当前位置:文档之家› 汽轮机叶片强度计算.

汽轮机叶片强度计算.

汽轮机叶片强度计算.
汽轮机叶片强度计算.

汽轮机叶片强度计算

汽轮机叶片强度计算与分析

李小敏杨林君

万茜尤鸿燕龚晓庆

几个概念

转子:气轮机的转动部分,包括叶片,叶轮,主轴及联轴器等.

静子:包括汽缸,汽缸法兰,法兰螺栓和隔板等;

静应力:稳定工况下不随时间变化的应力;

动应力:周期性激振力引起的振动应力,其大小和方向都随时间变化;

静强度校核:考虑材料在各种温度下的屈服极限,蠕变极限,和持久强度极限; 动强度校核:此处仅限于零件自振频率和激振力频率计算及安全性校核;

叶片静应力计算重要性

电站汽轮机叶片,特别是大型汽轮机动叶片,所处的工况条件及环境极为恶劣,主要表现在应力状态,工作温度,环境介质等方面.汽轮机在工作过程中,动叶片承受着最大的静应力及交变应力,静应力主要是转子旋转时作用在叶片上的离心力所引起的拉应力,叶片愈长,转子的直径及转速愈大,其拉应力愈大.此外,由于蒸汽流的压力作用还产生弯曲应力和扭力,叶片受激振力的作用会产生强迫振动; 当强迫振动的频率与叶片自振频率相同时即引起共振,振幅进一步加大,交变应力急剧增加,最终导至疲劳断裂.

叶片静强度计算

离心应力计算

1,等截面叶片的离心应力计算

根部截面的离心力Fc最大

等截面叶片根部截面的离心应力最大

2,变截面叶片的离心应力计算

对于径高比的级,常把其叶片设计成变截面扭叶片.

采用变截面是为了降低叶型截面上的离心应力.

蒸汽弯曲应力计算

(1)等截面叶片弯曲应力计算

蒸汽作用在每个叶片上的圆周力和轴向作用力与分别为

根部截面点上的最大弯曲应力分别为

(2)扭叶片弯曲应力计算

因这蒸汽参数和截面面积沿叶高变化,故必须计算出蒸汽弯曲应力沿叶高的变化规律,然后对最大弯曲应力的截面进行强度校核.

气轮机转子静强度安全性判别

转子静强度安全性判别就是根据零件受力分析,计算出危险截面的静应力或相当应力,再与材料的许用应力相比较,从而判别出静强度是否安全.

其判别因子有:

1.许用应力 . 它是根据材料的机械性能和安全系数确定的.若叶片及其附件的工作温度不同,则静强度校核的标准也不同,一般以材料蠕变温度为分界线.

2.安全系数. 安全系数的选取与许多因素有关,入应力计算式的精确程度,材料

的不均匀性等.

叶片动应力计算的重要性

叶片是汽轮机及其它叶轮机械的重要零部件,由于结构,安装,运行的因素,叶片在运行过程中将不可避免地受到激振力的作用.而且,叶片一般工作在不正常,跨音速及粘性的流场中,动叶片承受各种激振源产生的激振力作用,叶片在激振力作用下可能发生强迫共振而产生相当大的动应力.各种叶片事故的统计分析表明,叶片损坏大多数是由于叶片振动产生的动应力过大所致.为了保证叶片设计的可靠性,提高叶片的安全性,必须对汽轮机叶片进行动应力分析.

叶片动强度

叶片动强度概念

运行实践证明:汽轮机叶片除了承受静压力外,还受到因气流不均匀产生的激振力作用.该力是由结构因素,制造和安装误差及工况变化等原因引起的.对旋转的叶片来说,激振力对叶片的作用是周期性的,导致叶片振动,所以叶片是在振动状态下工作的.当叶片的自振频率等于脉冲激振力频率或为其整数倍时,叶片发生共振,振幅增大,并产生很大的交变动应力.为保证叶片安全工作,必须研究激振力和叶片振动特性,以及叶片在动应力作用下的承载能力等问题,这些属于叶片动强度范畴.

叶片动强度计算-谐响应分析方法

用有限元方法对汽轮机叶片进行模型简化,采用模态分析法计算出结构的模态振型,然后用谐响应分析方法对其进行动应力分析,计算结构的动位移及动应力. 任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应).谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术.分析的目的是计算出结构在一定频率范围下的响应并得到响应值对频率的曲线.从这些曲线上可以找到" 峰值"响应,并进一步观察峰值频率对应的应力.该技术只计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动.谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振,疲劳,及其它受迫振动引起的有害效果.

用模态叠加的谐响应分析法计算叶片动应力的步骤

(1)计算叶片的动频;

(2)由模态叠加的谐响应分析计算叶片位移的动态响应;

(3)由扩展分析计算叶片应力的动态响应,求得叶片的动应

力.

叶片动强度计算-激振力

汽轮机在运行中,由于叶片的一般工作环境是不定常,跨音速及粘性的流场,因此,常在各种激振源产生的激振力作用下产生强迫振动,其中动应力过大是导致叶片损坏的主要原因,而激振因子Sk和叶片阻尼特性是决定动应力大小的重要因素. 激振因子表示叶片所处汽流场的不均匀性,即表示汽流激振力的大小.关于激振因子的估算方法及大概取值范围在许多文献中都可见到,但都只是估算或略取. 激振因子的计算公式及估取方法

叶片在不均匀的流场中转动时,受周期性的激振力作用而产生受迫振动,现将此作用在叶片上的汽流激振力P沿圆周方向按Feurier级数展开,可得:

(1)

式中——作用在叶片上的汽流力按时间的平均值

ω——汽轮机转子旋转角速度,ω=2πns

k——激振力阶次,对高频激振力代表KZ1,对低

频激振力为k=1,2,3…

Pk——第k阶激振力幅值

Kφk——第k阶激振力相角

而激振因子

则只要知道激振力分布的具体表达式,通过式(1)就可以确定出激振因子的大小激振力的频率计算

以频率高低来分,激振力可分为低频率激振力和高频率激振力两大类.

低频激振力频率计算

(1)对称激振力

fex=kn

式中,k=1,2,3……,指一个圆周内的激振力次数;n是动叶的转速,对电站汽轮机,n=50r/s.

(2)非对称激振力

如喷嘴配汽油两个不通汽弧段彼此相隔π/2角度,动叶以转速n(r/s)旋转,则每秒钟转过2πn弧度,动叶由第一个激振力至第二个激振力所需要的时间为

T=1/(4n)

即低频激振力频率fex=1/T=4n.

高频激振力

当气流通过静叶片流道进入动叶片流道时,由于静叶片的出气边有一定厚度,使得静叶后的气流参数(压力,速度等)在该处有所降低,遭成沿切向不均匀的气流场,见图 1 动叶片在不均匀的气流场中旋转,经过静叶出气边时,作用在动叶片上的力突然减少,离开出气边时又突然增大.这样动叶片每经过一个静叶流道,就受到一次激振力的作用.

