biltz将1,2-二氯乙烷进行热分解也制得氯乙烯,但当时由于聚合物的科学和生产技术尚不成熟,他的发现没有导致工业生产的结束。Klatte于1912年通过乙炔与氯化氢的催化加成反应制得了氯乙烯,成为工业上氯乙烯合成的最初工艺,但在沿用将近30多年后,由于乙炔生产的高能耗而逐渐趋于淘汰。从1940年起,氯乙烯的生产原料,乙炔开始被乙烯部分取代,首先将乙烯直接氯化成1,2-二氯乙烷(EDC),再加以热裂解制得氯乙烯,裂解产生的氯化氢仍被用在乙炔-氯化氢法中。混合气体法制备氯乙烯采用石脑油作原料,将石脑油用燃烧气体裂解后,制成含乙炔和乙烯的混合气体,该混合气体先

聚偏氯乙烯结构性能、加工及应用

聚偏氯乙烯结构性能、加工及应用 摘要:介绍了PVDC的结构和各种性能,尤其是作为食品包装材料时的高阻隔性、热收缩性、高温蒸煮性;PVDC膜的几种主要制作方法。简单分析了PVDC在食品包装中的应用,指出其发展前景。 关键词:PVDC 结构性能加工改性应用 1.聚偏氯乙烯简介 聚偏氯乙烯(PVDC)树脂,即聚偏氯二乙烯树脂,又称氯偏树脂,纱纶树脂。PVDC的均聚物树脂由于氯含量高和结晶度高,因此熔融温度高、熔融时间长,一般在175℃的条件下完全熔融需5~10 rain。其熔融和分解温度十分接近,熔体粘度大,流动性差;受热易降解,加工周期短;薄膜易变色,热封强度低,弹性性能差。【1】因此其加工性能不好,在实际生产中没有应用价值,必须改进其加工性能才能得到广泛的应用。因此,通常所说PVDC是指以偏二氯乙烯(VDC)为主要成分加入其他含不饱和双键的第二单体(如VC)共聚而成的一类共聚物的统称。PVDC树脂是一种淡黄色、无毒无味、安全可靠的高阻隔性材料。除具有塑料的一般性能外, 还具有耐油性、耐腐蚀性、保味性以及优异的防潮、防霉、可直接与食品进行接触等性能, 同时还具有优良的印刷性能, 广泛应用于食品、药品、军工等领域。 问世之初主要是加工成薄膜, 二战时期运用在武器、弹药的包装上。世界上第一次通过实验室聚合获得线性高分子的PVDC 是在1930 年。美国DOW 化学公司首先将其工业化。由于初期适逢“二战”而主要用于军品包装, 这给PVDC 工业技术蒙上了一层神秘色彩, 因而成了美国DOW 化学公司多年不解密、不转让的一项工业技术。 50 年代末60 年代初逐渐向食品包装转移, 后又逐步应用于药品包装等领域, 随着现代包装技术和现代人生活节拍的加快, 微波炉、冰箱的普及, 保鲜膜的用量急剧增加, 使PVDC 的应用更加普及。这时候先后有多家公司开发出PVDC 产品工业技术, PVDC 才在西方发达国家开始达到大规模的整体发展。到上世纪80 年代中期, PVDC 发展到高峰, 世界PVDC 产能达到17 万吨/ 年, 后来由于聚乙烯醇和双向拉伸尼龙膜的问世, 同时, 由于有关氯塑料废制品料产生白色污染和焚烧可能产生致癌物质

常见聚合物缩写

发信人: mmMyGod (麦高), 信区: Chemistry. 本篇人气: 48 标题: Re: 常见聚合物材料缩写对照表 发信站: 南京大学小百合站 (Thu Sep 16 08:28:17 2004) 英文简称英文全称中文全称 ABA Acrylonitrile-butadiene-acrylate 丙烯腈/丁二烯/丙烯酸酯共聚物ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物 AMMA Acrylonitrile/methyl Methacrylate 丙烯腈/甲基丙烯酸甲酯共聚物ARP Aromatic polyester 聚芳香酯 AS Acrylonitrile-styrene resin 丙烯腈-苯乙烯树脂 ASA Acrylonitrile-styrene-acrylate 丙烯腈/苯乙烯/丙烯酸酯共聚物CA Cellulose acetate 醋酸纤维塑料 CAB Cellulose acetate butyrate 醋酸-丁酸纤维素塑料 CAP Cellulose acetate propionate 醋酸-丙酸纤维素 CE “Cellulose plastics, general” 通用纤维素塑料 CF Cresol-formaldehyde 甲酚-甲醛树脂 CMC Carboxymethyl cellulose 羧甲基纤维素 CN Cellulose nitrate 硝酸纤维素 CP Cellulose propionate 丙酸纤维素 CPE Chlorinated polyethylene 氯化聚乙烯 CPVC Chlorinated poly(vinyl chloride) 氯化聚氯乙烯 CS Casein 酪蛋白 CTA Cellulose triacetate 三醋酸纤维素 EC Ethyl cellulose 乙烷纤维素 EEA Ethylene/ethyl acrylate 乙烯/丙烯酸乙酯共聚物 EMA Ethylene/methacrylic acid 乙烯/甲基丙烯酸共聚物 EP “Epoxy, epoxide” 环氧树脂 EPD Ethylene-propylene-diene 乙烯-丙烯-二烯三元共聚物 EPM Ethylene-propylene polymer 乙烯-丙烯共聚物 EPS Expanded polystyrene 发泡聚苯乙烯 ETFE Ethylene-tetrafluoroethylene 乙烯-四氟乙烯共聚物 EVA Ethylene/vinyl acetate 乙烯-醋酸乙烯共聚物 EVAL Ethylene-vinyl alcohol 乙烯-乙烯醇共聚物 FEP Perfluoro(ethylene-propylene) 全氟(乙烯-丙烯)塑料 FF Furan formaldehyde 呋喃甲醛 HDPE High-density polyethylene plastics 高密度聚乙烯塑料 HIPS High impact polystyrene 高冲聚苯乙烯 IPS Impact-resistant polystyre ne 耐冲击聚苯乙烯 LCP Liquid crystal polymer 液晶聚合物 LDPE Low-density polyethylene plastics 低密度聚乙烯塑料 LLDPE Linear low-density polyethylene 线性低密聚乙烯 LMDPE Linear medium-density polyethylene 线性中密聚乙烯 MBS Methacrylate-butadiene-styrene 甲基丙烯酸-丁二烯-苯乙烯共聚物

相关主题
文本预览
相关文档 最新文档