当前位置:文档之家› 函数与方程综合运用

函数与方程综合运用

函数与方程综合运用
函数与方程综合运用

1.等比数列{n a }的前n 项和为n S ,已知对任意的n N +

∈,点(,)n n S ,均在函数

(01,,)x

y b r b b b r =+>≠且均为常数的图像上.

(Ⅰ)求r 的值;

(Ⅱ)当b=2时,记 22(l o g 1)()

n n b a n N +=+∈ 证明:对任意的n N +

∈ ,不等式

1212111

·······1n n

b b b n b b b +++>+成立 (Ⅰ) 由题意知: n n S b r =+,

当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-, 由于0b >且1,b ≠所以当2n ≥时, {n a }是以b 为公比的等比数列, 又11a S b r ==+,2(1)a b b =-,

2

1

,a b a =即

(1),b b b b r -=+解得1r =-. (Ⅱ)∵21n n S =-,∴当2n ≥时,111(21)(21)2n n n n n n a S S ---=-=---=, 又当1n =时, 111211a S ==-=,适合上式,∴12n n a -=,122(log 21)2n n b n -=+=, ∴

111b b +?221

b b +?1n n

b b +?=L 357(21)2123n

n n ????+?????L L , 下面用数学归纳法来证明不等式:

357(21)

12123n n n n

????+>+?????L L

证明:(1)当1n =时,左边=

39224

=>=右边,不等式成立. (2)假设当()n k k N *

=∈时,不等式成立,即357(21)

12123k k k k

????+>+?????L L ,

则当1n k =+时, 不等式左边=

11212111113572123

(246222)

k k k k b b b b k k b b b b k k ++++++++?=?????+L 2

223(23)4(1)4(1)11

1(1)1(1)1224(1)

4(1)4(1)

k k k k k k k k k k k ++++++>+?==

=+++>++++++

所以当1n k =+时,不等式也成立, 综上(1)(2)可知:当n N *

∈时,不等式

357(21)

12123n

n n n

????+>+?????L L 恒成立,

所以对任意的n N *

∈,不等式111b b +?221

b b +?11n n

b n b +?>+L 成立.

2.某厂家拟在2009年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x

万件与年促销费用0()m

m ≥万元满足31

k

x m =-+(k 为常数),如果不搞促销活动,则该产品的年销售量是1万件. 已知2009年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用). (1)将2009年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2009年的促销费用投入多少万元时,厂家的利润最大? 解:(1)由题意可知,当0=m 时,1=x ,∴13k =-即2=k ,

∴231x m =-

+,每件产品的销售价格为8161.5x

x

+?元. ∴2009年的利润)168(]1685.1[m x x

x

x y ++-+?= m m m x -+-

+=-+=)123(8484)0(29)]1(1

16[≥++++-=m m m (2)∵0m ≥时,

16

(1)21681

m m ++≥=+. ∴82921y ≤-+=,当且仅当

16

11

m m =++,即3m =时,max 21y =. 答:该厂家2009年的促销费用投入3万元时,厂家的利润最大,最大为21万元 3.讨论关于x 的方程lg(x -1)+lg(3-x )=lg(a -x )的实根个数

解:原方程转化为10

300(1)(3)x x a x x x a x ->->->--=-???????,即方程x 2

-5x+a+3=0在区间(1,3)内是否有根,由

0?≥得:134a ≤,设f(x)= x 2

-5x+a+3,对称轴是52x =,若(1)10(3)30f a f a =->=-

得有一根在区间(1,3)内,即当{}

13(1,3)4a ∈?时,原方程有一根; 若(1)10

(3)300

f a f a =->=->?>??

???

得13(3,)4a ∈时,原方

程有两根;

13(1,

]4

a ?时, 原方程无解

4.图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.已知凹槽的强度与横截面的面积成正比,比例系数为3,设AB =2x ,BC =y .

(Ⅰ)写出y 关于x 函数表达式,并指出x 的取值范围; (Ⅱ)求当x 取何值时,凹槽的强度最大.