高频激振力

(1) 全周进汽的级

fex=znn

式中,zn是级的喷嘴数,一般zn=40~90

(2) 部分进汽的级

fex=1/T=znn

式中,zn为当量喷嘴数,相当于按部分进汽喷嘴数的节距,把喷嘴片布满全周的喷嘴数.

叶片的自振频率的计算

单个叶片

先用叶片弯曲振动的微分方程计算自振频率

再对自振频率理论计算值进行修正(温度修正,叶片根部牢固修正)

以上是静频率,考虑离心力的影响,用能量法计算动频率.

叶片组

等截面叶组B型振动自振频率计算

等截面叶组各种振动频率的计算

拉筋连接的叶片组自振频率计算

调频

在运行实践中,可能遇到调频叶片的频率不能满足所需的避开率,这时应对该级叶片的振动频率进行调整.只有叶片频率分散度合格的级,才能进行调频.

方法

重新安装叶片,改善安装质量

增加叶片与围带或拉筋的连接牢固度

加大拉筋直径或改用空心拉筋

增加拉筋数

改变成组叶片数目

增设拉筋或围带

采用长弧围带

叶顶钻孔

叶片动强度指标

汽轮机叶片除受到静应力作用外,还受到叶片震动是的动应力的作用.评价叶片在静动应力复合作用下的安全性是,必须知道叶片材料在静动应力联合作用下的机械性能.用耐振强度表示叶片材料在静动应力复合作用下的动强度指标,它由材料试验确定.叶片所受的动应力应该小于该工作条件下的耐振强度才安全.对于不调频叶片,对振动频率没有限制,允许在共振下运行,它主要判断动应力是否在许用耐振值内,而调频叶片不允许共振下长期运行.

参考文献

[1] 沈士一等. 汽轮机原理中国 [2] 李锋季葆华谢浩孟庆集汽轮机叶片激振因子影响因素的分析研究汽轮机技术双月刊 1999 第5期

[3] 王江洪齐琰苏辉李劲松电站汽轮机叶片疲劳断裂失效综述汽轮机技术双月刊 1999 第6期

[4] 柴山吕凤军孙义冈计算汽轮机叶片动应力的谐响应分析法汽轮机技术双月刊 2002 第5期

谢谢观赏!!!

参数的选择与汽轮机内效率分析

参数的选择对汽轮机内效率浅析 原创:孙维兵连云港碱厂22042 摘要:简要叙述电力和工业用汽轮机的内效率,以及蒸汽初、终参数选择对对全厂能耗的影响。 关键词:汽轮机内效率蒸汽参数能耗 一、汽轮机内效率 1、背压汽轮机数据模拟本表来源某碱厂6000kw背压机组,带下划线的为表计显示值。其他为计算或模拟值。

本机组型号B6-35 /5,设计蒸汽压力℃,排汽压力。设计内效率%。 由于蒸汽和喷管叶片的磨擦生热,被蒸汽吸收后汽温提高,在下一级得到利用,机组级数越多,利用次数越多,总内效率有所提高。热机内效率η=100%×实际焓降÷理想焓降,汽轮机的内效率表示的是设计的汽轮机组的完善程度,相当于存在的所有不可逆损失的大小,即实际利用的焓降与理论上能达到的焓降的比值。 严济慈说:“所费多于所当费,或所得少于所应得,都是一种浪费”。提高热机的热效率的方法有二种,一是提高高温热源的温度,二是降低低温热源即环境的温度;低温热源变化较小,因此提高蒸汽初温和初压就成为提高机组的热效率的途径。相对地,提高热机的内效率则基本上只有一种方法,即设计更完善的机组使汽机内部各种不可逆损失减少到最少。 从热力学第二定律上看,冷源损失是必不可少的,如果用背压抽汽供热机组,它是将冷源损失算到热用户上,导致所有背压热效率接近100%,但内效率差距仍然很大。 2、纯碱行业真空透平机、压缩透平机和背压汽轮机相对内效率比较

各个背压供热机组热效率都接近100%,但汽耗率分别为、、、kg/kwh,即消耗同样多的蒸汽量发出的电能有大有小。小容量汽轮机的汽封间隙相对较大,漏汽损失较大,同时由于成本投资所限,汽轮机级数少,设计的叶型也属早期产品,所以容量小的机组内效率很低。目前电力系统主力机组亚临界压力汽轮机组都较大,总内效率高达90-92%,热力学级数达到27级;相比于发电用汽轮机,工业汽轮机级数少,内效率偏低,明显是不经济的。 3、喷咀和喷管。冲动式汽轮机的蒸汽在静止的喷咀中膨胀加速,冲击汽轮机叶片。对喷咀来说,存在临界压力和临界压力比。如渐缩喷管,流量达到最大值时,出口压力p2与进口压力p1之比βc约为,当背压p2下降低于βc ×p1时,实际流量和汽体的速度不再增加,相当于压力降白白损失了。反动式汽轮机内效率较高,但单级压降较冲动式更小。纯碱厂常用的压缩工业汽轮机有11级,但压力降能力较小,实际运行时内效率不高。真空岗位的工业汽轮机,只有一级双列速度级,单级压力降能力是有限的,如果选择的排汽参数太小,那

背压式、抽背式及凝汽式汽轮机的区别

背压式、抽背式及凝汽式汽轮机的区别 1、背压式汽轮机 背压式汽轮机是将汽轮机的排汽供热用户运用的汽轮机。其排汽压力(背压)高于大气压力。背压式汽轮机排汽压力高,通流局部的级数少,构造简略,同时不用要巨大的凝汽器和冷却水编制,机组轻小,造价低。当它的排汽用于供热时,热能可得到充足使用,但这时汽轮机的功率与供热所需蒸汽量直接联系,因此不或许同时餍足热负荷和电(或动力)负荷变更的必要,这是背压式汽轮机用于供热时的部分性。 这种机组的主要特点是打算工况下的经济性好,节能结果昭着。其它,它的构造简略,投资省,运行可靠。主要缺点是发电量取决于供热量,不克独立调理来同时餍足热用户和电用户的必要。因此,背压式汽轮机多用于热负荷整年安稳的企业自备电厂或有安稳的根本热负荷的地区性热电厂。 2、抽汽背压式汽轮机 抽汽背压式汽轮机是从汽轮机的中间级抽取局部蒸汽,供必要较高压力品级的热用户,同时保留必定背压的排汽,供必要较低压力品级的热用户运用的汽轮机。这种机组的经济性与背压式机组相似,打算工况下的经济性较好,但对负荷改变的合适性差。 3、抽汽凝汽式汽轮机 抽汽凝汽式汽轮机是从汽轮机中间抽出局部蒸汽,供热用户运用的凝汽式汽轮机。抽汽凝汽式汽轮机从汽轮机中间级抽出具有必定压力的蒸汽提供热用户,平常又分为单抽汽和双抽汽两种。此中双抽汽汽轮机可提供热用户两种分别压力的蒸汽。 这种机组的主要特点是当热用户所需的蒸汽负荷猛然下降时,多余蒸汽可以通过汽轮机抽汽点以后的级持续扩张发电。这种机组的长处是灵敏性较大,也许在较大范畴内同时餍足热负荷和电负荷的必要。因此选用于负荷改变幅度较大,改变屡次的地区性热电厂中。它的缺点是热经济性比背压式机组的差,并且辅机较多,价钱较贵,编制也较庞杂。 背压式机组没有凝固器,凝气式汽轮机平常在复速机后设有抽气管道,用于产业用户运用。另一局部蒸汽持续做工,最后劳动完的乏汽排入凝固器、被冷却凝固成水然后使用凝固水泵把凝固水打到除氧器,除氧后提供汽锅用水。两者区别很大啊!凝气式的由于尚有真空,因此监盘时还要注意真空的境况。背压式的排气高于大气压。趁便简略说一下凝固器设置的作用:成立并维持汽轮机排气口的高度真空,使蒸汽在汽轮机内扩张到很低的压力,增大蒸汽的可用热焓降,从而使汽轮机有更多的热能转换为机械功,抬高热效果,收回汽轮机排气凝固水

