当前位置:文档之家› 常用坐标系及其变换

常用坐标系及其变换

坐标系转换问题

坐标系转换问题--WGS84坐标 BJ54 BJ80 2012-10-18 14:37 对于坐标系的转换,给很多GPS的使用者造成一些迷惑,尤其是对于刚刚接触的人,搞不明白到底是怎么一回事。我对坐标系的转换问题,也是一知半解,对于没学过测量专业的人来说,各种参数的搞来搞去实在让人迷糊。在我有限的理解范围内,我想在这里简单介绍一下,主要是抛砖引玉,希望能引出更多的高手来指点迷津。 我们常见的坐标转换问题,多数为WGS84转换成北京54或西安80坐标系。其中WGS84坐标系属于大地坐标,就是我们常说的经纬度坐标,而北京54或者西安80属于平面直角坐标。对于什么是大地坐标,什么是平面直角坐标,以及他们如何建立,我们可以另外讨论。这里不多啰嗦。 那么,为什么要做这样的坐标转换呢? 因为GPS卫星星历是以WGS84坐标系为根据而建立的,我国目前应用的地形图却属于1954年北京坐标系或1980年国家大地坐标系;因为不同坐标系之间存在着平移和旋转关系(WGS84坐标系与我国应用的坐标系之间的误差约为80),所以在我国应用GPS进行绝对定位必须进行坐标转换,转换后的绝对定位精度可由80提高到5-10米。简单的来说,就一句话,减小误差,提高精度。 下面要说到的,才是我们要讨论的根本问题:如何在WGS84坐标系和北京54坐标系之间进行转换。 说到坐标系转换,还要罗嗦两句,就是上面提到过的椭球模型。我们都知道,地球是一个近似的椭球体。因此为了研究方便,科学家们根据各自的理论建立了不同的椭球模型来模拟地球的形状。而且我们刚才讨论了半天的各种坐标系也是建立在这些椭球基准之上的。比如北京54坐标系采用的就是克拉索夫斯基椭球模型。而对应于WGS84坐标系有一个WGS84椭球,其常数采用IUGG第17届大会大地测量常数的推荐值。WGS84椭球两个最常用的几何常数:长半轴:6378137±2(m);扁率:1:298.257223563 之所以说到半长轴和扁率倒数是因为要在不同的坐标系之间转换,就需要转换不同的椭球基准。这就需要两个很重要的转换参数dA、dF。 dA的含义是两个椭球基准之间半长轴的差;dF的含义是两个椭球基准之间扁率倒数的差。在进行坐标转换时,这两个转换参数是固定的,这里,我们给出在进行84—〉54,84—〉80坐标转换时候的这两个参数如下: WGS84>北京54:DA:-108;DF:0.0000005 WGS84>西安80:DA: -3 ;DF: 0 椭球的基准转换过来了,那么由于建立椭球的原点还是不一致的,还需要在dXdYdZ这三个空间平移参量,来将两个不同的椭球原点重合,这样一来才能使两个坐标系的椭球完全转换过来。而由于各地的地理位置不同,所以在各个地方的这三个坐标轴平移参量也是不同的,因此需要用当地的已知点来计算这三个参数。具体的计算方法是: 第一步:搜集应用区域内GPS“B”级网三个以上网点WGS84坐标系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x值。(注:B、L、H分别为大地坐标系中的大地纬度、大地经度及大地高,h、x分别为大地坐标系中的高程及高程异常。各参数可以通过各省级测绘局或测绘院具有“A”级、“B”级网的单位获得。) 第二步:计算不同坐标系三维直角坐标值。计算公式如下: X=(N+H)cosBcosL Y=(N+H)cosBsinL Z=[N(1-e2)+H]sinB

4坐标系中的旋转变换(2016年)