解析:(Ⅰ)易知半圆CmD 的半径为x ,故半圆CmD 的弧长为x π. 所以 422x y x π=++, 得4(2)2

x

y π-+= ----------------------4

依题意知:0x y << 得4

04x π

<<+ 所以,4(2)2x y π-+=(4

04x π

<<+). ----------------------6分

(Ⅱ)依题意,设凹槽的强度为T ,横截面的面积为S ,则有 233(2)2

x T S xy π==-

----------------------8分

2

4(2)3(2)22

x x x ππ-+=?-

233[4(2)]2

x x π

=-+

23(43)483

()24343x πππ

+=-

-+++. ----------------------11分

因为44

0434ππ

<

<

++, 所以,当4

43x π

=+时,凹槽的强度最大. 答: 当4

43x π

=

+时,凹槽的强度最大. --------------13分 注:解析几何、立体几何及实际应用问题中的最优化问题,一般是利用函数的思想解决,思路是先选择恰当的变量建立目标函数,然后再利用有关知识,求函数的最值

5.已知函数f(x)=ln(2x)和g(x)=2ln(2x+m-2),m ∈R 的图象在x=2处的切线互相平行. (1)求m 的值;

(2)设F(x)=g(x)-f(x).当x ∈[1,4]时,F(x)≥2tln4恒成立,求t 的取值范围.

所以当1≤x<2时,G′(x)<0,

当20.

故G(x)在[1,2)是单调减函数,在(2,4]是单调增函数.

所以G(x)min=G(2)=16,G(x)max=G(1)=G(4)=18.

因为当x∈[1,4]时,F(x)≥2tln4恒成立,

解得t≤1.

综上所述,满足条件的t的取值范围是(-∞,1]

6.若a、b是正数,且满足ab=a+b+3,求ab的取值范围。

思路精析:用a表示b→根据b>0,求a的范围→把ab看作a的函数→求此函数的值域。

解析:方法一:(看成函数的值域)

即a>1或a<-3.又a>0,∴a>1,故a-1>0。

当且仅当a-1=

4

1

a-

,即a=3时取等号.又a>3时, a-1+

4

1

a-

+5是关于a的单调增函

数,

∴ab 的取值范围是[9,+∞).

7.有9张卡片分别写着数字1,2,3,4,5,6,7,8,9,甲、乙二人依次从中抽取一张卡片(不放回),试求:

(1)甲抽到写有奇数数字卡片,且乙抽到写有偶数数字卡片的概率. (2)甲、乙二人至少抽到一张奇数数字卡片的概率.

思路精析:(1)甲、乙二人依次各抽一张的可能结果→甲抽到含奇数,乙抽到含偶数数字卡片的结果→求概率.

(2)找对立事件→求对立事件概率→求出原事件概率.

解答:(1)甲、乙二人依次从九张卡片中各抽取一张的可能结果有,甲抽到写

有奇数数字卡片,且乙抽到写有偶数数字卡片的结果有种,设甲抽到写有奇数数字卡

片,且乙抽到写有偶数数字卡片的概率为P 1,则

(2)设甲、乙二人至少抽到一张奇数数字的概率为P 2,甲、乙二人至少抽到一张奇数数字卡片的对立事件为两人均抽到写有偶数数字卡片.设为

注:一般地,一个题目若出现多种成立的情况,则不成立的情况一般较少,宜从反而考虑,多使用于“至多”“至少”这种情形.

8.已知()y f x =是定义在R 上的增函数,函数(1)y f x =-的图像关于点(1,0)对称,若

,x y 满足22(621)(8)<0f x x f y y -++-,则当>3x 时,22x y +的取值范围是( )

A .(3,7)

B .(9,25)

C .(13,49)

D .(9,49)

9.设函数

(Ⅰ)当

曲线

处的切线斜率

(Ⅱ)求函数的单调区间与极值; (Ⅲ)已知函数

有三个互不相同的零点0,

,且

。若对任意的

恒成立,求m的取值范围。

解析:当

所以曲线处的切线斜率为1.

(2),令,得到

因为

当x变化时,的变化情况如下表:

+0-0+

极小值极大值

在和内减函数,在内增函数。

函数在处取得极大值,且=

函数在处取得极小值,且=

(3)由题设,

所以方程=0由两个相异的实根,故,且

,解得

因为

若,而,不合题意

若则对任意的有

则又,所以函数在的最小值为0,于是对任意的,恒成立的充要条件是,解得

综上,m的取值范围是

10.已知a>0,f(x)=ax2-2x+1+ln(x+1),l是曲线y=f(x)在点P(0,f(0))处的切线.

(1)求l的方程;

(2)若切线l与曲线y=f(x)有且只有一个公共点,求a的值;

(3)证明:对于任意的a=n(n∈N*),函数y=f(x)总有单调递减区间,并求出f(x)的单调递减区间的长度的取值范围.(区间[x1,x2]的长度=x2-x1)

【解析】(1)∵f(x)=ax2-2x+1+ln(x+1),f(0)=1.