燃气轮机航空叶片介绍

航空发动机叶片 众所周知,在航空发动机里叶片是透平机械的“心脏”,是透平机械中极为主要的零件。透平是一种旋转式的流体动力机械,它直接起着将蒸汽或燃气的热能转变为机械能的作用。叶片一般都处在高温,高压和腐蚀的介质下工作。动叶片还以很高的速度转动。在大型汽轮机中,叶片顶端的线速度已超过600 m/s,因此叶片还要承受很大的离心应力。叶片不仅数量多,而且形状复杂,加工要求严格;叶片的加工工作量很大,约占汽轮机、燃气轮机总加工量的四分之一到三分之一。叶片的加工质量直接影响到机组的运行效率和可靠行,而叶片的质量和寿命与叶片的加工方式有着密切的关系。所以,叶片的加工方式对透平机械的工作质量及生产经济性有很大的影响。这就是国内外透平机械行业为什么重视研究叶片加工的原因。随着科学技术的发展,叶片的加工手段也是日新月异,先进的加工技术正在广泛采用。 叶片的主要特点是:材料中含有昂贵的高温合金元素;加工性能较差;结构复杂;精度和表面质量要求高;品种和数量都很多。这就决定了叶片加工生产的发展方向是:组织专业化生产,采用少、无切削的先进的毛坯制造工艺,以提高产品质量,节约耐高温材料;采用自动化和半自动化的高效机床,组织流水生产的自动生产线,逐步采用数控和计算机技术加工。叶片的种类繁多,但各类叶片均主要由两个主要部分组成,即汽道部分和装配面部分组成。因此叶片的加工也分为装配面的加工和汽道部分的加工。装配面部分又叫叶根部分,它使叶片安全可靠地、准确合理地固定在叶轮上,以保证汽道部分的正常工作。因此装配部分的结构和精度需按汽道部分的作用、尺寸、精度要求以及所受应力的性质和大小而定。由于各类叶片汽道部分的作用、尺寸、形式和工作各不相同,所以装配部分的结构种类也很多。有时由于密封、调频、减振和受力的要求,叶片往往还带有叶冠(或称围带)和拉筋(或称减震凸台)。叶冠和拉筋也可归为装配面部分。汽道部分又叫型线部分,它形成工作气流的通道,完成叶片应起的作用,因此汽道部分加工质量的好坏直接影响到机组的效率。 下面说一下叶片的材料,由于透平叶片的工作条件和受力情况比较复杂,因此对叶片材料的要求也是多方面的,其中主要的要求概括如下:(1).具有足够的机械强度。即在工作温度范围内具有足够的,稳定的机械强度(屈服极限和强度极限),并且在工作温度范围内这些机械强度具有稳定的数值。在高温情况下(一般指450℃以上),具有足够的蠕变极限和持久强度极限。(2).具有高的韧性和塑性以及高温下抗热脆性(高温下稳定的冲击韧性),避免叶片在载荷作用下产生脆性断裂。(3).耐蚀性。抵抗高温下气体中有害物质的腐蚀以及湿蒸汽和空气中氧的腐蚀能力。(4).耐磨性。抵抗湿蒸汽中水滴和燃气中固体物质的磨蚀。(5).具有良好的冷、热加工性能。(6).具有良好的减振性。叶片是处在交变载荷下工作,除要求有较高的疲劳极限外,还要求有良好的减震性能,即高的对数衰减率。这样可以减小振动产生的交变应力,减小叶片疲劳断裂的可能性。 根据使用温度、使用温度和化学成份等,可以将叶片材料分为两类:(1).马氏体、马氏体-铁素体和铁素体钢。这类钢的使用温度最高不超过580℃,可以作为汽轮机叶片材料。(2).奥氏体钢、铁镍合金和镍基合金等。着类钢的使用温度最高不超过700~750℃,可以作为燃气轮机叶片材料。

参数的选择与汽轮机内效率分析

参数的选择与汽轮机内 效率分析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

参数的选择对汽轮机内效率浅析 原创:孙维兵连云港碱厂22042 摘要:简要叙述电力和工业用汽轮机的内效率,以及蒸汽初、终参数选择对对全厂能耗的影响。 关键词:汽轮机内效率蒸汽参数能耗 一、汽轮机内效率 1、背压汽轮机数据模拟本表来源某碱厂6000kw背压机组,带下划线的 由于蒸汽和喷管叶片的磨擦生热,被蒸汽吸收后汽温提高,在下一级得到利用,机组级数越多,利用次数越多,总内效率有所提高。热机内效率η=100%×实际焓降÷理想焓降,汽轮机的内效率表示的是设计的汽轮机组的完善程度,相当于存在的所有不可逆损失的大小,即实际利用的焓降与理论上能达到的焓降的比值。 严济慈说:“所费多于所当费,或所得少于所应得,都是一种浪费”。提高热机的热效率的方法有二种,一是提高高温热源的温度,二是降低低温热源即环境的温度;低温热源变化较小,因此提高蒸汽初温和初压就成为提高机组的热效率的途径。相对地,提高热机的内效率则基本上只有一种方法,即设计更完善的机组使汽机内部各种不可逆损失减少到最少。