1. (2016 广西河池市) 】.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,3).将线段OA 绕原点O 逆时针旋转30°,得到线段OB ,则点B 的坐标是( ) A .(0,2) B .(2,0) C .(1,―3) D .(―1,3) 答案:】. 答案A 逐步提示作AC ⊥x 轴于点C ,根据勾股定理求出OA 的长,根据正切的概念求出∠AOC 的度数,再根据旋转变换即可得解. 详细解答解:过点A 作AC ⊥x 轴于点C . ∵点A 的坐标为(1,3),∴OC =1,AC =3.∴OA =12+ (3)2=2. ∵tan ∠AOC =AC OC =3,∴∠AOC =60°. ∴将线段OA 绕原点O 逆时针旋转30°得到线段OB 时,点B 恰好在y 轴上. ∴点B 的坐标是(0,2) . 故选择A. 解后反思本题通过作垂线,将点的坐标转化为线段的长度,应用勾股定理求斜边的长,应用特殊角的三角函数值求出特殊角的度数,再根据旋转的方向和角度确定所求点的位置,最后写出其坐标. 关键词 图形旋转的特征、特殊角三角函数值的运用、点的坐标 20160926210454015732 4 坐标系中的旋转变换 选择题 基础知识 2016/9/26 2. (2016 广西贺州市) 】.如图,将线段AB 绕点O 顺时针旋转90°得到线段A ′B ′,那么A (﹣2,5)的对应点A ′的坐标是( )

A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2) 答案:】. 考点坐标与图形变化-旋转. 分析由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论. 解答解:∵线段AB绕点O顺时针旋转90°得到线段A′B′, ∴△ABO≌△A′B′O′,∠AOA′=90°, ∴AO=A′O. 作AC⊥y轴于C,A′C′⊥x轴于C′, ∴∠ACO=∠A′C′O=90°. ∵∠COC′=90°, ∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′, ∴∠AOC=∠A′OC′. 在△ACO和△A′C′O中, , ∴△ACO≌△A′C′O(AAS), ∴AC=A′C′,CO=C′O. ∵A(﹣2,5), ∴AC=2,CO=5, ∴A′C′=2,OC′=5, ∴A′(5,2). 故选:B.

坐标系向国家大地坐标系的转换完整版

坐标系向国家大地坐标 系的转换 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

北京54坐标系向国家2000大地坐标系的转换 摘要:2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,自此以后的测量成果要求坐标系统采用2000国家大地坐标系,本文就北京54坐标系和2000国家大地坐标系原理和转换方法进行简单的分析。 1引言大地坐标系是地球空间框架的重要基础,是表征地球空间实体位置的三维参考基准,科学地定义和采用国家大地坐标系将会对航空航天、对地观测、导航定位、地震监测、地球物理勘探、地学研究等许多领域产生重大影响。建立大地坐标框架,是测量科技的精华,与空间导航乃至与经济、社会和军事活动均有密切关系,它是适应一定社会、经济和科技发展需要和发展水平的历史产物。过去受科技水平的限制,人们不得不使用经典大地测量技术建立局部大地坐标系,它的基本特点是非地心的、二维使用的。采用地心坐标系,即以地球质量中心为原点的坐标系统,是国际测量界的总趋势,世界上许多发达和中等发达国家和地区多年前就开始采用地心坐标系,如美国、加拿大、欧洲、墨西哥、澳大利亚、新西兰、日本、韩国等。我国也于2008年7月开始启用新的国家大地坐标系—2000国家大地坐标系。 2北京54系我国北京54坐标系是采用前苏联的克拉索夫斯基椭球参数(长轴6378245ra,短轴635686m,扁率1/298.3),并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。其坐标的原点不在北京,而是在前苏联的普尔科沃。

直角坐标系中图形的两次平移与坐标的变化(20200719184846)

直角坐标系中图形的两次平移与坐标的变化导学案 【学习目标】[ 1.在学习一次平移坐标的变化特点的基础上,继续探究依次沿两个坐标轴方向平移 后坐标的变化特点及根据坐标的变化探究图形变化特点? 2.经历探究依次沿两个坐标轴方向平移后所得到的图形与原来图形之间的关系,提高学生的探究能力和方法,发展空间观念? 【学习过程】 一、复习导入 1、平移的定义:在平面内,将一个图形沿着____________ 移动 _________ 的距离,这样 的图形运动称为平移。平移不改变图形的_________ 和________ ,改变的是位置。 原图形上点的坐标平移方向平移距离对应点的坐标 (x,y) 沿x轴方向 向右平移 a个单位长度 (a > 0) x a, y 沿y轴方向 向上平移 x,y a 内容1:将图中鱼F”先向右平移3个单位长度,再向下平移2个单位长度,得到新 “鱼F'”,请在平面直角坐标系中画出平移后的图形解:(1)在平面直角坐标系中画出“鱼F'”。 (2)能否将“鱼F'”看成是“鱼F”经过一次平移得到的?如果 能,请指出平移的方向和平移的距离。 (3)在“鱼F”和“鱼F'”中,对应点的坐标之间有什 么关系?