∴f′(0)=-1,

即切点P(0,1),l斜率为-1,∴切线l的方程:y=-x+1.

(2)切线l与曲线y=f(x)有且只有一个公共点等价于方程ax2-2x+1+ln(x+1)=-x+1,

即ax2-x+ln(x+1)=0有且只有一个实数解.令h(x)=ax2-x+ln(x+1),

则方程h(x)=0有且只有一个实数解.∵h(0)=0,∴方程h(x)=0有一解x=0.

11.设函数f(x)=x2-mlnx,h(x)=x2-x+a.

(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;

(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;

(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

二次函数与方程、不等式综合问题

二次函数与方程、不等式综合问题 1、在平面直角坐标系xOy 中,直线m x y +- =65经过点()n A ,2-,??? ??21,1B ,抛物线1222-+-=t tx x y 与x 轴相交于点C 、D . (1)求点A 的坐标。 (2)设点E 的坐标为??? ??0,25,若点C 、D 都在线段OE 上,求t 的取值范围。 (3)若该抛物线与线段AB 有公共点,求t 的取值范围。 2、在平面直角坐标系xOy 中,抛物线c bx ax y ++=2的开口向上,且经过点?? ? ?? 23,0A 。 (1)若此抛物线经过点?? ? ?? -21,2B ,且与x 轴相交于点E 、F 。 ①填空:b = (用含a 的代数式表示)。 ②当2 EF 的值最小时,求抛物线的解析式。 (2)若2 1= a ,当10≤≤x ,抛物线上的点到x 轴的距离的最大值为3时,求 b 的值。 3、已知二次函数23)2(2)1(2++++=x t x t y ,当0=x 和2=x 时的函数值相等。 (1)求二次函数的解析式。 (2)若一次函数6+=kx y 的图像与二次函数的图像都经过点),3(m A -,求m 和k 的值。 (3)设二次函数的图像与x 轴交于点B 、C (点B 在点C 的左侧),将二次函数的图像在B 、C 点间的部分(含点B 和点C )向左平移n (0>n )个单位后得到的图像记为G ,同时将(2)中得到的直线6+=kx y 向上平移n 个单位,当平移后的直线与图像G 有公共点时,求n 的取值范围。 4、已知二次函数)12(221-+-=t tx x y (1>t )的图像为抛物线1C 。 (1)求证:无论t 取何值,抛物线1C 与x 轴总有两个交点。 (2)已知抛物线1C 与x 轴交点A 、B 两点(点A 在点B 的左侧),将抛物线1C 作适当的平移,得抛物线222)(:t x y C -=,平移后A 、B 的对应点分别为点),(n m D ,),2(n m E +,求n 的值。 (3)在(2)的条件下,将抛物线2C 位于直线DE 下方的部分沿直线DE 向上翻折后,连同2C 在DE 上方的部分组成一个新图形,记为图形G 。若直线b x y +- =2 1(3

高一数学函数与方程知识点整理

高一数学函数与方程知识点整理在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。精品小编准备了高一语文函数与方程知识点,希望你喜欢。 1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内() A.可能有3个实数根 B.可能有2个实数根 C.有唯一的实数根 D.没有实数根 解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数, f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根. 答案:C 2.(2019长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表: x123456 f(x)136.1315.552-3.9210.88-52.488-232.064 则函数f(x)存在零点的区间有 A.区间[1,2]和[2,3] B.区间[2,3]和[3,4] C.区间[2,3]、[3,4]和[4,5] D.区间[3,4]、[4,5]和[5,6]

解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号, f(x)在区间[2,3],[3,4],[4,5]上都存在零点. 答案:C 3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是 A.(3.5,+) B.(1,+) C.(4,+) D.(4.5,+) 解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为 (n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则 1n+1m1. 答案:B 4.(2019昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f(x) 的零点所在的区间是 A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B. 答案:B