从热力学第二定律上看,冷源损失是必不可少的,如果用背压抽汽供热机组,它是将冷源损失算到热用户上,导致所有背压热效率接近100%,但内效率差距仍然很大。 即消耗同样多的蒸汽量发出的电能有大有小。小容量汽轮机的汽封间隙相对较大,漏汽损失较大,同时由于成本投资所限,汽轮机级数少,设计的叶型也属早期产品,所以容量小的机组内效率很低。目前电力系统主力机组亚临界压力汽轮机组都较大,总内效率高达90-92%,热力学级数达到27级;相比于发电用汽轮机,工业汽轮机级数少,内效率偏低,明显是不经济的。 3、喷咀和喷管。冲动式汽轮机的蒸汽在静止的喷咀中膨胀加速,冲击汽轮机叶片。对喷咀来说,存在临界压力和临界压力比。如渐缩喷管,流量达到最大值时,出口压力p2与进口压力p1之比βc约为,当背压p2下降低于βc ×p1时,实际流量和汽体的速度不再增加,相当于压力降白白损失了。反动式汽轮机内效率较高,但单级压降较冲动式更小。纯碱厂常用的压缩工业汽轮机有11级,但压力降能力较小,实际运行时内效率不高。真空岗位的工业汽轮机,只有一级双列速度级,单级压力降能力是有限的,如果选择的排汽参数太小,那么许多压力降是白白损失了,如上述真空透平机实际运行时内效率只有%,如果考虑机组的漏汽损失,内效率还会更低。在同样的进汽参数与排汽参数下,某国产真空工业汽轮机,冲动技术,厂家设计内效率只有%。 中压汽轮机为节省投资,最大限度地提高压力降,选用的第一级调节级为双列速度级,它的内效率也相对较低,为提高整个机组内效率,高压和超高压以上汽轮机组全部摒弃双列速度级只用普通的带反动度的压力级。同样的,当工业透平机的单级压力降太大时或排汽压力远远低于设计压力时,它的压力降不能得到有效的利用,级的内效率下降较快。由于纯碱厂的低压蒸汽管网运行压力远低于设计压力,远离设计参数,汽轮机、压缩汽轮机和真空机的内效率损失较大。 二、参数的选择 1、设计过程中存在的冗余。如DG140/59给水泵设计,内效率约在70-74%,所需轴功率为310-328千瓦(计算略),选用电机400千瓦即可,设计院一般选用电机为440千瓦。同样DG140/59给水泵,设计压力为,实际运行时省煤器进口压力约在-,当给水泵出口压力在时,即可满足锅炉用水需要,如果设计给水泵压力为,给水管道应选比正常值稍大如可选φ200左右,可节能16%左右。又如锅炉送风机风量,理论空气量已经满足燃烧要求,锅炉厂给出的送风量已经乘以的系数,如果设计院选风机时风量再乘以的系数,在选用配套电机时功率将变得更大。在锅炉与汽轮机配套设计中,锅炉以额定参数运行时,汽轮机入口压力将超过设计压力约,高压超高压机组汽轮机超过设计压力也较大。设计中存在的冗余对锅炉和汽轮机经济性影响较大,中压机组热效率影响

汽轮机内效率计算方法

楼主对效率的理解有误,透平机输出功率N=G.ΔHs.η/3600,这是你需要的公式,这里: N:kW G:蒸汽流量,kg/h ΔHs:等熵焓降,kJ/kg,注意这里是等熵焓降! η:等熵效率,也称内效率,%,一般也就60~70%,这个效率也就是你所言的那个60%的效率。 再来看看你的蒸汽参数: 1、汽轮机入口过热蒸汽: 压力P=23.5barg,温度T=390C,比焓H=3,218kJ/kg,比熵S= 6.9933 kJ/kg.C;2、汽轮机出口蒸汽: 注意,你既然指定了等熵效率60%,那么你就应该计算和入口蒸汽比熵相等的熵值的蒸汽参数,其温度压力这俩参数你不能都去指定,而需要你计算: 压力P=8barg(压力值你可以指定,这个与背压汽轮机控制出口蒸汽压力的过程是吻合的) 比熵S= 6.9933 kJ/kg.C(比熵一定要和入口蒸汽相等!此点非常重要,这是你计算的基准!) 根据上述两个条件,即指定的压力和比熵,确定最终汽轮机出口蒸汽参数为:温度T=253.22 C,比焓H=2,954kJ/kg,你的计算错在这里!因为你指定了等熵效率60%,那么你就不能再指定出口蒸汽的温度、压力这两个参数了,你应该指定比熵、压力这两个参数,由这俩参数计算比焓,求出焓降: ΔHs=3218-2954=265 kJ/kg; 因此N=G.ΔHs.η/3600=10000x265x60%/3600=441.7 kW=0.442 MW,拿计算器摁都成,MW消耗蒸汽量(俗称的汽耗)W=10/0.442=22.6 T/MW,一般工厂用汽轮机用蒸汽参数要比楼主给出的蒸汽参数更高,比如5MPa,450C蒸汽,汽耗一般在20T/MW(或者说20kg/kW),你这个汽轮机的数据略高了些,但你的蒸汽参数低啊,经验数据还是差不多的,贵厂的汽轮机发电是不是差不多这个数?呵呵。

大型汽轮机叶片事故原因分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 大型汽轮机叶片事故原因 分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4913-33 大型汽轮机叶片事故原因分析(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 在火电厂、核电厂机组运行过程中,汽轮机叶片工作在高温、高压、高转速或湿蒸汽区等恶劣环境中,经受着离心力、蒸汽力、蒸汽激振力、腐蚀和振动以及湿蒸汽区高速水滴冲蚀的共同作用,再加上难以避免的设计、制造、安装质量及运行工况、检修工艺不佳等因素的影响,常会出现损坏,轻则引起汽轮发电机组振动,重则造成飞车事故。因此,汽轮机叶片的安全可靠直接关系到汽轮机和整个电厂的安全、满发。 汽轮机叶片事故长期困扰电厂机组的安全经济运行。从国内统计数据看,叶片损坏事故占汽轮机事故的30%。 叶片损坏的位置,从围带到叶根都有。据日本历年的统计资料,各部位出现损坏的百分率见表1。此

外,汽轮机各级叶片的损坏机会是不均匀的,据美国对50台大型机组的统计,叶片事故几乎全发生在低压缸内,其中末级占20%,次末级占58%,而且集中区是高压第一级,即调节级。据日本的统计,也有20%的事故发生于此。因此,在汽轮机设计和运行时,均应注意这些部位。 叶片损坏的原因是多方面的,可以从不同角度加以分析。例如,从发生的机理区分,60%~80%的损坏原因是振动;从责任范围区分,可归纳为设计、制造、安装、运行和老化等。在实际工作中,如果能及时找出主要原因,掌握叶片事故前后的征兆,采取相应措施,就能避免事故的发生,提高机组的使用寿命和安全可靠性。 1 近年来大型机组叶片损坏概况 从近年来发生的17例叶片故障统计中,笔者分析了上海汽轮机有限公司、哈尔滨汽轮机有限责任公司、东方汽轮机厂、北京重型电机厂(表中简称上汽、哈汽、东汽、北重)生产的以及美国、日本、前苏联和欧洲一

25MW背压式汽轮机运行规程

B25MW背压式汽轮机运行规程 批准: 审核: 修编: 宁夏伊品生物科技股份有限公司动力部

B25MW背压式汽轮机运行规程 前言 1.引用标准: 电力部《电力工业技术管理法规》 有关设计资料及厂家说明书。 2.本规程是汽轮机运行人员进行操作,调整,处理事故的技术标准,所有运行人员应按本规程的规定进行操作或调整。 3.在运行操作过程中如遇有编写内容与生产不符时,应及时提出修改意见,经审核批准后执行。