内容2:如果将“鱼” F向右平移4个单位长度,再向下平移3 个单位长度,得到“鱼” N, 上面问题的探究结果又是什么情 况呢? 内容3、议一议: 一个图形依次沿x轴方向、y轴方向平移后所得图形与原来的图形相比,位置有什 么变化? 规律归纳:设(x,y)是原图形上的一点,当它沿x轴方向平移a(a > 0)个单位长度、沿y轴方 原图形上的点平移方向和平移距离对应点 的坐标 坐标的变化 (x, y) 向右平移a个单位长度,向上平移b个单位长度 向右平移a个单位长度,向下平移b个单位长度 向左平移a个单位长度,向上平移b个单位长度 向左平移a个单位长度,向下平移b个单位长度 归纳如下: 在平面直角坐标系中,一个图形先沿X轴方向平移a( a >0)个单位长度, 再沿丫轴方向平移b( b>0)个单位长度,可以看成是由原来的图形经过一次平移 得到的,则图形沿对应点连线方向平移______________ 单一位长度。

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法 摘要:高中数学新教材中介绍了基本函数图像,如指数函数,对数函数等图像等。而在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其他的图像,要让学生理解并掌握图形变换方法。 高中数学研究的对象可分为两大部分,一部分是数,一部分是形,高中生是最需要培养的能力之一就是作图解图能力,就是根据给定图形能否提炼出更多有用信息;反之,根据已知条件能否画出准确图形。图是数学的生命线,能不能用图支撑思维活动是学好初等数学的关键之一;函数图像也是研究函数性质、方程、不等式的重要工具。 提高学生在数学知识的学习中对图形、图像的认知水平,是中学数学教学的主要任务之一,教师在教学过程中应该确立以下教学目标:一方面,要求学生通过对数学教材中基本的图形和图象的学习,建立起关于图形、图象较为系统的知识结构;培养和提高学生认识、研究和解决有关图形和图像问题的能力。为达到这一目标,教师应在教学中让学生理解并掌握图形变换的思想及其常用变换方法。 函数图形的变换,其实质是用图像形式表示的一个函数变化到另一个函数。与之对应的两个函数的解析式之间有何关系?这就是函数图像变换与解析式变换之间的一种动态的对应关系。在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其它图像,要让学生理解并掌握图像变换方法。 常用的图形变换方法包括以下三种:缩放法、对称性法、平移法。 1.图形变换中的缩放法 缩放法也是图形变换中的基本方法,是蒋某基本图形进行放大或缩小,从而产生新图形的过程。若某曲线的方程F (x ,y )=0可化为f (ax ,by )=0(a ,b 不同时为0)的形式,那么F (x ,y )=0的曲线可由f (x ,y )=0的曲线上所有点的横坐标变为原来的1/a 倍,同时将纵坐标变为原来的1/b 倍后而得。 (1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; (2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵 坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到. ①y=f(x)ω?→x y=f(ω x );② y=f(x)ω?→y y=ωf(x). 缩放法的典型应用是在高中数学课本(三角函数部分)介绍函数)s i n (?ω+=x A y 的图像的相关知识时,课本重点分析了由函数y=sinx 的图像通

三相坐标系和二相坐标系转换

交流电动机矢量控制变压变频调速系统(三)第三讲坐标 变换的原理和实现方法 收藏此信息打印该信息添加:李华德来源:未知 由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。 3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4)

式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。 3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7) 图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系

空间直角坐标系的旋转转换

空间直角坐标系的旋转转换 using System; using System.Collections.Generic; using https://www.doczj.com/doc/969624233.html,ponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.IO; using System.Windows.Forms; namespace ReferenceTransition { public partial class Form1 : Form { public Form1() { this.MaximizeBox = false; InitializeComponent(); } private double x, y, z; private double i, j, k; private double a1,a2,a3; private double b1, b2, b3; private double c1, c2, c3; private double rx, ry, rz; private string t1, t2, t3; private string k1, k2, k3; private void button1_Click(object sender, EventArgs e) { textBox1.Text = ""; textBox2.Text = ""; textBox3.Text = ""; textBox4.Text = ""; textBox5.Text = ""; textBox6.Text = ""; textBox7.Text = ""; textBox8.Text = ""; textBox9.Text = ""; richTextBox1.Text = ""; } private void button4_Click(object sender, EventArgs e) { try {