一次函数与方程和不等式的关系

一次函数与方程和不等式的关系 1.如图1,直线y=kx+b与x轴交于点A(-4,0),则当y>0时,x的取值范围是(?)A.x>-4 B.x>0 C.x<-4 D.x<0 (1)(2) 2.已知一次函数y=kx+b的图像,如图2所示,当x<0时,y的取值范围是(?)A.y>0 B.y<0 C.-2y2时,x的取值范围是(). A.x>5 B.x<1 2 C.x<-6 D.x>-6 4.函数y=1 2 x-3与x轴交点的横坐标为(). A.-3 B.6 C.3 D.-6 5.对于函数y=-x+4,当x>-2时,y的取值范围是(). A.y<4 B.y>4 C.y>6 D.y<6 6.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是() A、x<1 B、x>1 C、x<3 D、x>3 7.直线l1:y=k1x+b与直线l1:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为() A、x>﹣1 B、x<﹣1 C、x<﹣2 D、无法确定

8.对于一次函数y=2x+4,当______时,2x+4>?0;?当________?时,?2x+?4

一次函数与方程,不等式基础知识

一次函数与方程、不等式 一、一次函数与一元一次方程的关系 直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,b k -就是直线y b kx =+与x 轴交点的横坐标。 二、一次函数与一元一次不等式的关系 任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值围。 三、一次函数与二元一次方程(组)的关系 一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠() 上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。 知识点睛

一、一次函数与一元一次方程综合 【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( ) A .2- B .2 C .1- D .0 【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m , ,则a b +=______. 【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接 得到方程3kx b +=的解是x =______. 二、一次函数与一元一次不等式综合 【例4】 已知一次函数25y x =-+. (1)画出它的图象; (2)求出当3 2 x = 时,y 的值; (3)求出当3y =-时,x 的值; (4)观察图象,求出当x 为何值时,0y >,0y =,0y < 【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在: (1)x 轴上方; (2)y 轴左侧; (3)第一象限. 【例6】 已知15y x =-,221y x =+.当12y y >时,x 的取值围是( ) A .5x > B .1 2 x < C .6x <- D .6x >- 【例7】 已知一次函数23y x =-+ 例题精讲

高中数学--函数与方程

函数与方程 一、函数的零点概念 教材中具体的定义:对于函数)(x f y =,我们把使 0)(=x f 的实数x 叫做函数0)(=x f 的零点。 可以这样理解:① 函数)(x f y =的零点就是 方程0)(=x f 的实数根 ② 函数)(x f y =的零点就是 函数)(x f y =的图象与X 轴交点的横坐标 二、用二分法求方程的近似解 二分法 对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 举例理解: 二次函数f (x )=x 2-2x -3的图象(如下图),函数f (x )=x 2-2x -3在区间[-2,1]上有零点. 计算f (-2)×f (1) (> 还是 < ) 0 在区间[2,4]的端点上,即f (2)·f (4)<0,函数f (x )=x 2-2x -3在(2,4)内有零点。

例1 下列函数中,不能用二分法求零点的是( ) 例2 下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( ) 三、零点分类:不变号零点和变号零点 不变号零点 )(x f y ==函数2)(x x f =在下列区间是否存在零点?( ) (A )(-3,-1) (B )(-1,2) (C )(2,3) (D )(3,4) 变号零点 函数零点的存在性定理(仅适合变号零点):

应用:仅能判断零点的存在性,或者判断零点所在的区间命题方法判断零点的个数及所在的区间 典例(1)已知函数f(x)=6 x-log2 x,在下列区 间中,包含f(x)零点的区间是( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)(2)函数f(x)=2x- 2 x- a的一个零点在区间(1,2)内,则实数a的取值范围是( ) A.(1,3) B.(1,2) C.(0,3) D.(0,2) 【解题法总结】函数零点问题的解题方法 (1)判断函数在某个区间上是否存在零点的方法 ①解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区间上. ②利用零点存在性定理进行判断. ③画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断. (2)判断函数零点个数的方法

函数与方程思想的典型例题

函数与方程思想的典型例题 [例1]设函数)(x f 的定义域为R ,对任意实数βα,有 ,且21)3(=πf ,0)2(=πf . (1)求证:)()()(x f x f x f --==-π; (2)若20π <≤x 时,0)(>x f ,求证:)(x f 在],0[π上单调递减; (3)求)(x f 的最小周期并*证明. [解析](1)),0()3(2)3()3(f f f f πππ=+ 且2 1)3(=πf ,1)0(=∴f . 又)()0(2)()(x f f x f x f =-+,)()(x f x f -=∴. )2()2(2)()(πππ-=-+x f f x f x f ,且0)2(=π f ,)()()(x f x f x f --=-=∴π. (2))()(x f x f =- 且20π<≤x 时,0)(>x f ,∴当2 2ππ<<-x 时,0)(>x f . 设π≤<≤210x x , 则)()()()(2121x f x f x f x f -+=-π)2()2( 22121ππ-+-+=x x f x x f . 222,2202121πππππ<-+<-<+-≤x x x x ,0)2 (,0)2(2121>-+>-+∴ππx x f x x f . )()(21x f x f >∴,即)(x f 在],0[π上单调递减. (3)由(1))()(x f x f --=-π得)()(x f x f +-=π,)2()(x f x f +-=+ππ, )()2(x f x f =+∴π,说明π2是原函数的一个周期. 假设0T 也是原函数的一个周期,且)2,0(0π∈T ,则由)()(0x f x T f =+得)()0(0T f f =. 但若],0(0π∈T 时,因原函数是单调递减函数,所以)()0(0T f f >,两者矛盾; 若)2,(0ππ∈T 时,),0(20ππ∈-T ,从而)()()2()0(000T f T f T f f =-=->π,两