B25MW背压式汽轮机运行规程 1.适用范围及引用标准: 本规程适用于伊品企业型号为B25-8.83/0.981型(南京汽轮机厂)所生产的冲动式高压,单缸,抽汽背压式汽轮机.使用于动力部汽机专业。 2.工作原理: 该汽轮机为南京汽轮机厂生产的冲动式高压,单缸,抽汽背压式汽轮机,型号为B25-8.83/0.981,配用南京汽轮发电机厂所生产的 QFW-30-2C型空冷式发电机。 汽轮机转子由一级单列单列调节级和10级压力级组成。 喷嘴,隔板,隔板套均装在汽缸内。它们和转子组成了汽轮机的通流部分,也是汽轮机的核心部分。高压喷嘴组分成四段,通过T型槽道分别嵌入四只喷嘴室内。每一段喷嘴组一端有定位销作为固定点,另一端可以自由膨胀并装有密封键。为了缩短轴向长度,确保机组的通流能力,并有利于启动及负荷变化,本机组采用了多级隔板套。在隔板套中再装入隔板。 本机组有四只调节汽阀。均采用带减压式预启阀的单座阀,以减少提升力。油动机通过凸轮配汽机构控制四只阀的开启顺序和升程。 在汽轮机前轴承座前端装有测速装置,在座内有油泵组、危急遮断装置、轴向位移发送器、推力轴承前轴承及调节系统的一些有关部套。前轴承座的上部装有油动机。前轴承座与前汽缸用“猫爪”相连,在横

汽轮机习题集

《汽轮机原理》习题 1. 已知:渐缩喷嘴进口蒸汽压力MPa p 4.80=,温度4900=t ℃,初速s m c 500=;喷嘴后蒸汽压力MPa p 8.51=,喷嘴速度系数97.0=φ。求 (1) 喷嘴前蒸汽滞止焓、滞止压力; (2) 喷嘴出口的实际速度; (3) 当喷嘴后蒸汽压力由MPa p 8.51=下降到临界压力时的临界速度。 2. 已知:某汽轮机级的进汽压力MPa p 96.10=,温度3500=t ℃;级后蒸汽压力MPa p 47.12=。速度比5 3.011==c u x ,级的平均反动度15.0=Ωm ,又知喷嘴和 动叶栅的速度系数分别为97.0=φ, 90.0=ψ,喷嘴和动叶的出口汽流角为o 181=α,o 612?=?ββ。 (1) 求解并作出该级的速度三角形; (2) 若余速利用系数00=μ,11=μ,流量h t D 960=,求级的轮周效率u η和轮 周功率u P ; (3) 定性绘制级的热力过程曲线。 3. 某机组冲动级级前蒸汽压力MPa p 96.10=,温度3500=t ℃;级后蒸汽压力MPa p 47.12=。该级速度比45.01=x ,喷嘴出口汽流角为o 131=α,动叶的进口汽流角与出口汽流角相等(?=21ββ),喷嘴和动叶栅的速度系数分别为95.0=φ,87.0=ψ;该级的平均反动度0=Ωm 。试求解:同题2(1)、(2)、(3)。 4. 国产某机组第三级设计工况下级前蒸汽压力MPa p 13.50=,温度 5.4670=t ℃;级后蒸汽压力MPa p 37.42=,进口汽流的初速动能kg kJ h c 214.10=Δ全部被利用。设 计中选定该级的平均直径mm d m 5.998=,级的平均反动度%94.7=Ωm ,喷嘴出口汽流角为74101′=o α,动叶的出口汽流角相等45172′=?o β。又知喷嘴和动叶栅的速度系数分别为97.0=φ,935.0=ψ,汽轮机的转速min 3000r n =,11=μ。试作出该级的速度三角形,求级的轮周效率u η,定性绘制级的热力过程曲线。

汽轮机零件强度校核..

第五章汽轮机零件的强度校核 第一节汽轮机零件强度校核概述 为了确保电站汽轮机安全远行,应该使汽轮机零件在各种可能遇到的运行工况下都能可靠地工作。因此,需要对汽轮机零件进行强度校核,包括静强度校核和动强度校核两方面,这是本章要讨论的问题。 汽轮机的转动部分称为转子,静止部分称为静子。转子零件主要有叶片、叶轮、主轴及联轴器等,静子零件主要有汽缸、汽缸法兰、法兰螺栓和隔板等。由于备零件的工作条件和受力状况不同,采用的强度校核方法也各异。例如,转子中的叶片、叶轮和主轴除了受高速旋转的离心力和蒸汽作用力外,还会受到周期性激振力的作用,从而产生振动。当汽轮机在稳定工况下运行时,离心应力和蒸汽弯曲应力不随时间变化。稳定工况下不随时间变化的应力,统称为静应力,属于静强度范畴,周期性激振力引起的振动应力称为动应力,其大小和方向都随时间而变化,属于动强度范畴。直至目前为止、对汽轮机转子零件动应力的精确计算尚有一定困难,因此,本章对汽轮机零件的动强度分析,只限于零件自振频率和激振力频率计算及安全性校核。一般来说,对汽轮机转子零件,应从静强度和动强度两方面进行校核;对汽轮机静子零件,只需进行静强度校核,包括零件静应力和挠度计算。 静强度校核时,一般应以材料在各种工作温度下的屈服极限、蠕变极限和持久强度极限,分别除以相应的安全系数得到各自的许用应力,并取这三个许用应力中最小的一个许用应力作为强度校核依据。如果计算零件在最危险工况的工作应力小于或等于最小许用应力,则静强度是安全的。对动强度,常用安全倍率和共振避开率来校核。 需要指出,大型汽轮机某些零件的强度校核要求随工况变化而变化。在稳定工况下,某一零件只需进行静强度和动强度校核。但是在冷热态启动、变负荷或甩负荷等变工况下,沿零件径向和轴向会有较大的温度梯度,从而产生很大的热应力,且零件内任一点的热应力的大小和方向随运行方式而变化。如汽轮机冷态启动时,转子外表面有压缩热应力,中心孔表面有拉伸热应力;停机时,转子外