坐标系间的转换

坐标系间的转换 针对西安80坐标系和北京54坐标系之间椭球参数的转换,采用七参数布尔莎模型,进行不同坐标系之间的坐标转换。 标签:七参数布尔莎模型参考椭球MAPGIS平台 0 引言 我们现在改用的西安80坐标系与以前的北京54坐标系的参考椭球体参数是不相同的。54坐标系转换成80坐标系由于椭球参数、定位和定向的变化,必然引起地形图的图廓线、方里线位置以及地形图内地形、地物相关位置的改变。为此,若同时使用根据两种坐标系测制的地形图的情况下,一定要涉及到54坐标系向80坐标系转换问题。转换的原理和方法:大地坐标系变更后,国家基本系列地形图的变更和处理,必须在高斯平面内进行。由于新旧椭球参数不同,参心所在位置也不同,反映在高斯平面上,在同一个投影带里,它们的纵横坐标轴不重合,因此,地面上某一点经过不同椭球面而投影到高斯平面上,它距两系统坐标轴之距离是不等的,在X轴和Y轴上必定都有一个差值。我们按照一定的数学法则将地球面上的经纬网转换到平面上,使地面的地理坐标与平面直角坐标建立起函数关系,实现由曲面向平面的转化。常用的投影大概有二三十种,投影的选取要考虑地图的用途,投影的形变大小等众多因素。 1 北京54坐标系与西安80坐标系 1.1 54国家坐标系:是我国建国初期,为了迅速开展我国的测绘事业,鉴于当时的实际情况,将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。因此,P54可归结为:①属参心大地坐标系;②采用克拉索夫斯基椭球的两个几何参数;③大地原点在原苏联的普尔科沃;④采用多点定位法进行椭球定位;⑤高程基准为1956年青岛验潮站求出的黄海平均海水面;⑥高程异常以原苏联1955年大地水准面重新平差结果为起算数据。按我国天文水准路线推算而得。 自P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。 1954北京坐标系参考椭球基本几何参数 长半轴a=6378245m 短半轴b=6356863.0188m

推导坐标旋转公式

推导坐标旋转公式 数学知识2010-09-12 21:03:53 阅读151 评论0 字号:大中小订阅 在《Flash actionScript 3.0 动画教程》一书中有一个旋转公式: x1=cos(angle)*x-sin(angle)*y; y1=cos(angle)*y+sin(angle)*x; 其中x,y表示物体相对于旋转点旋转angle的角度之前的坐标,x1,y1表示物体旋转angle 后相对于旋转点的坐标 从数学上来说,此公式可以用来计算某个点绕另外一点旋转一定角度后的坐标,例如:A(x,y)绕B(a,b)旋转β度后的位置为C(c,d),则x,y,a,b,β,c,d有如下关系式: 1。设A点旋转前的角度为δ,则旋转(逆时针)到C点后角度为δ+β 2。求A,B两点的距离:dist1=|AB|=y/sin(δ)=x/cos(δ) 3。求C,B两点的距离:dist2=|CB|=d/sin(δ+β)=c/cos(δ+β) 4。显然dist1=dist2,设dist1=r所以: r=x/cos(δ)=y/sin(δ)=d/sin(δ+β)=c/cos(δ+β) 5。由三角函数两角和差公式知: sin(δ+β)=sin(δ)cos(β)+cos(δ)sin(β) cos(δ+β)=cos(δ)cos(β)-sin(δ)sin(β) 所以得出:

c=r*cos(δ+β)=r*cos(δ)cos(β)-r*sin(δ)sin(β)=xcos(β)-ysin(β) d=r*sin(δ+β)=r*sin(δ)cos(β)+r*cos(δ)sin(β)=ycos(β)+xsin(β) 即旋转后的坐标c,d只与旋转前的坐标x,y及旋转的角度β有关 从图中可以很容易理解出A点旋转后的C点总是在圆周上运动,圆周的半径为|AB|,利用这点就可以使物体绕圆周运动,即旋转物体。 上面公式是相对于B点坐标来的,也就是假如B点位(0,0)可以这么做。现在给出可以适合任意情况的公式: x0 = dx * cos(a) - dy * sin(a) y0 = dy * cos(a) + dx * sin(a) 参数解释: x0,y0是旋转后相对于中心点的坐标,也就是原点的坐标,但不是之前点旋转后的实际坐标,还要计算一步,a旋转角度,可以是顺时针或者逆时针。 dx是旋转前的x坐标-旋转后的x坐标 dy是旋转前的y坐标-旋转后的y坐标 x1=b+x0; y1=c+y0; 上面才是旋转后的实际坐标,其中b,c是原点坐标 下面是上面图的公式解答: x0=(x-b)*cos(a)-(y-c)*sin(a); y0=(y-c)*cos(a)+(x-b)*sin(a); x1=x0+b; y1=y0+c;