一次函数和方程不等式的关系

求一次函数解析式专项练习 1.已知A(2,﹣1),B(3,﹣2),C(a,a)三点在同一条直线上. (1)求a的值; (2)求直线AB与坐标轴围成的三角形的面积. 2.已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x轴交点的坐标. 3.如图所示,直线l是一次函数y=kx+b的图象. (1)求k、b的值; (2)当x=2时,求y的值; (3)当y=4时,求x的值. 4.已知y与x+2成正比例,且x=0时,y=2,求: (1)y与x的函数关系式; (2)其图象与坐标轴的交点坐标. 5.如果y+3与x+2成正比例,且x=3时,y=7. (1)写出y与x之间的函数关系式; (2)画出该函数图象;并观察当x取什么值时,y<0? 6.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A(﹣2,6),且与x轴交于点B. (1)求这条直线的解析式; (2)直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式 mx+n<0的解集.

7.已知,直线AB 经过A (﹣3,1),B (0,﹣2),将该直线沿y 轴向下平移3个单位得到直线MN . (1)求直线AB 和直线MN 的函数解析式; (2)求直线MN 与两坐标轴围成的三角形面积. 8.已知:关于x 的一次函数y=(2m ﹣1)x+m ﹣2若这个函数的图象与y 轴负半轴相交,且不经过第二象限,且m 为正整数. (1)求这个函数的解析式. (2)求直线y=﹣x 和(1)中函数的图象与x 轴围成的三角形面积. 一次函数与方程不等式关系 1、直线l 1∶y =k 1x +b 与直线l 2∶y =k 2x +c 在同一平面直角坐标系中的图象如图, 则关于x 的不等式k 1x +b <k 2x +c 的解集为( ) A .x >1 B .x <1 C .x >-2 D .x <-2 2、如图,已知直线y 1=x+m 与y 2=kx-1相交于点P(-1,1),则关于x 的不等式x+m>kx-1的解集在数轴 上表示正确的 是( ) 3、用图象法解某二元一次方程组时,在同一直角坐标系中作 出相应的两个一次函数的图象(如图所示),则所解的二元 一次方程 组是 ( )

二次函数与方程和不等式的综合题

二次函数与不等式和方程的综合题 一、填空题 1、如图,二次函数y 1=ax 2 +bx+c 与一次函数y 2=kx+n 的图象相交于A (0,4),B (4,1)两点,下列三个结论: ①不等式y 1>y 2的解集是0<x <4 ②不等式y 1<y 2的解集是x <0或 x >4 ③方程ax 2 +bx+c=kx+n 的解是x 1=0,x 2=4 其中正确的个数是( ) A .0个 B .1个 C .2个 D .3个 2、如图,已知反比例函数 x y 3 - =与二次函数 y=ax 2 +bx (a >0,b >0)的图象交于点P ,点P 的纵坐标为1,则关于x 的不等式ax 2 +bx >x 3 - 的解集为( ) A .x <1 B .x <-3 C .x <-3或x >0 D .-3<x <0

3.已经函数y=(x-a)(x-b)-2(a<b),m、n是方程(x-a)(x-b)-2=0的两个根(m <n),则a,b,m,n的大小关系是() A.m<a<b<n B.a<m<b<n C.a<m<n<b D.m<a<n<b 3、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则以下关于m 的结论正确的是() A.m的最大值为2 B.m的最小值为-2 C.m是负数 D.m是非负数 5、已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c-8=0的根的情况是() A.有两个不相等的正实数根 B.有两个异号实数根 C.有两个相等的实数根 D.没有实数根 6、二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是() A.k<-3 B.k>-3 C.k<3 D.k>3