汽轮机动叶片

动叶片 一、速度级叶片 中小型汽轮机的调节级一般都采用双列速度级。双列速度级的热焓降大。新蒸汽经过这一级后压力和温度都要下降较多,所以中小型汽轮机的调节级采用双列速度级后,可以得到以下好处: (1)在蒸汽参数,汽轮机功率相同的条件下,可使汽轮机级数减少,结构简化,而机组效率相差并不大。 (2)由于双列速度级后的蒸汽压力、温度都下降很多,所以使调节级后的高压、高温段缩短,在汽缸和转子上都能节约一定数量的贵重金属材料,降低汽轮机的造价。 (3)由于蒸汽经过双列速度级后压力下降很多,所以高压轴封结构可以简化,且漏汽损失可以减少。尤其对小型汽轮机这是很重要的。 二、动叶和静叶间的关系 1、动叶片和静叶片的高度配合 动叶片应比静叶片稍高些,这是为了让蒸汽由静叶喷出后尽可能全部进入动叶中工作。若部分汽流不能进入动叶片,则会增加碰撞和漏汽损失。一般汽轮机中,动叶片比静叶片高2~6mm,但是,动叶片不能过高,因为动叶片过高,蒸汽在动叶片顶部和根部会出现涡流,并增大了静叶喷射蒸汽时的抽吸作用,即把静叶和动叶间隙中的散乱蒸汽吸入动叶中,消耗了工作蒸汽的动能,造成所谓的副流损失,如叶片过高,蒸汽在动叶片中,消耗了工作蒸汽的动能,造成所谓的副流损失。 2、叶和动叶之间的轴向间隙 动、静叶间必须保持适当的间隙,否则叶片无法转动。但是,这个轴向间隙的存在,会造成以下问题: (1)汽流在动、静叶的间隙中发生散乱现象,从而造成漏汽损失; (2)汽流抽吸此间隙中的散乱蒸汽而消耗动能,造成副流损失; (3)汽流在间隙中喷射方向的少许改变,引起蒸汽在叶片进口边的碰撞损失。 为了减少蒸汽在叶片中的涡流损失、撞击损失及尽可能更多地利用余速动能,总希望尽量使动、静叶间的间隙减小。但是这个减小也是有条件的,它必须保证高速转动的动叶和静叶不发生摩擦、碰撞。一般汽轮机动叶和下一级静叶间的间隙必须大于推力轴承乌金的厚度一定数值,以防止推力力轴承乌金熔化后,转子向后移动时使动、静叶碰撞而发生严重事故。 3、动、静叶片轴向间隙的调整 汽轮机动、静叶片间的轴向间隙过大是造成汽轮机经济性下降和出力不足的原因,这时应对其间隙进行调整。调整的办法有整机调整和单级部分调整两种。 整机调整的方法是通过改变推力轴承内推力瓦片后的垫片厚度来改变转子在汽缸中的轴向位置,从而改变所有动、静叶片之间的间隙。例如要减少所有级静叶片和动叶片的轴向间隙,则可以采用加厚工作瓦片后垫片的厚度,同时减小非工作瓦片后垫片的厚度来实现。 对于单级部分调整,若需调整的是第一级调节级,则可改变喷嘴下的垫片厚度;若需调整的是中间某级,则可改变隔板在汽缸中的位置,具体方法是改变隔板上轴向隔板钉的长度。 如果动叶片与静止部分的径向间隙过大,则可以在动叶片对应的静止部分加装汽封片,以减少漏汽。 三、叶片的受力分析 动叶片工作时受到的作用力主要有两种:一是由叶片本身和围带、拉筋旋转时所产生的离心力;二是汽流通过动叶片时对动叶片作用的汽流力以及汽轮机启动、停机过程中,叶片上各部分温度差引起的热应力。

第一章 汽轮机级的工作原理-第五节 级内损失和级的相对内效率

第五节 级内损失和级的相对内效率 一、级内损失 除前面讨论的级内轮周损失即喷嘴损失n h δ、动叶损失b h δ和余速损失2c h δ之外,级内还有叶高损失l h δ、扇形损失h θδ、叶轮摩擦损失f h δ、部分进汽损失 e h δ、漏汽损失h δδ和湿汽损失x h δ。 必须指出,并非各级都同时存在以上各项损失,如全周进汽的级中就没有部分进汽损失;采用转鼓的反动式汽轮机就不考虑叶轮摩擦损失;在过热蒸汽区域工作的级就没有湿汽损失;采用扭叶片的级就不存在扇形损失。 本节所讨论的各项级内损失,目前尚难以完全用分析法计算,多数是采用在静态和动态试验的基础上建立的经验公式计算。随试验条件的不同,计算损失的公式也不同。下面主要介绍国内计算级内损失的常用公式。 1.叶高损失l h δ 叶高损失又称为端部损失,其产生的物理原因及影响因素在上节已经分析过。它实质上是属于喷嘴和动叶的流动损失。工程上为了方便.把它单独分出来计算。 叶高损失l h δ主要决定于叶高l 。当叶片高度很高时,l h δ可以忽略不计。叶高必须大于相对极限高度,否则l h δ将急剧增加。叶高损失常用下列半经验公式计算: l h δ=u a h l ? (1.5.1) 式中 a ——试验系数,单列级a =1.2(未包括扇形损失)或a =1.6(包括扇 形损失),双列级a =2; u h ?——不包括叶高损失的轮周有效比焓降,即u h ?=0 t h ?—n h δ—b h δ— 2c h δ,/kJ kg ; l ——叶栅高度,单列级为喷嘴高度,双列级为各列叶栅的平均高度, mm 。 叶高损失也可以用以下半经验公式计算: l ξ= 2 1a n a x l (1.5.2)

汽轮机计算题

1. 某级平均直径dm =883mm, 设计流量D =597t/h ,级前压力 P0=5.49MPa, 温度 t0=417℃,级后压力p2=2.35MPa, 级的平均反动度 0.296m Ω=,上级可被余速利用的部分,喷管出汽角011151'α=,速度系数0.97φ=,流量系数0.97n μ=,全周进汽,试计算喷嘴出口的高度。 解:根据h-s 图,由p0,t0,以及 233.5 c h ?=kj/kg, 计算得滞止焓h0*=3264:得到p0*=6.08Mpa, 在h-s 图作等熵线,级的理想焓降t h ?*==227kJ/kg 喷嘴焓降 160 )1(=?Ω-=?t m n h h kJ/kg 根据h-s 图,查的喷嘴出口的蒸汽压力为p1=3.1MPa 喷嘴前后的压力比为:51.0*1 ==o n p p ε 过热蒸汽临界比546.0=cr ε 压力比小于过热蒸汽的临界压力比,为超临界流动。 计算得到MPa p P cr cr 32.3* 0==ε h-s 图上,等熵线上,查的kg m v kg kJ h cr cr /308.0/3090== 计算: 计算得到临界速度:590)(2*0=-=cr cr h h c m/s 临界面积:()22326.359097.008.0*597546.0cm c Gv A cr n cr cr n =??== μ 高度()()cm d A l m cr n cr n 08.4sin 1 == απ

解:喷嘴出口速度: t b gb b h c ?Ω-Ω-Ω-=)'1(21φ=687.6m/s 圆周速度: 11c x u ==0.24*687.6=165m/s 相对速度: 1122 11cos 2αuc u c w -+==530m/s 1 111cos cos w u c -= αβ, 1β=21° 得:?-=2*12ββ=19° 2122w h w t b t +?Ω==530m/s 根据b Ω,t w 2查得动叶速度系数b ?=0.873(图2-16) t 22w w ?==462.7m/s C 2=312.5m/s 2 * 22*2 cos cos c u w -= βα, * 2α=29° ?-=6* 2'1αα=23° 2 2t 12'c h c t gb +?Ω==328.8m/s 查得导叶速度系数gb ?=0.902(图2-16) '11't gb c c φ==296.6m/s 'cos '2'11221'1αuc u c w -+==160m/s ' 'cos ''cos 1111w u c -= αβ, '1β=48° ?-=14''*12ββ=34°