平面直角坐标系下的图形变换

平面直角坐标系下的图形变换 王建华 图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。 在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的 关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活 平移: 上下平移横坐标不变,纵坐标改变 左右平移横坐标改变,纵坐标不变 对称: 关于x轴对称横坐标不变,纵坐标改变 关于y轴对称横坐标不变,纵坐标不变 关于中心对称横坐标、纵坐标都互为相反数 旋转:改变图形的位置,不改变图形的大小和形状 旋转角旋转半径弧长公式L=nπR/180 一、平移 例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化? 解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2). 向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2). 比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度. 友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。 析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B 反思:①根据平移的坐标变化规律: ★左右平移时:向左平移h个单位) , ( ) , (b h a b a- → 向右平移h个单位) , ( ) , (b h a b a+ → ★上下平移时:向上平移h个单位) , ( ) , (h b a b a+ → 向下平移h个单位) , ( ) , (h b a b a- → 二、旋转 例3.如图2,已知△ABC,画出△ABC关于坐标原点 0旋转180°后所得△A′B′C′,并写出三角形各顶点的 坐标,旋转后与旋转前对应点的坐标有什么变化? 解析:△ABC三个顶点的坐标分别是: A(-2,4),B(-4,2),C(-1,1). △A′B′C′三个顶点的坐标分别是: 图2 图1 B/ 图 2 图1

参考系坐标系及转换

1天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。 L天球直角坐标系 厂天球坐标系 天球球面坐标系 地球直角坐标系地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。 在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1天球空间直角坐标系的定义 地球质心0为坐标原点,Z轴指向天球北极,X轴指向春分点,丫轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,丫Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交点)

A <空闵直笥坐瑟厂K V : z 丿的楚辽” 2天球球面坐标系的定义 地球质心0为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天 球经度(赤经)测量基准一一基准子午面,赤道为天球纬度测量基准而建立球面 坐标。空间点的位置在天球坐标系下的表述为(r ,a,S )。 天欢申诗与地球质?M 重合T 赤礙刊为舍天黏 和感分点的天球子牛面 与过天体$的天球子牛面 之间的夾角,未纬 S 为 原点Mi 天体£的连規与 天球击道面之间的夹角, 旬題丫为展点Mi 天体S 球球】?坐抚1就,S 1 r )的C 义: 天球空间直角坐标系与天球球面坐标系的关系可用图 2-1表示: 感鼻—地I 球质心M 一孑塾一指向天球北奴Pn 、 ¥菇'一垂直于XMZ 平面, 与X 抽和Z 抽枸成右 手坐 标系统。 Pn A Z y X 1 \y X 奋 My\5 Ps / /

对同一空间点,直角坐标糸与其著效的球面坐标糸参教间有如下转换关务: C X - /cos a cos S < Y= / sin cos -Z = ysin 5 Y V a = arctan —— L Xz d -arctail . 岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。 章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。 前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬 时春分点的方向,经过瞬时的岁差和章动改正后,分别作为 X轴和Z轴的指向, 由此建立的坐标系称为协议天球坐标系。天味奋 5 y X X Ps

不同坐标系之间的变换

§10.6不同坐标系之间的变换 10.6.1欧勒角与旋转矩阵 对于二维直角坐标,如图所示,有: ?? ? ?????????-=??????1122cos sin sin cos y x y x θθθθ(10-8) 在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋 转至0 0,OY OX ; ②绕0 OY 旋转Y ε角 10 ,OZ OX 旋转至0 2 ,OZ OX ; ③绕2OX 旋转X ε角, 0,OZ OY 旋转至22,OZ OY 。 Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与 它相对应的旋转矩阵分别为: ???? ? ?????-=X X X X X R εεεεεcos sin 0sin cos 00 01 )(1 (10-10) ???? ??????-=Y Y Y Y Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11)