八年级数学 一次函数与方程、不等式综合专题复习讲义

一次函数与方程、不等式综合专题复习讲义 一、一次函数与一元一次方程的关系 直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,b k - 就是直线y b kx =+与x 轴交点的横坐标。 二、一次函数与一元一次不等式的关系 任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。 三、一次函数与二元一次方程(组)的关系 一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。 一、一次函数与一元一次方程综合 【例1】 若直线(2)6y m x =--与x 轴交于点()60, ,则m 的值为( ) A.3 B.2 C.1 D.0 【例2】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( ) A .2- B .2 C .1- D .0 知识点睛 中考要求 例题精讲

【巩固】已知一次函数y x a =-+与y x b =+的图象相交于点()8m , ,则a b +=______. 二、一次函数与一元一次不等式综合 【例3】 已知一次函数25y x =-+. (1)画出它的图象; (2)求出当3 2 x =时,y 的值; (3)求出当3y =-时,x 的值; (4)观察图象,求出当x 为何值时,0y >,0y =,0y < 【例4】 当自变量x 满足什么条件时,函数23y x =-+的图象在: (1)x 轴下方; (2)y 轴左侧; (3)第一象限. 【巩固】当自变量x 满足什么条件时,函数41y x =-+的图象在: (1)x 轴上方; (2)y 轴左侧; (3)第一象限.

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

高考数学二轮专题复习-函数与方程思想

第1讲函数与方程思想 1.函数与方程思想的含义 (1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系. 2.和函数与方程思想密切关联的知识点 (1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式. (2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要. (3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解. (4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论. (5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

热点一 函数与方程思想在不等式中的应用 例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3) 解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为 a ≥3x 2-1x 3. 设g (x )=3x 2-1 x 3,则g ′(x )=3(1-2x )x 4 ,所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减, 因此g (x )max =g ???? 12=4,从而a ≥4; 当x <0即x ∈[-1,0)时, f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3, 设g (x )=3x 2-1 x 3,且g (x )在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. (2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数. 又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数. 因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3). 所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3). 思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解. 已知函数f (x )=1 2 x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范

一次函数与方程、不等式之间的关系

一次函数与方程、不等式之间的关系 人教版九年制义务教育八年级数学下册 宁都县赖村中学谢新华 教学重点、难点: 一次函数与方程、不等式之间的关系 教学目标: 1.让学生理解一次函数与方程、不等式之间的关系,从而解答有关的函数坐标、函数值等问题 2.通过探索一次函数与方程、不等式之间的关系,经历具体到抽象再到具体,到抽象,最后具体的学习过程,体会探索的严谨性,科学性,掌握循序渐进的学习方法,树立数形结合的学习函数的思想方法 3.经历了探索一次函数与方程、不等式之间的关系过程,掌握了学法,树立起了学好函数的信心,体会到成功的喜悦 教学策略: 运用多媒体技术,讲练结合与小组讨论法 教学教学过程

谭金林说:可是这两个点怎么画呢?当函数值大于某值时,x怎 样取值? 这下难住了他们,为此他们举出一个例子已知一次函数y=2x+8,请你帮他们画出两点,作出直线?当y>4时,x取何值? 设计意图:通过举自己身边的两位同学的例子引入课题,从而让问题变得那么的贴近自身实际,提高学习的兴趣 板书:一次函数与方程、不等式之间的关系学习目标 1.能理解感悟一次函数与方程、不等式之间的数形关系,并能运用这种关系解决有关一次函数的问题 2.通过问题解决,经历探索一次函数与方程、不等式之间关系的过程,体验知识产生、发展、形成的过程,感悟数形结合思想 3.通过问题解决,经历探索一次函数与方程、不等式之间的数形关系,掌握了学习函数的方法 设计意图:明确学习目标,使学习更具针对性 一、动动手,填一填 (1)当x 取___值时,函数值等于3. (2)当x 取___值时,函数值等于0. (3)当x 取___值时,函数值等于-1 2.已知一次函数y=2x+3的图像(如右上图)及图像上的一