背压式汽轮电机制造商及技术参数

北京北重汽轮电机有限责任公司 北京北重汽轮电机有限责任公司(简称北重公司,前身北京重型电机厂创建于1958年),是以生产经营火力发电机组(包括电站汽轮机、汽轮发电机及其辅机)为主导的电力装备制造企业。 北重公司主要生产亚临界、超临界300–360MW湿冷、空冷、单双抽供热火电机组和超超临界660MW机组等大机组,以及余热利用、生物质发电、热电联产、垃圾发电、工业汽轮机等领域小机组为主导的产品系列,具有年产5000MW火电机组的生产能力。公司拥有专业的售后服务平台,能够为客户提供660MW及以下汽轮发电机组改造、技术咨询以及电厂节能降耗全面解决方案,积极拓展电站设备成套、工程总包业务。 背压式汽轮机本系列汽轮机按热负荷运行。功率自15MW至50MW。

抽汽背压式汽轮机本系列汽轮机的特点是可以同时提供两种不同压力的工业用汽,并且两种用汽量可进行调整,热电联产具有较大的灵活性和适应性。本系列汽轮机可按热负荷运行,还允许按纯背压工况运行。功率自12MW至30MW。

杭州汽轮机股份有限公司 杭州汽轮机股份有限公司是杭汽轮集团的核心企业。该公司是国内唯一能按用户特殊需要非标设计制造工业汽轮机的厂家,生产的工业汽轮机按驱动对象不同分为工业驱动汽轮机和工业发电汽轮机两大类。 背压冲动式汽轮机该厂自行设计的背压式汽轮机为单杠冲动式汽轮机,汽轮机带有齿轮减速装置。汽轮机采用全液压式调节系统并配备具有不同功能的保安装置,还可根据用户需要配置备压电调装置。

抽汽背压反动式汽轮机本系列机组采用的调节系统是有一系列标准部套构成,抽汽压力或排气压力的自动调节系通过抽气压力或排气压力变换成电量或气动量,再由电动或气动调节气等一系列调节元件的动作来完成。本机组还配备具有不同功能的保安监控装置。

汽轮机调节级动叶片断裂事故分析及处理

收稿日期:2006201209  作者简介:孙为民(19662),男,河南郑州人,副教授,现从事汽轮机设备的教学和科研。 汽轮机调节级动叶片断裂事故分析及处理 孙为民1 ,李留轩 2 (1郑州电力高等专科学校,郑州450004;2洛阳华润热电有限公司,洛阳471900) 摘要:针对50MW 汽轮机调节级动叶片断裂的事故原因进行了分析和研究,并根据当前机组情况选用了合理的处 理方案。 关键词:汽轮机;叶片断裂;处理方案分类号:TK267 文献标识码:B 文章编号:100125884(2006)0620458202 Processing and Fault Analysis ofMoving B lades Cripp ing of Steam Turbine Governing Stage S UN W ei 2m in 1 ,L IL iu 2xuan 2 (1Zhengzhou Electric Power College,Zhengzhou 450004,China; 2Luoyang China Res ourcus Ther moelectric Company L i m ited,Luoyang 471900,China ) Abstract:The fault reas ons of moving blades cri pp ing of steam turbine governing stage were analyzed and studied,and based on the unit state,the paper choosed reas onable sche mee of treat m ent .Key words:steam turb i n e;bl ades cr i pp i n g;schem ee of trea t m en t 0 前 言 某发电厂有两台50MW 汽轮发电机组,机组型号为C50-8.83/1.3。1号机2004年1月投入运行,2号机2004年4月投入运行。2004年6月4日,2号机组振动突然加大,12日开缸检查,发现第1级动叶片(调节级)3处共6片从根部断裂,转子返制造厂修理。 根据当时机组运行及叶片事故情况,制造厂家会同运行厂家对事故叶片进行了整级更换。更换时根据断叶片事故分析对叶片成组焊接剖口结构进行了改进,并增加了叶根侧部剖口焊。 2004年8月5日,2号机组振动再次出现异常,再次停机开缸检查,发现第1级动叶片(调节级)又有3处共6片从根部断裂,同时有部分叶片出现裂纹。断口形式和部位与第一次断口发生了较大变化,但断纹基本相似。另外,第2、3、4级动叶型面部分有不同程度的损伤,末级叶片有3片顶部不同程度地向外突出变形。 1 原因分析 1.1 设计分析 该机组调节级所用叶型为3.4061,叶根为TG22,该叶片从上世纪60年代开始在我国50MW 高温高压汽轮机调节级上广泛采用,是一种成熟结构。制造厂在50MW 抽汽式汽轮机上从上世纪90年代初期开始使用,并根据机组运行工况进行了适当调整,使用情况一直良好。1.2 结构强度分析 该机组调节级动叶片材料为1Cr11MoV,节圆直径1100 mm,叶片数156个,汽道高度35mm,叶片宽度35mm,叶根采用TG22型T 型叶根,叶片顶部自带围带,2片叶片成组,采用上、下V 型剖口焊接,围带焊接前厚8mm,剖口深6.5mm,叶片安装好后,围带加工至中间9mm 宽,厚6.1mm,两侧厚4.3mm 。 该叶片作为调频叶片考核,其A 0型计算静频为4514Hz,所配喷嘴当量数为79.4,激振频率为3950Hz,频率避开率为14.3%,在型线底部的汽流弯应力为4.5M Pa (二阀开),其余应力均远低于标准考核值。1.3 叶片断裂原因初步分析 第一次采用2片成组,在围带处焊接和在叶片底部开坡口焊接,叶片的振动强度基本符合有关的技术标准和行业规范要求,但叶片的切向振动频率和轴向振动与激振力频率的避开率不大,考虑到调节级叶片变工况运行条件和叶片装配在叶轮上的实际松紧状况,当振动下传时,叶片组的切向振动模态和轴向振动模态与喷嘴激振力频率发生共振或接近共振,导致叶片中的动应力过大,造成疲劳破坏。 第二次采用2片成组,增加叶根匹配面焊接,避免第一阶切向振动模态的共振,轴向振动频率与激振力频率的避开率也有所改善,但轴向振动频率与激振力频率的避开率仍不是很大。焊接的热影响区造成叶片材料抗疲劳的能力降低和焊接原因引起的初始裂纹,加速了叶片的疲劳损坏。因此从振动应力的来源来看第一次和第二次的断裂有不同之处。 通过对TG22型叶片根部断裂金相检验分析,结论如下:(1)叶根的断裂属于脆性断裂,裂纹扩展速度快,宏观断口上无明显塑性变形。 (2)裂纹源位于两叶根靠拢部位的焊区δ铁素体带处, 第48卷第6期 汽 轮 机 技 术Vol .48No .62006年12月 T URB I N E TECHNOLOGY Dec .2006

mw杭汽反动式背压汽轮机运行规程

m w杭汽反动式背压汽轮 机运行规程 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

第二部分 汽轮机运行规程 目录 2岗位职责 (3) 6.启机 (7) 7运行维护和检查 (9) 11.岗位巡检 (18)