???? ??????-=10 0cos sin 0sin cos )(3Z Z Z Z Z R εεεεε (10-12) 令 )()()(3210Z Y X R R R R εεε= (10-13) 则有: ???? ? ?????=??????????=??????????1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入: ???? ??? ??? +-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取: sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z Z Y Y X X Z Y X εεεεεεεεεεεεεεε 于是可化简 ???? ? ?????---=111 0X Y X Z Y Z R εεεεεε (10-16) 上式称微分旋转矩阵。

球坐标系,三位坐标变换,旋转

球坐标系与直角坐标系的转换关系 球坐标是一种三维坐标。分别有原点、方位角、仰角、距离构成。 设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为 r∈[0,+∞), φ∈[0, 2π], θ∈[0, π] . 当r,θ或φ分别为常数时,可以表示如下特殊曲面: r = 常数,即以原点为心的球面; θ= 常数,即以原点为顶点、z轴为轴的圆锥面; φ= 常数,即过z轴的半平面。 与直角坐标系的转换: 1).球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系: x=rsinθcosφ y=rsinθsinφ z=rcosθ 2).反之,直角坐标系(x,y,z)与球坐标系(r,θ,φ)的转换关系为: r= sqrt(x*2 + y*2 + z*2); φ= arctan(y/x); θ= arccos(z/r); 球坐标系下的微分关系: 在球坐标系中,沿基矢方向的三个线段元为: dl(r)=dr, dl(θ)=rdθ, dl(φ)=rsinθdφ 球坐标的面元面积是: dS=dl(θ)* dl(φ)=r^2*sinθdθdφ 体积元的体积为: dV=dl(r)*dl(θ)*dl(φ)=r^2*sinθdrdθdφ 球坐标系在地理学、天文学中有着广泛应用.在测量实践中,球坐标中的θ角称为被测点P(r,θ,φ)的方位角,90°-θ成为高低角。 生成旋转矩阵的一种简单方式是把它作为三个基本旋转的序列复合。关于右手笛卡尔坐标系

常用坐标系之间的关系与转换

7.5 常用坐标系之间的关系与转换 一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用. 空间大地直角坐标系是-种以地球质心为原点购亘墮?坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。现今,利用卫星大地测量的手段*可以迅速地测定点 的空间大地直角坐拯,广泛应用于导航定位等空间技术。同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。 、大地坐标系和空间大地直角坐标系的转换 如图7- 23所示’尸点的位置用空间 大地 直角坐标〔X, Y, Z)表示,其相应 的大地坐 标为(E, L)a 将该图与图?一5 加以比较可见,图7-5中的子午椭圆平面 相 当于图7-23中的OJVP 平面.其中 PPz=Z.相 当于图7-5中的j7;OP 3相当 丫于图7-5中的 仏两平面的经度乙可视为 相同,等于"叽 于是可以直接写岀 X=jrcQsi f Y=jrsinL, Z=y 将式(7-21).式(7-20)分别代入上式, 井考虑 式(7-26)得 X=Ncos^cosZr ” Y =NcQsBsinL > (7—78) Z=N (1—护〉sin^ ; 上式表明了 2种基本坐标系之间的关系。 BB 7-23

图形在坐标系中的平移专题训练

图形在坐标系中的平移 【知识要点】 1.点的平移变换与坐标的变化规律是:点(x ,y )右(左)移m 个单位,得对应点(x ±m ,y ),点(x ,y )上(下)移n 个单位,得对应点(x ,y ±n ). 2.图形的平移变换与坐标的变化规律一般是通过从图形中特殊点,转化为点的平移变换解决. 【温馨提示】 1.平移只改变物体的位置,不改变的物体的形状和大小,因此,平移前后图形的面积不变. 2.一个图形进行平移,这个图形上所有的点的坐标都要发生相应的变化;反之,如果图形上的点的坐标发生变化,那么这个图形进行了平移. 【方法技巧】 1.点的平移与其坐标的变化规律是解决平移问题的关键,平移的方向决定了坐标是加还是减,平移的距离决定了加(或减)的数值. 2.作平移后的图形时,可先作出平移后图形中某些特殊点,然后再连结即可得到所需要的图形. 专题一 图形平移中的规律探究题 1.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示. (1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); (3)指出蚂蚁从点A 100到点A 101的移动方向. O 1 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 x y