一次函数与方程不等式综合测试题

《一次函数与方程、不等式》测试题 一、 填空题(每小题3分,共24分) 1、若32k -有意义,则函数1y kx =-的图象不经过第 象限。 2、一次函数22+=x y 的图象如图所示,则由图象可知,方程022=+x 的解为 。 4、一次函数b kx y +=的图象如图所示,由图象可知,当x 时,y 值为正数,当x 时,y 为负数。 5、已知方程组???=+=-82237y x y x 的解为???==42 y x ,那么一次函数____=y 与一次函数 ____=y 的交点为(2,4) 。 6、一次函数12+-=x y 与一次函数93--=x y 两图象有一个公共点,则这个公共点的坐标为 。 7、一次函数b ax y +=的图象过点(0,-2)和(3,0)两点,则方程0=+b ax 的解为 。 8、直线a x y += 2 1 与直线1-=bx y 相交于点(1,-2),则a = ,b= 。 二、选择题(每小题3分,共24分) 1、如图,一次函数b kx y +=与x 轴的交点为(-4,0),当y >0时,x 的取值范围是( )

A 、4->x B 、0>x C 、4-;③当3x <时,12y y <中,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 3、根据函数1036521+=+=x y x y 和的图象,当2>x 时,1y 与2y 的大小关系是( ) A 、21y y < B 、21y y > C 、21y y = D 、不能确定 4、一次函数b ax y +=,当3 2 >x 时,0>y ,那么不等式0≥+b ax 的解集为( ) A 、32> x B 、32x B 、3-x D 、23<<-x

高中数学函数与方程知识点总结 经典例题及解析 高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有 1个零点?0)(=x f 有两个相等实根; 0?

专题7:函数与方程思想(理)

专题七:函数与方程思想 【思想方法诠释】 函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点. 1.函数的思想 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等. 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系. 3.函数思想与方程思想的联系 函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f (x)=0,就是求函数y= f (x)的零点,解不等式f (x)>0(或f (x)<0),就是求函数y= f (x)的正负区间,再如方程f (x)=g(x)的交点问题,也可以转化为函数y= f (x)-g(x)与x轴交点问题,方程f (x)= a有解,当且仅当a属于函数f (x)的值域,函数与方程的这种相互转化关系十分重要. 4.函数与方程思想解决的相关问题 (1)函数思想在解题中的应用主要表现在两个方面: ①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; ②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的. (2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式; ②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用; ③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题.

一元一次方程与一次函数的关系

一元一次方程、一次函数、二元一次方程组等之间的关系 1. 一元一次方程与一次函数的关系: (0)0y kx b k kx b =+≠??+=? ,0b x k ???? ?函数图像与轴交点(-)的横坐标即为方程的解通过求kx+b=0的解来得到函数图像与x 轴的交点坐标 例如: (1)方程320x +=的解为x= ,一次函数32y x =+与x 轴的交点坐标 。 (2)已知一次函数(0)y kx b k =+≠图像与x 轴的交点坐标为(4,0),那么方程0kx b +=的解为x= 。 2. 一元一次不等式与一次函数的关系: (0)0(0)y kx b k kx b =+≠??+>的解集为x>4,则一次函数与x 轴的交点坐标为 ,k 0(大小关系)。 3. 一次函数与二元一次方程组的关系: (1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数 a c y x b b =-+的图象相同. (2)二元一次方程组的解可以看作是两个一次函数的图象的交点.

x y O P y=x+b 1y=ax+3例如: (1)已知二元一次方程335x y x y +=-=与有一组公共解21 x y =??=?,那么一次函数335y x y x =-=-与的图像交点坐标为 。 (2)如图所示,已知函数y ax b y kx c =+=+和的图像交于点P ,则根据图像可 知,关于x,y 的二元一次方程组y ax b y kx c =+??=+?的解是 。 (3)直线5253y x y x =-+=--与互相平行,则方程组5253y x y x =-+??=--? 的解得情况为 。 (4)已知一次函数263y x y x =-=-+与的图像交于点P ,则点P 的坐标为 。 (5)已知直线L 1经过点A (0,-1),B (2,7),直线L 2经过点C (-3,0),D (-1,1.5),求两直线交点P 的坐标 (6)如图所示,已知函数3y x b y ax =+=+与的图像交点为P ,则不等式3x b ax +>+的解集为 。 (7)直线L 1`与直线L 2相交于点P ,点P 的横坐标为-1,直线L 2交y 轴与点A (0,-1),直线L 1的函数表达式为y=2x+3. 求直线L 2的函数表达式。

专题__一次函数与方程和不等式典型题

一次函数与方程和不等式典型练习 1、一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( ) A .x =2 B .y =2 C .x =1- D .y =1- 2、一次函数y =ax +b 的图象如图所示,则不等式ax +b >0的解集是( ) A .x <-2 B .x >-2 C .x <1 D .x >1 3、已知一次函数y =ax +b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x -1)-b >0的解集为( ) A .x <-1 B .x >-1 C .x >1 D .x <1 4、如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二 元一次方程组y ax b y kx =+=??? 的解是 . 5、(1)已知关于x 的方程mx +n =0的解是x =-2,那么,直线y =mx +n 与x 轴的交点坐标是 . (2)如图,在平面直角坐标系中,直线AB :y =kx +b 与直线OA :y =mx 相交于点A (-1,-2),则关于x 的不等式kx +b <mx 的解是 .