12.设备操作 (19) 1岗位管辖范围 锅炉生产出的高温高压的主蒸汽并入主蒸汽母管后再进入汽轮机,在汽轮机中,工作蒸汽先在其喷嘴内进行膨胀,压力降低而速度增大,形成一股高速流,此高速气流推动转子转动,使蒸汽所携带的热能转变为转子转动的机械能,再经联轴器将机械能能传递给发电机转子,带动发电机发电。 在汽轮机中做过功的背压蒸汽首先经过减温器经减温后再进入分汽缸,由分汽缸经用汽管道输送至生产车间等热用户供工艺生产、采暖等用。蒸汽在热用户放出热量后凝结成水再返回,经补充并经化学处理除去硬度后送回到除氧器,除去水中溶解的氧和二氧化碳,再经给水泵提高压力后送至锅炉。这样工质(水、汽)就在热力系统中完成了一个循环,重复以上过程,便能在满足生产用汽的同时,连续地生产出电能。 上面的过程是一个以汽定电的过程,当出现汽电负荷不均衡,汽负荷大于电负荷时,投入减温减压器运行,满足热用户汽负荷的需要,此时高温高压蒸汽不经汽轮机作功,直接减温减压后使用。 2岗位职责 汽机班长: 汽机主操:

汽机副操: 3流程简图 4.工艺控制指标 汽轮机型号:NG50/40/25 生产厂家:杭州汽轮机股份有限公司

给水泵及除氧器工艺参数: 5.汽轮机启动前准备与检查 注意:汽轮机在下列情况下禁止启动 1、转速表及其它主要仪表不正常或失灵; 2、任意一种保护装置不动作(静态试验); 3、速关阀或调速汽阀卡涩或关闭不灵敏;

燃气轮机叶片

燃气轮机叶片加工与控制 一.燃气轮机的结构与组成燃气涡轮发动机主要由压气机、燃烧和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向 (整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多。二.燃气轮机工作原理及热处理过程 工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 三.燃气轮机叶片 1. 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产 生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状 复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产 的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家 正以最大的努力来提高叶片的性能,生产能力及质量满足需要。 在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。因此,对于直叶片来说。除了最近中径处的一部分还能工作之外,其余部分都会产生严重的气流分离,也就是说,用直叶片工作的压气机或涡轮,其效率极其低劣的,甚至会达到根本无法运转的地步。叶片的工作条件。 压气机叶片含风扇叶片属于冷端部件的零件,除最后几级由于高压下与气体的摩擦产生熵增而使温度升高到约600K (327° C),其余温度不高,进口处在高空还需防结冰。工作前面几级由于叶片长以离心负荷为主,后面几级由于温度以热负荷 为主。总之压气机叶片使用寿命较长。叶片的使用的材料一般为铝合金、钛合金、 铁基不锈钢等材料。 涡轮是在燃烧室后面的一个高温部件,燃烧室排出的高温高压燃气流经流 道流过涡轮,所有叶片恰好都是暴露在流道中必须承受约1000° C 的高温1Mpa 的以上高压燃气的冲刷下能正常工作。因此叶片应有足够的耐高温和高压的强度。涡轮叶片的使用寿命远低于压气机叶片约2500h。 转子叶片,静子叶片只承受热应力及弯曲应力,没有离心应力。叶片使用的材料一般为高温铸造合金如K403、K424 等、和高温合金如GH4133 等,温下高强 度材料。 2. 叶片加工与控制 ( 1 )加工叶片的加工分两大部分:一部分为叶片型面加工,一部分为榫头加工及缘板加工:压气机工作叶片的型面是用高能高速热挤压成型后经抛光而 成;整流叶片是由冷轧成型经抛光而成。涡轮叶片的叶型,无论是工作叶片 还是导向叶片均为铸件者都是型面没有余量精密铸造件都是大余量经数铣、抛光而成。 压气机叶片和涡轮叶片的榫头及上、下缘板尺寸为机械加工而成。前面讲

电厂效率计算方法

一、热电厂能耗计算公式符号说明 单位供电标煤耗 单位发电标煤耗 单位供热标煤耗 bg=bd/[1-(ed/100)] bd=(Bd/E)*102 Bd=B(1-α) br=(Br/Qr)*103 Br=Bα g/kwh g/kwh T Kg/GJ T 4 R 热电比 R=(Qr/36Eg)*102 5η0 热效率 η0=[(Qr+36Eg)/29.3B]*102(%) 二、能耗热值单位换算 千焦(KJ) 大卡(kcal) 1千瓦时(kwh)= 3600kj 备注 1、吉焦、千卡、千瓦时(GJ、kcal、kwh) 1kcal=4.1868KJ=4.1868×10-3MJ=4.1868×10-6GJ 1kwh=3600KJ=3.6MJ=3.6×10-3GJ 2、标准煤、原煤与低位热值: 1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。 Qy=5000kcal/kg=20934KJ/kg 1kg标准煤热值Qy=7000kcal/kg=29.3×103KJ=0.0293GJ/kg 当原煤热值为5000大卡时,1T原煤=0.714吨标煤,则1T标煤=1.4T原煤3、每GJ蒸汽需要多少标煤: br=B/Q=1/Qyη=1/0.0293η=34.12/η 其中:η=ηW×ηg=锅炉效率×管道效率

当ηW=0.89,ηg=0.958时,供热蒸汽标煤耗率br=34.12/0.89×0.958=40kg/GJ 当ηW=0.80,ηg=0.994时,供热蒸汽标煤耗率br=34.12/0.80×0.994=42.9kg/GJ 二、热电厂热电比和总热效率计算 一、热电比(R): 1、根据DB33《热电联产能效能耗限额及计算方法》2.2定义:热电比为“统计期内供热量与供电量所表征的热量之比”。 R=供热量/供电量×100% 2、根据热、能单位换算表: 1kwh=3600KJ(千焦) 1万kwh=3600×104KJ=36GJ(吉焦) 3、统一计量单位后的热电比计算公式为: R=(Qr/Eg×36)×100% 式中: Qr——供热量GJ Eg——供电量万kwh 4、示例: 某热电厂当月供电量634万kwh,供热量16万GJ,其热电比为: R=(16×104/634×36)×100%=701% 二、综合热效率(η0) 1、根据浙江省地方标准DB33定义,综合热效率为“统计期内供热量与供电量所表征的热量之和与总标准煤耗量的热量之比” η0=(供热量+供电量)/(供热标煤量+供电标煤量) 2、根据热、能单位换算表 1万kwh=36GJ 1kcal=4.1868KJ 1kg标煤热值=7000kcal 1kg标煤热值=7×103×4.1868=29.3×103KJ=0.0293GJ 3、统一计量单位后的综合热效率计算公式为 η0=[(Qr+36Eg)/(B×29.3)]×100% 式中:Qr——供热量GJ Eg——供电量万kwh B——总标煤耗量t 4、示例: 某热电厂当月供电量634万kwh,供热量16万GJ,供热耗标煤6442吨,供电耗标煤2596吨,该厂总热效率为: η0=[(16×104+36×634)/(6442+2596)×29.3]×100%=69%

相关主题
文本预览
相关文档 最新文档