2.如图所示,矩形ABCD 的顶点坐标分别为A (1,1),B (2,1),C (2,3),D (1,3). (1)将矩形ABCD 向上平移2个单位,画出相应的图形,并写出各点的坐标; (2)将矩形ABCD 各个顶点的横坐标都减去3,纵坐标不变,画出相应的图形; (3)观察(1)、(2)中的到的矩形,你发现了什么? 3.在直角坐标系中,△ABC 的三个顶点的位置如图所示,现将△ABC 平移使得点A 移至图中的点A ′的位置. (1)在直角坐标系中,画出平移后所得△A′B′C′(其 中B ′、C ′分别是B 、C 的对应点). (2)计算: 对应点的横坐标的差:=-A A x x ' , =-B B x x ' ,=-C C x x ' ; 对应点的纵坐标的差:=-A A y y ' ,=-B B y y ' ,=-C C y y ' . (3)从(2)的计算中,你发现了什么规律?请你把发现的规律用文字表述出来. (4)根据上述规律,若将△ABC 平移使得点A 移至A ″(2,-2),那么相应的点B ″、C ″(其中B ″、C ″分别是B 、C 的对应点)的坐标分别是 、 . 专题二 图形平移中的规律探究题 4.初三年级某班有54名学生,所在教室有6行9列座位,用(m ,n )表示第m 行第n 列的座位,新学期准备调整座位,设某个学生原来的座位为(m ,n ),如果调整后的座位为(i ,j ),则称该生作了平移[a ,b ]=[m - i ,n - j ],并称a+b 为该生的位置数.若某生的位置数为10,则当m +n 取最小值时,m ?n 的最大值为 .

参考坐标与动坐标系之间的旋转变换

坐标系之间的坐标变换 取一参考坐标系Z Y X O '''',该坐标系为船舶平衡位置上,不随船舶摇荡。 取一动坐标系OXYZ ,该坐标系与船体固结,随船舶一起做摇荡运动,OX 轴位于纵中剖面内,并指向船首,OY 垂直向上,OZ 轴指向船舶右舷。 再取一坐标系Z Y X O ???,它与参考坐标系平行,原点与动坐标系重合,且仅随船体作振荡运动。这三个坐标系之间的相对位置如图所示: 角位移用欧拉角来定义。我们假设动坐标系OXYZ 的原始位置为Z Y X O ???,经三次转动转到目前的位置。 首先将坐标系Z Y X O ???绕X O ?轴转动α角,使其转到OZ 和X O ?所确定的平面,然后绕Y O ?轴旋转β角使Z O ?与OZ 重合,此时平面Y X O ''??和平面OXY 重合,最后将得到的Z Y X O ''??绕OZ 轴转动γ角,这样,坐标系OXYZ 和坐标系Z Y X O ???就完全重合。 第一次旋转可以写为: ααααcos ?sin ??sin ?cos ????Z Y Z Z Y Y X X '+'='-'== 写为矩阵形式为 ????? ? ??''????? ??-=?????? ??Z Y X Z Y X ???cos sin 0sin cos 000 1???αα αα

同理,第二次旋转得 ?????? ??''????? ??-=?????? ??''Z Y X Z Y X ??cos 0sin 010sin 0cos ???ββ ββ 第三次旋转得, ???? ? ??????? ??-=?????? ??''Z Y X Z Y X 10 0cos sin 0sin cos ??γγγ γ 综合上面三式,得 ???? ? ????? ? ? ??++--+-+-=?????? ??Z Y X Z Y X βαγ αγβαγ αγβαβαγαγβαγαγβαβγ βγβcos cos cos sin sin sin cos sin sin cos sin cos cos sin cos cos sin sin sin sin cos cos sin sin sin sin cos cos cos ???则 [][][]X r X O '+='

11.2 图形在坐标系中的平移 教案

11.2图形在坐标系中的平移 ◇教学目标◇ 【知识与技能】 1.能在平面直角坐标系中用坐标的方法研究图形的变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面直角坐标系上的平移实质上就是点坐标的对应变换; 2.运用图形在平面直角坐标系中平移的点坐标的变化规律进行简单的平移作图. 【过程与方法】 经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程. 【情感、态度与价值观】 让学生发现数学与图形的平移、物体的运动等有实际意义的事情之间的关系,体会数学在现实生活中的用途. ◇教学重难点◇ 【教学重点】 掌握用坐标系的变化规律来描述平移的过程. 【教学难点】 根据图形的平移过程,探索、归纳出坐标的变化规律. ◇教学过程◇ 一、情境导入 (1)平移的概念是什么? (2)下象棋时,棋子的移动,什么在变,什么不变?在棋盘上推动棋子是否可以看成图形在平面上的平移? 二、合作探究 1. 2.探究图形的平移与其坐标变化的关系: (1)左、右平移: 原图形上的点(x,y)(x a,y);