6、(1)已知方程2x+1=-x+4的解是x=1,那么,直线y=2x+1与直线y=-x+4的交点坐标是__ __ . (2)在平面直角坐标系中,直线y=kx+1关于直线x=1对称的直线l刚好经过点(3,2),则不等式3x>kx+1的解集是__ __ . (3)如图,直线l1、l2交于点A,试求点A的坐标. 8、如图,已知一次函数的图象经过点A(-1,0)、B(0,2). (1)求一次函数的关系式; (2)设线段AB的垂直平分线交x轴于点C,求点C的坐标. 9、如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C,经过点D(1, 0)的直线DE平行于OA,并与直线AB交于点E. (1)求直线AB的解析式; (2)求直线DE的解析式; (3)求△EDC的面积. 10、在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP 为等腰三角形,则符合条件的点P的个数为个. 11、在平面直角坐标系中,点A、B的坐标分别为(2,0)、(2,4),点P在坐标轴上,△ABP是等腰三角形,符合条件的点P共有个.

高中数学必修-函数与方程

高中数学必修 函数与方程 1.函数零点的概念 对于函数y=f(x),x∈D,我们把使f(x)=0的实数x叫作函数y=f(x),x∈D的零点. 注意:函数的零点是实数,而不是点;并不是所有的函数都有零点,若函数有零点,则零点一定在函数的定义域内. 2.函数的零点与方程根的联系 由函数零点的概念可知,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. 3.二次函数的零点 对于二次函数y=ax2+bx+c(a≠0),其零点个数可根据一元二次方程ax2+bx+c=0(a≠0)根的判别式来确定,具体情形如下表: Δ>0Δ=0Δ<0 方程ax2+bx+c=0(a≠0)的根的个数有两个不相等的实数 根 有两个相等的实数根无实数根 函数y=ax2+bx+c(a≠0)的零点个数有两个零点有一个零点无零点 函数y=ax2+bx+c(a≠0)的图象 a>0 a<0 函数y=ax2+bx+c(a≠0)的图象与轴的 交点个数 有两个交点有一个交点无交点 4.零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 注意:在上述定理的条件下,只能判断出零点存在,不能确定零点的个数.

【辨析比较】f (a )·f (b )<0与函数f (x )存在零点的关系 ①.若函数y =f (x )在闭区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,则函数y =f (x )一定有零点. 图1 ②.由函数y =f (x )在闭区间[a ,b ]上有零点不一定能推出f (a )·f (b )<0,如图1.所以f (a )·f (b )<0是y =f (x )在闭区间[a ,b ]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶次零点)时,函数值才变号,即相邻两个零点之间的函数值同号. 注意:若函数f (x )在[a ,b ]上单调,且f (x )的图象是连续不断的一条曲线,则f (a )·f (b )<0?函数f (x )在[a ,b ]上只有一个零点. 5.二分法的概念 对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫作二分法. 6.用二分法求函数零点近似值的步骤 给定精确度ε,用二分法求函数f (x )零点近似值的步骤如下: 第一步:确定区间[a ,b ],验证f (a )·f (b )<0,给定精确度ε. 第二步:求区间(a ,b )的中点x 1. 第三步:计算f (x 1). (1)若f (x 1)=0,则x 1就是函数的零点; (2)若f (a )·f (x 1)<0,则令b =x 1(此时零点x 0∈(a ,x 1)); (3)若f (x 1)·f (b )<0,则令a =x 1(此时零点x 0∈(x 1,b )). 第四步:判断是否达到精确度ε,即若|a -b |<ε,则得到零点近似值a (或b ),否则重复第二、三、四步. 7.常见的几种函数模型 (1)一次函数模型:y =kx +b (k ≠0). (2)反比例函数模型:y =k x +b (k ,b 为常数且k ≠0). (3)二次函数模型:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).

文本预览
相关文档 最新文档