原图形上的点(x,y)(x a,y). (2)上、下平移: 原图形上的点(x,y)(x,y b); 原图形上的点(x,y)(x,y b). 3.归纳出平移规律: (1)三角形的平移,是通过三角形任意一点坐标的变化而得到的. (2)在平面直角坐标系中,沿横轴平移,图形上每一点的纵坐标不变,而横坐标增减,简记为“左减右加”;沿纵轴平移,横坐标不变,纵坐标增减,简记为“上加下减”. (3)“左减右加,上加下减”也可这样理解:按x轴(y轴)正方向平移,则横(纵)坐标加上平移的单位数量,按x轴(y轴)负方向平移,则横(纵)坐标减去平移的单位数量. 典例1如图,将三角形ABC先向右平移6个单位,再向下平移2个单位得到三角形A1B1C1,写出各顶点变动前后的坐标. [解析]用箭头代表平移,有 →A1(4,4),B(-4,4)→(2,4)→B1(2,2),C(1,1)→(7,1)→C1(7,-1). 将三角形ABC先向左移动3个单位,再向上移动2个单位,得到三角形A2B2C2,写出三角形A2B2C2的各顶点坐标. [解析]点A2(-5,8),点B2(-7,6),点C(-2,3). 典例2说一说,下列由点A到点B是怎样平移的? (1)A(x,y)→B(x-1,y+2); (2)A(x,y)→B(x+3,y-2); (3)A(x+3,y-2)→B(x,y). [解析](1)将点A先向左平移1个单位,再向上平移2个单位,即可得到点B. (2)将点A先向右平移3个单位,再向下平移2个单位,即可得到点B. (3)将点A先向左平移3个单位,再向上平移2个单位,即可得到点B. 三、板书设计 图形在坐标系中的平移 1.点的平移与坐标的变化. 2.图形的平移与其坐标变化的关系. 3.平移规律. ◇教学反思◇ 本节课的主要内容是平移的变化规律“左减右加”“上加下减”,让学生在理解的基础上加以消化掌握,不能死记硬背,只要正确作出图形即可知道变化情况.方位角和距离的讲解要补充并强化.教学时注重与中考知识点链接,训练学生的逆向思维能力.

地理信息中各种坐标系区别和转换总结

地理信息中各种坐标系区别和转换总结 一、北京54坐标到西安80坐标转换小结 1、北京54和西安80是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。 2、数字化后的得到的坐标其实不是WGS84的经纬度坐标,因为54和80的转换参数至今没有公布,一般的软件中都没有54或80投影系的选项,往往会选择WGS84投影。 3、WGS8 4、北京54、西安80之间,没有现成的公式来完成转换。 4、对于54或80坐标,从经纬度到平面坐标(三度带或六度带)的相互转换可以借助软件完成。 5、54和80间的转换,必须借助现有的点和两种坐标,推算出变换参数,再对待转换坐标进行转换。(均靠软件实现) 6、在选择参考点时,注意不能选取河流、等高线、地名、高程点,公路尽量不选。这些在两幅地图上变化很大,不能用作参考。而应该选择固定物,如电站,桥梁等。 二、西安80坐标系与北京54坐标系转换 西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即 X 平移, Y 平移, Z 平移, X 旋转(WX), Y 旋转(WY), Z 旋转(WZ),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于 3 0Km(经验值),这可以用三参数,即 X 平移, Y 平移, Z 平移,而将 X 旋转, Y 旋转, Z 旋转,尺度变化面DM视为 0 。 在MAPGIS平台中实现步骤: 第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对(即54坐标x,y,z和80坐标x,y,z); 第二步:将三个点的坐标对全部转换以弧度为单位。(菜单:投影转换/输入单点投影转换,计算出这三个点的弧度值并记录下来) 第三步:求公共点求操作系数(菜单:投影转换/坐标系转换)。如果求出转换系数后,记录下来。 第四步:编辑坐标转换系数。(菜单:投影转换/编辑坐标转换系数。)最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 三、地理坐标系与投影坐标系的区别 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短 半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。

相关主题
文本预览
相关文档 最新文档